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• When p = 2, the (NDVI) becomes⟨
f(t, u(t)) +

d

dt
u(t);x− u(t)

⟩
L2,L2

≥ −βv̇(t)

2r
∥u(t)− x∥2,

which is equivalent to the nonconvex sweeping process with perturbation:

− d

dt
u(t) ∈ NP (C(t);u(t)) + f(t, u(t)) (NSPP ),

where NP is the proximal normal cone (see for instance [8]). This type of differential
inclusion is widely studied in Hilbert spaces (see [8, 10] and the reference therein).
Many works studied various extensions of (NSPP) in Hilbert spaces (see for instance
Chapter 3 in [8] and the references therein).

• When f ≡ 0, p = 2, r = +∞, and C has convex values, the (NDVI) becomes the convex
sweeping process in the Hilbert space L2([0, 1],R) introduced and studied in [14].

• The case p > 2, r = +∞, and C has convex values, the considered problem becomes∫ 1

0

d

dt

(
∥u(t)∥2−p

Lp |u(t)(s)|p−2u(t)(s)
)
[x(s)− u(t)(s)] ds ≥ 0, a.e. on I,

and ∀x ∈ C(t). This differential variational inequality in the Banach spaces Lp([0, 1],R)
(p ≥ 2) has been introduced and studied in [6] in any uniformly convex and uniformly
smooth spaces.

Our main objective in the present paper is to establish an existence result of (NDVI) for
a large class of nonconvex sets in Lp([0, 1],R) (p ≥ 2). The contents of the paper will be
as follows: In Section 2 we quote all needed concepts and results from [7, 9]. Section 3 is
reserved to the proof of our main proofs. We end our paper with the conclusion section
summarizing briefly our results and describing our perspectives on the subject.

2 Preliminaries

In all the paper, unless otherwise specified, the space X will denote Lp([0, 1],R) with p ≥ 2.
Consider the functional V : Lp′

([0, 1],R)× Lp([0, 1],R) → R such that

V (x∗, x) = ∥x∗∥2
Lp′ + ∥x∥2Lp − 2⟨x∗;x⟩Lp′ ,Lp , (2.1)

where 1
p + 1

p′ = 1. Using this functional V we define the generalised projection (see [1]).

Definition 2.1. Let S be a closed nonempty set in X and x∗ ∈ X∗. If there exists a point
x̄ ∈ S satisfying V (x∗, x̄) = infx∈S V (x∗, x), then x̄ is called a generalized projection of x∗

onto S. Then πS(x
∗) := {x̄ ∈ S : V (x∗, x̄) = infx∈S V (x∗, x)}.

We notice that, in the case p = 2 (i.e., the space X is Hilbert), the generalised projection
πS coincides with the well known metric projection ProjS defined by ProjS(x) = {x̄ ∈ S :
∥x−x̄∥L2 = infs∈S ∥s−x̄∥L2}. Powerfully based on this concept of generalised projection πS ,
the authors in [7] introduced and studied the concept of V -proximal normal cone Nπ(S; x̄)
in smooth reflexive Banach spaces as follows:

Nπ(S; x̄) = {x∗ ∈ X∗ : ∃α > 0 such that x ∈ πS(J(x) + αx∗)}.
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We recall from [2] that the duality mapping J on Lp([0, 1],R) has the following analytic
representation:

J(x) = ∥x∥2−p
Lp |x|p−2x, for all x ∈ Lp([0, 1],R).

The class of nonconvex sets in X that will be used in our framework is introduced and
studied in [9]. It is an extension of the well known concept of prox-regularity from Hilbert
spaces to Banach spaces. Another extension of this concept from Hilbert spaces to Banach
spaces can be found in [3–5] but it is not appropriate in our framework.

Definition 2.2 ([9]). Let E be a reflexive smooth Banach space, S ⊂ E, and let x̄ ∈ S. The
set S will be called uniformly generalized V -prox-regular with respect to r > 0 if and only
if for all x ∈ S and for any nonzero x∗ ∈ Nπ(S;x) the point x is a generalized projection of
Jx+ r x∗

∥x∗∥ on S, that is, x ∈ πS(Jx+ r x∗

∥x∗∥ ).

Example 2.3.

1. Any nonempty closed convex set is uniformly generalized V -prox-regular with respect
to any r > 0;

2. The set S := B∪ (x0+B) (with ∥x0∥ > 4) is a closed nonconvex set which is uniformly
generalized V -prox-regular for some r > 0 (for its proof we refer to [9]).

We have to notice that a completely different approach, extending the concept of prox-
regularity from Hilbert spaces to smooth Banach spaces, has been introduced and studied
in [3–5]. Their extension is not the appropriate one in our setting because our main tool
in the present framework is the generalised projection πS with its nice properties for the
class of nonconvex sets in Definition 2.2. However, they use in their extension the metric
projection which is not, at all, appropriate in our approach.

The following proposition states an important property of uniformly generalized V -prox-
regular sets which is needed in our proofs. Its proof is given in [9].

Proposition 2.4. If S is a nonempty subset of a X, which is uniformly generalized V -prox-
regular with respect to r > 0, then for any x∗ ∈ UV

S (r) := {x∗ ∈ X∗ : inf
s∈S

V (x∗, s) < r2} the

generalized projection πS(x
∗) exists.

The results in the following lemma can be found in [2].

Lemma 2.5. Let E be a p-uniformly smooth and q-uniformly convex Banach space. For
any R > 0 there exist positive real numbers νR > 0, βR > 0, and ωR > 0 (depending only
on R and the space E) such that

1. ∥J(x)− J(y)∥ ≤ νR∥x− y∥p−1, for all ∥x∥ ≤ R, ∥y∥ ≤ R,

2. V (J(x); y) ≤ βR∥x− y∥p, for all ∥x∥ ≤ R, ∥y∥ ≤ R,

3. ∥x− y∥q ≤ ωRV (J(x); y), for all ∥x∥ ≤ R, ∥y∥ ≤ R.

The following proposition is needed in our proofs.

Proposition 2.6. Let E be a reflexive smooth Banach space and let S ⊂ X be a uniformly
generalized V -prox-regular set with ratio r > 0. Assume that S is bounded (i.e., S ⊂ lB).
Then for any x ∈ S and any nonzero x∗ ∈ Nπ(S;x) we have:

⟨ x∗

∥x∗∥
; y − x⟩ ≤ 2l + r

r
dS(y) +

1

2r
V (Jx; y), ∀y ∈ E. (2.2)
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Proof. Let r > 0 as in Definition 2.2. Let any x ∈ S and any nonzero x∗ ∈ Nπ(S;x). By
definition of uniform generalised V -prox-regularity, the point x is the generalised projection
of Jx+ r x∗

∥x∗∥ on S, that is,

V

(
Jx+ r

x∗

∥x∗∥
;x

)
≤ V

(
Jx+ r

x∗

∥x∗∥
; s

)
, ∀s ∈ S. (2.3)

Since the functional u 7→ V (Jx + r x∗

∥x∗∥ , u) is Lipschitz on S with constant K := 4l + 2r,

then by Clarke penalisation in Proposition 6.3 on page 50 in [?]), we have

V

(
Jx+ r

x∗

∥x∗∥
;x

)
≤ V

(
Jx+ r

x∗

∥x∗∥
; y

)
+KdS(y), ∀y ∈ E. (2.4)

On the other hand we have

V

(
Jx+ r

x∗

∥x∗∥
;x

)
− V

(
Jx+ r

x∗

∥x∗∥
; y

)
= ∥x∥2 − ∥y∥2 − 2

⟨
Jx+ r

x∗

∥x∗∥
;x− y

⟩
= −∥x∥2 − ∥y∥2 − 2r

⟨
x∗

∥x∗∥
;x− y

⟩
+ 2⟨Jx; y⟩

= −V (Jx, y)− 2r

⟨
x∗

∥x∗∥
;x− y

⟩
.

Thus, the inequality (2.4) becomes

−V (Jx, y)− 2r

⟨
x∗

∥x∗∥
;x− y

⟩
≤ KdS(y), ∀y ∈ E,

that is, ⟨
x∗

∥x∗∥
; y − x

⟩
≤ 2l + r

r
dS(y) +

1

2r
V (Jx, y), ∀y ∈ E.

This completes the proof.

3 Main Results

In this section, we will state and prove the main results of the paper. We start by proving
the existence of approximate solutions of (NDVI) in the case f ≡ 0.

Theorem 3.1. Let T > 0, I := [0, T ], and let C : I⇒X be a bounded set-valued mapping
with uniformly generalized V -prox-regular values w.r.t some r > 0, and satisfying for any
t, t′ ∈ I and any u ∈ Lp([0, 1],R)

|dC(t′)(u)− dC(t)(u)| ≤ |v(t′)− v(t)|, (3.1)

where v : R → R is an absolutely continuous function. Then for any initial point x0 ∈ C(0),
there exist β > 0, sequences of mappings θn : I → I, un : I → Lp([0, 1],R), and u∗

n : I →
Lp′

([0, 1],R), such that θn(t) → t uniformly on I, un(0) = x0, and for n sufficiently large
we have

un(θn(t)) ∈ C(θn(t)), ∀t ∈ I, and for a.e. on I, and ∀x ∈ C(θn(t))
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⟨
d

dt
u∗
n(t);x− un(θn(t))

⟩
Lp′ ,Lp

+
βv̇(t)

2r
V
(
∥un(θn(t))∥2−p

Lp |un(θn(t))|p−2un(θn(t));x
)

≥ 0.

Proof. First, by the boundness assumption on C, we have for some l > 0 the inclusion

C(t) ⊂ lB, ∀t ∈ I.

Since the space X = Lp([0, 1],R) (p ≥ 2) is 2-uniformly smooth and p-uniformly convex, we
use Lemma 2.5 to get a positive number βl > 0 and β∗

l depending on the constant l and on
the spaces X such that

V (J(x), y) ≤ βl∥x− y∥2, ∀x, y ∈ lB. (3.2)

Once again by Lemma 2.5 and the fact that X∗ = Lp′
([0, 1],R) (1 < p′ ≤ 2) is p′-uniformly

smooth and 2-uniformly convex, we can pick a positive number β∗
l > 0 depending on the

constant l and on the spaces X∗ such that

∥J(x)− J(y)∥2 ≤ β∗
l V (J(x), y) ∀x, y ∈ lB. (3.3)

Without loss of generality we may assume that T = 1 and v̇(t) > 0 for all t ∈ I. Consider
∀n ∈ N the following partition of I

In,i+1 = (tn,i, tn,i+1], tn,i =
i

2n
, 0 ≤ i ≤ 2n − 1, In,0 = {0}.

Put µn :=
1

2n
, ϵn,i :=

∫ tn,i+1

tn,i

v̇(s)ds, and ϵn := max{ϵn,i; 0 ≤ i ≤ 2n − 1}. Clearly ϵn ↓ 0

and hence we can fix some n0 ≥ 1 sufficiently large so that

ϵn <
r√
βl

, for any n ≥ n0.

Define now by induction the following iterative scheme: For any n ≥ n0 let

u∗
n,0 := u∗

0 = J(x0);

un,i+1 ∈ π(C(tn,i+1);u
∗
n,i), for 0 ≤ i ≤ 2n − 1;

u∗
n,i+1 := J(un,i+1),

and

un(t) := J∗(u∗
n(t))

u∗
n(t) := u∗

n,i +
(v(t)− v(tn,i))

ϵn,i
(u∗

n,i+1 − u∗
n,i), for all t ∈ In,i

and u∗
n(0) = u∗

n,0. First, we start by showing the well defindeness of the previous iterative

scheme. To do that we have to prove: {J(un,i)}n ⊂ UV
C(tn,i+1)

(r), ∀n ≥ n0, that is,

inf
x∈C(tn,i+1)

V (J(un,i), x) < r2 ∀n ≥ n0.
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Observe that, the sequence {u∗
n,i}n is bounded by l. We use the absolute continuity of

C to write for any n ≥ n0

dC(tn,i+1)(un,i) = dC(tn,i+1)(un,i)− dC(tn,i)(un,i)

≤
∫ tn,i+1

tn,i

v̇(s)ds ≤ ϵn,i ≤ ϵn.

So,
dC(tn,i+1)(un,i) ≤ ϵn.

Using now (3.2) and the definition of {u∗
n,i}n, we obtain

inf
x∈C(tn,i+1)

V (J(un,i), x) ≤ βl inf
x∈C(tn,i+1)

∥un,i − x∥2 ≤ βld
2
C(tn,i+1)

(un,i)

and hence
inf

x∈C(tn,i+1)
V (J(un,i), x) ≤ βld

2
C(tn,i+1)

(un,i) ≤ βlϵ
2
n.

Now, using the choice of n0 we obtain

inf
x∈C(tn,i+1)

V (J(un,i), x) ≤ βlϵ
2
n < r2,

that is, {J(un,i)}n ⊂ UV
C(tn,i+1)

(r), ∀n ≥ n0. Using now Proposition 2.4 the generalized

projection of u∗
n,i := J(un,i) on the set C(tn,i+1) exists for any n ≥ n0 and hence the iterative

scheme is well defined.

Using the definition of the V -proximal normal cone, we can write for a.e. t ∈ I

u∗
n,i+1 − u∗

n,i ∈ −Nπ (C(tn,i+1);un,i+1) ,

which gives

−u̇∗
n(t) = −v̇(t)

u∗
n,i+1 − u∗

n,i

ϵn,i
∈ Nπ (C(tn,i+1);un,i+1) . (3.4)

Since the dual space X∗ = Lp′
([0, 1],R) (1 < p′ ≤ 2) is p′-uniformly smooth and 2-uniformly

convex, we use Part (3) in Lemma 2.5 and the definition of the sequence {u∗
n,i}n to write

for some ω∗
l > 0

∥u∗
n,i+1 − u∗

n,i∥2 ≤ ω∗
l V (J(un,i);un,i+1) = ω∗

l inf
x∈C(tn,i+1)

V (J(un,i), x)

≤ ω∗
l inf
x∈C(tn,i+1)

βl∥un,i − x∥2 = ω∗
l βld

2
C(tn,i+1)

(un,i) ≤ ω∗
l βlϵ

2
n,i,

which ensures that ∥∥∥∥u∗
n,i+1 − u∗

n,i

ϵn,i

∥∥∥∥ ≤ (ω∗
l βl)

1
2 .

This ensures that

∥u̇∗
n(t)∥ =

v̇(t)

ϵn,i
∥u∗

n,i+1 − u∗
n,i∥ ≤ (ω∗

l βl)
1
2 v̇(t), a.e. on I, ∀n ≥ n0. (3.5)
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Define on In,i+1 the functions θn : I → I by θn(0) = 0, and

θn(t) = tn,i+1, for all t ∈ In,i+1.

Then the inclusion (3.4) with (3.5) ensure

−u̇∗
n(t) ∈ Nπ(C(θn(t));un(θn(t))) ∩ βv̇(t)B, a.e. t ∈ I, ∀n ≥ n0, (3.6)

where β := (ω∗
l βl)

1
2 > 0. Also, we have by construction

un(θn(t)) ∈ C(θn(t)),∀t ∈ I and all n ≥ n0. (3.7)

Using now Proposition 2.6 to conclude

⟨−u̇∗
n(t);x− un(θn(t))⟩ ≤

(2l + r)(βv̇(t))

r
dC(θn(t))(x) +

βv̇(t)

2r
V (J(un(θn(t))), x),

for all x ∈ X and hence for any x ∈ C(θn(t)) and a.e. on I, we obtain

⟨u̇∗
n(t);x− un(θn(t))⟩+

βv̇(t)

2r
V (J(un(θn(t))), x) ≥ 0.

Thus, the proof of Theorem 3.1 is achieved.

Theorem 3.2. Let C : I⇒X be a bounded set-valued mapping with uniformly generalized
V -prox-regular values w.r.t some r > 0, and satisfying (3.1). If, in addition, assume that
the following compactness condition is satisfied: ∀t ∈ I and any bounded set A in X with
γ(A) > 0, L > 0 one has

γ(J(C(t)) ∩ LB) < γ(A), (3.8)

where γ is either the Kuratowski or the Hausdorff measure of noncompactness. Then for
any initial condition x0 ∈ C(0), the sequences of approximate solutions un and u∗

n obtained
in Theorem 3.1 admit uniformly convergent subsequences to some u ∈ AC(I,X) and u∗ ∈
AC(I,X∗), respectively, such that u̇∗

n weakly converges to u̇∗ in L1(I,X∗). Here AC(I,X)
means the space of absolutely continuous functions defined from I to X.

Proof. Assume that the sequences un and u∗
n are defined as in the proof of Theorem 3.1.

Due to the uniform continuity of the mapping J∗ on bounded sets it will be sufficient to
prove the uniform continuity of a subsequence of u∗

n. To do that, we use the well known
Arzela-Ascoli theorem to prove the compactness of {u∗

n}n.
First, we quote from Theorem 3.1 the following upper bound estimate for the expression

∥u∗
n,i+1 − u∗

n,i∥:
∥u∗

n,i+1 − u∗
n,i∥ ≤ βϵn,i,

where β > 0 is given as in the proof of Theorem 3.1.

By construction, the mappings u∗
n and un are continuous on all I and u∗

n is differentiable

on I \ {tn,i; 0 ≤ i ≤ 2n − 1} with u̇∗
n(t) =

v̇(t)
ϵn,i

[
u∗
n,i+1 − u∗

n,i

]
, for all t ∈ I \ {tn,i; 0 ≤ i ≤

2n − 1}. Let us verify that u∗
n is absolutely continuous on I. Obviously for any t, t′ ∈ In,i

we have

u∗
n(t

′)− u∗
n(t) =

v(t′)− v(t)

ϵn,i

[
u∗
n,i+1 − u∗

n,i

]
.
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Hence for any t, t′ ∈ In,i with t ≤ t′, we obtain

∥u∗
n(t

′)− u∗
n(t)∥ ≤

∥u∗
n,i+1 − u∗

n,i∥
ϵn,i

[v(t′)− v(t)] ≤ β [v(t′)− v(t)] . (3.9)

Consequently, by addition the inequality (3.9) still valid for all t, t′ ∈ I with t ≤ t′. This
ensures that u∗

n is absolutely continuous on I, for any n ≥ n0.

On the other side, the absolute continuity of C gives

dC(t)(un(t)) =
[
dC(t)(un(t))− dC(θn(t))(un(t))

]
+
[
dC(θn(t))(un(t))− dC(θn(t))(un(θn(t))

]
≤

(∫ θn(t)

t

v̇(s)ds

)
+ ∥un(θn(t))− un(t)∥.

The absolute continuity of u∗
n on I in (3.9) gives

∥u∗
n(θn(t))− u∗

n(t)∥ ≤ β

(∫ θn(t)

t

v̇(s)ds

)
≤ βϵn.

On the other hand, the dual space X∗ = Lp′
([0, 1],R) (1 < p′ ≤ 2) is p′-uniformly smooth

and hence by Part (1) in Lemma 2.5, we have for some postive real number ν∗l > 0

∥un(θn(t))− un(t)∥ = ∥J∗(u∗
n(θn(t)))− J∗(u∗

n(t))∥ ≤ ν∗l ∥u∗
n(θn(t))− u∗

n(t)∥p
′−1

Thus,

∥un(θn(t))− un(t)∥ ≤ ν∗l (βϵn)
p′−1

and hence
dC(t)(un(t)) ≤ ϵn + ν∗l (βϵn)

p′−1
.

This may be written as follows:

un(t) ∈ C(t) + ηnB, for all n ≥ n0 and all t ∈ I,

where ηn := ϵn+ν∗l (βϵn)
p′−1

. This means that un(t) = cn(t)+ηnbn(t) for some cn(t) ∈ C(t)
and some bn(t) ∈ B. Using once again Part (1) in Lemma 2.5 for the space X = Lp([0, 1],R)
(p ≥ 2), which is 2-uniformly smooth, we find a positive number νl > 0 and we write

dJ(C(t))(u
∗
n(t)) = dJ(C(t))(J(un(t))) = dJ(C(t))(J(cn(t) + ηnbn(t)))

≤ dJ(C(t))(J(cn(t) + ηnbn(t)))− dJ(C(t))(J(cn(t)))

≤ ∥J(cn(t) + ηnbn(t)))− J(cn(t))∥
≤ νlηn.

Hence
u∗
n(t) ∈ J(C(t)) + νlηnB, ∀t ∈ I, ∀n ≥ n0. (3.10)

Now, we are able to prove that (u∗
n) has a convergent subsequence. From what precedes, we

have for any n ≥ n0 the mapping u∗
n is absolutely continuous on I with ∥u̇∗

n(t)∥ ≤ βv̇(t) a.e.
on I. So, by Arzela-Ascoli theorem, we have to prove that the set B∗(t) = {u∗

n(t);n ≥ n0}
is relatively compact in X∗, for all t ∈ I. We suppose by contradiction that for some t0 ∈ I,
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the set B∗(t0) is not relatively compact in X∗. So, γ(B∗(t0)) > 0. Using (3.8) and the
boundedness of B∗(t0) there exists some δ̄ ∈ (0, 1] so that

γ(B∗(t0))− γ(J(C(t0)) ∩ (l + 1)B) ≥ 2δ̄. (3.11)

Pick now n1 ≥ n0 such that ηn ≤ ηn1
< δ̄

2νl
, for all n ≥ n1. Then (3.10) can be reformulated

as follows:

u∗
n(t) ∈ J(C(t)) + νlηnB ⊂ J(C(t)) ∩ (l + 1)B+ νlηn1B,∀n ≥ n1,∀t ∈ I,

which ensures

{u∗
n(t);n ≥ n1} ⊂ J(C(t)) ∩ (l + 1)B+ νlηn1

B, for all t ∈ I.

Thus,

γ(B∗(t0)) = γ({u∗
n(t0) : n ≥ n0}) = γ({u∗

n(t0) : n ≥ n1})
≤ γ(J(C(t0)) ∩ (l + 1)B) + γ(νlηn1

B)
≤ γ(B∗(t0))− 2δ̄ + 2νlηn1

< γ(B∗(t0))− 2δ̄ + δ̄

< γ(B∗(t0))− δ̄.

This contradicts the choice of δ̄ > 0. Consequently, the set B∗(t) is relatively compact in
X∗ for any t ∈ I. Thus, we conclude, by Arzela-Ascoli theorem that (u∗

n) has a subsequence
(still denoted u∗

n) converging uniformly to some u∗ and the sequence (u̇∗
n) converges weakly

in L1(I,X∗) to u̇∗. Using the fact that limn θn(t) = t, we can write limn u
∗
n(θn(t)) =

limn u
∗
n(t) = u∗(t) uniformly on I. Hence, the sequence un = J∗(u∗

n) converges uniformly
to u = J∗(u∗) on I and so the proof of the theorem is complete.

Theorem 3.3. Under the same assumptions of Theorem 3.2, the (NDV I) has at least
one absolutely continuous solution, that is, there exists u : I → Lp([0, 1],R) such that
u(0) = u0 ∈ C(0), u(t) ∈ C(t),∀t ∈ I, and for a.e. t ∈ I and for any x ∈ C(t)⟨

d

dt

(
∥u(t)∥2−p

Lp |u(t)|p−2u(t)
)
;x− u(t)

⟩
Lp′ ,Lp

+
βv̇(t)

2r
V (
(
∥u(t)∥2−p

Lp |u(t)|p−2u(t)
)
;x) ≥ 0.

(3.12)

Proof. Let un, u
∗
n, and θn be as in the proof in Theorem 3.1. We wish to prove that u is

a solution of our problem (NDVI). First, we have to show that u(t) ∈ C(t), for all t ∈ I.
Using once again the absolute continuity of C to write for all t ∈ I

dC(t)(un(θn(t)) = dC(t)(un(θn(t))− dC(θn(t))(un(θn(t))

≤
∫ θn(t)

t

v̇(s)ds ≤ ϵn,
(3.13)

and so
dC(t)(u(t)) ≤ dC(t)(un(θn(t))) + ∥un(θn(t))− u(t)∥

≤ ϵn + ∥un(θn(t)))− u(t)∥ → 0,
(3.14)
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as n → ∞. This ensures together with the closedness of the set C(t), that u(t) ∈ C(t), for
all t ∈ I. Returning back to (3.6) we get

−u̇∗
n(t)) ∈ Nπ(C(θn(t));un(θn(t))) ∩ βv̇(t)B, a.e. on I.

So, Proposition 2.6 ensures for a.e. t ∈ I and for any x ∈ C(t)⟨
− u̇∗

n(t))

βv̇(t)
;x− un(θn(t))

⟩
≤ 2l + r

r
dC(θn(t))(x) +

1

2r
V (J(un(θn(t)));x). (3.15)

Let any t ∈ I for which u̇∗
n(t) and u̇∗(t) exist and let x ∈ C(t). Then we have

dC(θn(t))(x) = dC(θn(t))(x)− dC(t)(x) ≤ ϵn,

and so x ∈ C(θn(t))+ ϵnB, that is, x = yn(t)+ ϵnbn(t) with yn(t) ∈ C(θn(t)) and bn(t) ∈ B.
Hence (3.15) yields⟨

− u̇∗(t)

βv̇(t)
;x− u(t)

⟩
=

⟨
u̇∗
n(t)− u̇∗(t)

βv̇(t)
;x− u(t)

⟩
+

⟨
− u̇∗

n(t)

βv̇(t)
;x− u(t)

⟩
=

⟨
u̇∗
n(t)− u̇∗(t)

βv̇(t)
;x− u(t)

⟩
+

⟨
− u̇∗

n(t)

βv̇(t)
;x− un(θn(t))

⟩
+ ⟨− u̇∗

n(t)

βv̇(t)
;un(θn(t))− u(t)⟩

≤
⟨
u̇∗
n(t)− u̇∗(t)

βv̇(t)
;x− u(t)

⟩
+

⟨
− u̇∗

n(t)

βv̇(t)
;un(θn(t))− u(t)

⟩
+

2l + r

r
dC(θn(t))(x) +

1

2r
V (J(un(θn(t))));x).

Using the weak convergence in X∗ of u̇∗
n(t) to u̇∗(t) and the uniform convergence in X of

un(θn(t)) to u(t) proved in Theorem 3.2, and the uniform converge of θn(t) → t, we can
pass to the limit in the last inequality as n goes to infinity⟨

− u̇∗(t)

βv̇(t)
;x− u(t)

⟩
≤ 2l + r

r
dC(t)(x) +

1

r
V (J(u(t));x) =

1

r
V (J(u(t));x)

and hence ⟨
− u̇∗(t)

v̇(t)
;x− u(t)

⟩
≤ β

r
V (J(u(t));x), ∀x ∈ C(t).

This guarantees for any x ∈ C(t)⟨
− d

dt
J(u(t));x− u(t)

⟩
≤ βv̇(t)

2r
V (J(u(t));x). (3.16)

Since J(u(t))) = ∥u(t)∥2−p
Lp |u(t)|p−2u(t), the last inequality (3.16) yields⟨

d

dt

(
∥u(t)∥2−p

Lp |u(t)|p−2u(t)
)
;x− u(t)

⟩
Lp′ ,Lp

+
βv̇(t)

2r
V
((

∥u(t)∥2−p
Lp |u(t)|p−2u(t)

)
;x
)
≥ 0

for a.e. t ∈ I and for any x ∈ C(t) and hence the proof is complete.
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Remark 3.4.

• The assumptions on the considered space X = Lp([0, 1],R) (p ≥ 2), which are needed
in our proofs are also satisfied for the spaces lp, and W k,p spaces with p ≥ 2 which are
2-uniformly smooth and p-uniformly convex Banach space (see for instance [2]).

• An inspection of our proofs shows that the assumption (3.1) can be replaced by:

|dC(t′)(u)− dC(t)(u)| ≤ λ(u)|v(t′)− v(t)|, ∀t, t′ ∈ I, ∀u ∈ X, (3.17)

where λ : X → [0,∞) is a bounded function on bounded sets.

• We notice that our existence result in Theorem 3.3 extends Theorem 3.1 in [6] and
Theorem 2.1 in [7] from the convex case to the nonconvex case in q-uniformly convex
and 2-uniformly smooth Banach space. In the nonconvex case (uniformly generalized
V -prox-regular sets) our result extends Theorem 4.1 in [10] from Hilbert spaces setting
to q-uniformly convex and 2-uniformly smooth Banach space.

We close Section 3 with an existence result for nonlinear differential variational inequality
(NDVI) when f ̸≡ 0.

Theorem 3.5. Suppose that the assumptions in Theorem 3.3 are satisfied. Let f : I ×
X⇒X∗ be a continuous mapping with values in X∗ such that f(t, x) ∈ κ for all (t, x) ∈ I×X
for some convex compact set κ in X∗. Then for any initial point x0 ∈ C(0), there exists at
least one absolutely continuous solution of the following nonconvex differential variational
inequality with bounded perturbation (NDV IP ): there exists u : I → X such that u(t) =

x0 +
∫ t

0
u̇(s)ds and u(t) ∈ C(t),∀t ∈ I with⟨

f(t, u(t)) +
d

dt

(
∥u(t)∥2−p

Lp |u(t)|p−2u(t)
)
;x− u(t)

⟩
Lp′ ,Lp

≥ −βv̇(t)

2r
V (
(
∥u(t)∥2−p

Lp |u(t)|p−2u(t)
)
;x), ∀x ∈ C(t).

Proof. Following the same ideas and lines in the proofs of Theorems 3.1-3.3 and we consider
the following iterative scheme which is adapted to the case when f ̸≡ 0:

u∗
n,0 := u∗

0 = J(x0), z∗n,0 := f(tn,0, J
∗(u∗

n,0));

z∗n,i := f(tn,i, J
∗(u∗

n,i));

un,i+1 ∈ π(C(tn,i+1);u
∗
n,i + ϵn,iz

∗
n,i), for 0 ≤ i ≤ 2n − 1;

u∗
n,i+1 := J(un,i+1);

and for all t ∈ In,i we set

z∗n(t) := z∗n,i;

un(t) := J∗(u∗
n(t));

u∗
n(t) := u∗

n,i +
(v(t)− v(tn,i))

ϵn,i
(u∗

n,i+1 − u∗
n,i),

and u∗
n(0) := u∗

n,0 and z∗n(0) := z∗n,0. This algorithm has been used in Theorem 4.3 in [7] for
the convex case. The proof of the theorem is a combination of the proofs of Theorem 3.1
and Theorem 4.3 in [7]. We sketch the combinations as follows:
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1. We follow the same lines and ideas in the proof of the previous theorem to prove the
well definedness of the iterative scheme, the compactness of the sequences {u∗

n}n and
{un}n, and the passage to the limit to show that u∗ is a solution of (NDVI).

2. We use the ideas used in [6] to prove the compactness of the sequence of mappings
{z∗n}n to some limit z∗.

We state here a simple example showing how can we use our previous results and that cannot
be covered by any existing result.

Remark 3.6.

• For X = Lp([0, 1],R) with p ≥ 2, we fix any point x̄ ∈ X with ∥x̄∥ > 4 and let T > 0.
We define C : I⇒X as: C(t) = S ∩ [B ∪ (x̄ + B)], ∀t ∈ I, where S is a given convex
compact set in X. Then, obviously, the set-valued mapping C is Lipschitz continuous
in the sense of (3.1) and for any t ∈ I we have C satisfies the compactness condition
in (3.8). By Example 2.3 the set-valued mapping C has uniformly generalized V -prox-
regular values in X. Therefore, all the assumptions of our main results in Theorems
3.1-3.3 are fulfilled and hence by Theorem 3.3 there exists at least one absolutely (in
this case it is Lipschitz) solution of (NDVI) associated with C. We have to point out
that this existence of solutions of (NDVI) cannot be derived from any existing result
proved in previous works.

• Notice that the set-valued mapping C in the above example is constant. Nevertheless,
we can construct other examples depending on time t. Take for example C of the form
C(t) := S+g(t) and C(t) := h(t).S with g : I → X is a bounded Lipschitz single-valued
mapping and h : I → [0,∞) is a bounded real-valued function, and S is the set used
in the above Example.

4 Conclusions

In the present work, we extended some existing results of differential variational inequality
from the convex case to the nonconvex case and from Hilbert space settings to Banach spaces
settings. Our main results can be summarised as follows: In the framework of Banach spaces
Lp([0, 1],R) (p ≥ 2), which are 2-uniformly smooth and q-uniformly convex and under the
absolute continuity of C, and with the uniform V -prox-regularity of the values of C, we
proved:

• Existence of absolutely continuous solutions of (NDVI) with f ≡ 0 in Theorem 3.3.

• Existence of absolutely continuous solutions of (NDVI) with f ̸≡ 0 in Theorem 3.5.

• The absolute continuity assumption (3.1) is very easy to verify relatively to the as-
sumptions used in [6, 7]. In [7], instead of (3.1) the authors utilized the assumption in
terms of the function dV :

|(dVC(t′))
1
2 (u∗

1)− (dVC(t))
1
2 (u∗

2)| ≤ k1|t′ − t|+ k2∥u∗
1 − u∗

2∥, (4.1)

for any u∗
1, u

∗
2 ∈ X∗ and any t, t′ ∈ I, where dVC(t)(u

∗) = inf
x∈C(t)

V (u∗, x) and k1, k2 > 0.

In [6], the author used a different assumption in terms of the distance function:

|d
2
p

C(t′)(u)− d
2
p

C(t)(u)| ≤ λ∥t′ − t∥,∀t, t′ ∈ I and ∀u ∈ X. (4.2)
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Clearly, all the conditions (3.1), (4.1), and (4.2) coincide in the Hilbert space L2([0, 1],R).
Nevertheless, in Banach spaces Lp([0, 1],R) (p ≥ 2), the condition (4.1) is very hard
to verify even for simple expressions of C. The difficulty comes from the definition of
the function dVS and the fact that dVS does not have all the nice properties of the dis-
tance function dS . To compare (3.1) and (4.2), we take for Example X = L3(0, 1,R),
T = 1, and C(t) = B + h(t), with h : [0, 1] → X is a Lipschitz single-valued mapping.
Obviously, the condition (3.1) is satisfied and it can be verified easily. The condition
(4.2) is not satisfied since the expression ∥u− h(t)∥ cannot be bounded from below by
a positive number for any u ∈ X and any t, t′ ∈ [0, 1].

• The case of Lp([0, 1],R) with p ∈ (1, 2), which is 2-uniformly convex and p-uniformly
smooth with any p ̸= 2 is the subject of a future work.
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