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neighborhood algorithms. Later, Li and Terlaky [19] and Feng and Fang [7], respectively,
generalized the Ai-Zhang approach and its predictor-corrector version to the SDO. Some
variants of this algorithm have been extended to horizontal LCP (HLCP) [21], SDO and
P∗(κ)-LCP [12,13,15]. Zhang and Zhang [30] designed an IPM with the second-order correc-
tor step for SO in a given negative infinity neighborhood of the central path and established
the convergence of the proposed algorithm for commutative class of search directions. The
aforementioned methods work in the Ai-Zhang wide neighborhood. Darvay and Takács [3]
proposed a wide neighborhood interior-point algorithm for LO which the used neighborhood
differs from the one introduced by Ai and Zhang. Very recent, Kheirfam [9] extended the
Darvay-Takács technique to the SDO based on the NT search direction (NT-direction) which
is introduced in [20].

Motivated by the above-mentioned works, especially by [3, 9], we present a primal-dual
path-following feasible IPM for SO based on a new wide neighborhood of the central path.
We first define our new neighborhood and show that it is even wider than the wide neigh-
borhoods that are available. Our method can be essentially regarded as a generalization of
the algorithms proposed in [3, 9] to the SO case. Using the Euclidean Jordan algebra as a
tool, we analyse the algorithm and prove that it has the same iteration complexity as any
feasible IPM for SO that uses the NT-direction.

The paper is organized as follows. Relevant concepts and properties of Euclidean Jordan
algebras, as well as some main lemmas that are needed in during analysis of Algorithm, are
reviewed in Section 2. In Section 3, we first explain the search directions and define our new
neighborhood, and then state a theoretical framework of our feasible IPM. Several technical
lemmas and the polynomial-time convergence is established in Section 4. In Section 5, we
provide some numerical results. Some concluding remarks are given in Section 6.

2 Euclidean Jordan Algebra

We assume that the reader has some familiarity with Euclidean Jordan algebras. We briefly
recall some of the definitions and key results that are needed. For a comprehensive study,
we refer the reader to the book by Faraut and Korányi [4].

Let J be a finite-dimensional vector space on real field R, along with a bilinear map
◦ : J × J → J . Then (J , ◦) (shortly denoted by J ) is said to be a Jordan algebra if
x◦y = y ◦x and x◦ (x2 ◦y) = x2 ◦ (x◦y) where x2 = x◦x, for all x, y ∈ J . A Jordan algebra
J is Euclidean if there exists a symmetric positive definite quadratic form Q on J such that
Q(x ◦ y, z) = Q(x, y ◦ z). e ∈ J is an identity element if for any x ∈ J , e ◦x = x ◦ e = x. An
element c ∈ J is idempotent if c ̸= 0 and c2 = c. Two idempotents c1 and c2 are orthogonal
if c1 ◦ c2 = 0. An idempotent element is said to be primitive if it cannot be written as the
sum of two other idempotents. The set of primitive idempotents {c1, . . . , ck} is a Jordan
frame if c1 + · · · + ck = e and ci ◦ cj = 0, i ̸= j. Denote the corresponding cone of squares
by K := {x2 : x ∈ J }, which is a symmetric cone. deg(x) denotes the the degree of x ∈ J
and is defined as the smallest integer k such that the set {e, x, . . . , xk} is linearly dependent.
The rank of J , denoted by r, is r = max{deg(x), x ∈ J }. It is well-known that each element
x ∈ J has a spectral decomposition x = λ1c1 + · · ·+ λrcr, where λi(i = 1, . . . , r) are called
the eigenvalues of x and {c1, · · · , cr} forms a Jordan frame [4, Theorem III.1.2]. That is, the
number of the idempotents in a Jordan algebra is exactly the rank of the Euclidean Jordan
algebra. We denote by x−1 the inverse of x and is defined as x ◦ x−1 = x−1 ◦ x = e, and
it can be decomposed as x−1 = λ−1

1 c1 + · · ·+ λ−1
r cr. Similarly, the spectral decomposition

of
√
x is as

√
x =

√
λ1c1 + · · · +

√
λrcr. Some other functions are defined in terms of the

eigenvalues as Tr(x) :=
∑r

i=1 λi and λmin = min1≤i≤r λi. Leaning on the function Tr(·), we
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define ⟨x, s⟩ := Tr(x ◦ s) and ∥x∥F :=
√
⟨x, x⟩ =

√∑r
i=1 λ

2
i . Since the inner product “ ◦ ”

defined in J is a bilinear mapping, thus we can define a linear operator L : J → J such
that Lxs = x◦s for any s ∈ J . We say x ∈ J and s ∈ J operator commute if LxLs = LsLx.
Moreover, it can be proven that x and s operator commute if and only if they share the
same Jordan frame [23]. For any x ∈ J , we define the quadratic representation of x as
Qx := 2L2

x − Lx2 , where L2
x = LxLx. In the sequel, we list some fundamental results which

will be used in during analysis.

Lemma 2.1 ([23, Proposition 21]). Let x, s, p ∈ intK, where intK denotes the interior of
K, and define x̃ := Qpx and s̃ := Qp−1s. Then Q

x
1
2
s and Q

x̃
1
2
s̃ have the same eigenvalues.

Lemma 2.2 ([16, Lemma 5.12]). For x, s ∈ J , then ∥(x+ s)+∥F ≤ ∥x+∥F + ∥s+∥F .

Lemma 2.3 ([22, Lemma 2.9]). Let J be any Euclidean Jordan algebra and x, s ∈ J , then
∥x ◦ s∥F ≤ ∥x∥F ∥s∥F .

Lemma 2.4 ([23, Lemma 30]). Let x, s ∈ intK. If x and s operator commute, then Q
x

1
2
s =

Q
s
1
2
x = x ◦ s.

3 SO Problem and the New Wide Neighborhood

Let J be a Euclidean Jordan algebra of rank r and the symmetric cone K. We consider the
primal-dual pair of SO problems in standard forms

min{⟨c, x⟩ : Ax = b, x ∈ K}, (P )

max{bT y : AT y + s = c, s ∈ K}, (D)

where c and the rows of A belong to J , and b ∈ Rm. Without any loss of generality, we
assume that rank(A) = m. We also denote

F0 := {(x, y, s) : Ax = b, AT y + s = c, x ∈ intK, s ∈ intK}.

Throughout this paper, we suppose that the interior point condition (IPC) holds for both
(P) and (D), i.e., F0 ̸= ∅. It is shown in [6] that, under this assumption, a necessary and
sufficient optimality condition for (P) and (D) is

Ax = b, x ∈ K,
AT y + s = c, s ∈ K,

x ◦ s = 0,
(3.1)

where the last equation is called the complementarity condition. A common aspect in primal-
dual IPMs is to replace the complementarity condition x ◦ s = 0 by the centrality equation
x ◦ s = µe, where µ > 0. Hence, we obtain the system which defines the central path:

Ax = b, x ∈ K,
AT y + s = c, s ∈ K,

x ◦ s = µe.
(3.2)

It is well-known that system (3.2) has a unique solution for a fixed µ > 0 if the condition F0 ̸=
∅ is satisfied [6]. If µ tends to zero, then the central path converges to the primal-dual optimal
solution. It is proved in [23, Lemma 28] that x ◦ s = µe if and only if Qpx ◦Qp−1s = µe, for
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any p ∈ J invertible and x, s ∈ intK. Letting x̃ = Qpx, s̃ = Qp−1s, Ã = AQp−1 , c̃ = Qp−1c,
the system (3.2) can be rewritten as follows:

Ãx̃ = b,

ÃT y + s̃ = c̃,
x̃ ◦ s̃ = µe.

(3.3)

Let C(x, s) denote the set of all p ∈ intK such that the scaled elements operator commute,
i.e.,

C(x, s) := {p ∈ intK : Qpx and Qp−1s operator commute}.

This class includes the xs and sx search directions and the NT direction as special sub-
class. In this article, we study the case of NT direction, which p is satisfied with p =
[Q

x
1
2
(Q

x
1
2
s)−

1
2 ]−

1
2 = [Q

s−
1
2
(Q

s
1
2
x)

1
2 ]−

1
2 . Note that in such a way, we have x̃ = s̃ [23]. Let

ψ : [0,∞) → [0,∞) be a continuously differentiable function such that ψ
′
(t) > 0,∀t ≥ 0.

For t ∈ Rn, we define ψ(t) = (ψ(ti))1≤i≤n. In this way, the scaled system (3.3) can be
equivalently written as

Ãx̃ = b,

ÃT y + s̃ = c̃,
ψ
(
x̃◦s̃
τµ

)
= ψ(e),

(3.4)

where the target is a point on the central path corresponds to µ := τµ and τ ∈ (0, 1) is the
centering parameter.

Given a primal-dual feasible point (x, y, s), then applying Newton’s approach to system
(3.4) leads to the following linear system:

Ã∆x̃ = 0,

ÃT∆y +∆s̃ = 0,

s̃ ◦∆x̃+ x̃ ◦∆s̃ = τµ
(
ψ

′( x̃◦s̃
τµ

))−1 ◦
(
ψ(e)− ψ

(
x̃◦s̃
τµ

))
,

(3.5)

where ∆x̃ = Qp∆x,∆s̃ = Qp−1∆s. Considering ψ(t) =
√
t, the Newton system (3.5) be-

comes

Ã∆x̃ = 0,

ÃT∆y +∆s̃ = 0,

s̃ ◦∆x̃+ x̃ ◦∆s̃ = 2
(√

τµ(x̃ ◦ s̃) 1
2 − x̃ ◦ s̃

)
.

(3.6)

Based on Ai’s original idea [1], we decompose the Newton system (3.6) into the following
two systems:

Ã∆x̃− = 0,

ÃT∆y− +∆s̃− = 0,

x̃ ◦∆s̃− +∆x̃− ◦ s̃ = 2
(√
τµ(x̃ ◦ s̃) 1

2 − x̃ ◦ s̃
)−
,

(3.7)

and

Ã∆x̃+ = 0,

ÃT∆y+ +∆s̃+ = 0,

x̃ ◦∆s̃+ +∆x̃+ ◦ s̃ = 2
(√
τµ(x̃ ◦ s̃) 1

2 − x̃ ◦ s̃
)+
.

(3.8)
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Note that for a ∈ R, a+ = max{a, 0} and a− = min{a, 0}. Since
√
τµ(x̃ ◦ s̃) 1

2 − x̃ ◦ s̃ =(√
τµ(x̃ ◦ s̃) 1

2 − x̃ ◦ s̃
)+

+
(√
τµ(x̃ ◦ s̃) 1

2 − x̃ ◦ s̃
)−

, the classical Newton direction is as
simply (∆x̃,∆y,∆s̃) = (∆x̃+,∆y+,∆s̃+) + (∆x̃−,∆y−,∆s̃−). Let α := (α1, α2) ∈ R2

with 0 < α1 ≤ 1 and 0 < α2 ≤ 1, be the step sizes taken along (∆x̃−,∆y−,∆s̃−) and
(∆x̃+,∆y+,∆s̃+), respectively. Thus, we consider the new iterate as follows

(x̃(α), ỹ(α), s̃(α)) := (x̃, y, s̃) + α1(∆x̃−,∆y−,∆s̃−) + α2(∆x̃+,∆y+,∆s̃+). (3.9)

In this way, by symmetry of Qp we get

µ̃(α) =
1

r
⟨x̃(α), s̃(α)⟩ = 1

r
⟨Qpx(α), Qp−1s(α)⟩

=
1

r
⟨x(α), QpQp−1s(α)⟩ = 1

r
⟨x(α), s(α)⟩ = µ(α),

and in a manner similar, we will have µ̃ = µ. Throughout the paper, we will use these two
equations in the position that are required.

In a number of the usually primal-dual IPMs, the iterates are allowed to move in within
a neighborhood of the central path. The so-called negative infinity neighborhood that is a
wide neighborhood defined as

N−
∞(1− γ) = {(x, y, s) ∈ F0 : λmin(Q

x
1
2
s) ≥ γµ},

where 0 < γ < 1. Another popular wide neighborhood, based on Ai’s idea [1], is defined
in [18] as follows:

N (τ, β) = {(x, y, s) ∈ F0 :
∥∥(τµe−Q

x
1
2
s)+

∥∥
F
≤ βτµ},

where neighborhood parameters τ, β ∈ (0, 1) are given constants.
An important ingredient of this paper is to define a new neighborhood for the central

path as follows:

N (
√
τ ,
√
β) := {(x, y, s) ∈ F0 :

∥∥(√τµe−√
Q

x
1
2
s
)+∥∥

F
≤

√
βτµ},

where 0 < τ < 1 and 0 < β < 1 are given constants. In view of Lemma 2.1, it follows that
the neighborhood N (

√
τ ,
√
β) is scaling invariant, i.e., (x, y, s) is in the neighborhood if and

only if (x̃, y, s̃) is.
The next lemma shows that the neighborhood N (

√
τ ,
√
β) is even a wider neighborhood

than neighborhood N (τ, β).

Lemma 3.1. We have, N (τ, β) ⊆ N (
√
τ ,
√
β).

Proof. Let the spectral decomposition of x̃◦s̃ be as x̃◦s̃ = λ1c1+· · ·+λrcr, where {c1, . . . , cr}
is a Jordan frame and the real numbers λ1, . . . , λr are the eigenvalues of x̃ ◦ s̃, which satisfy
the following inequalities:

τµ− λ1 ≥ · · · ≥ τµ− λk ≥ 0 > τµ− λk+1 ≥ · · · ≥ τµ− λr,

and this will be used throughout the paper. By Lemmas 2.1, 2.4 and (x, y, s) ∈ N (τ, β),
thus (x̃, y, s̃) ∈ N (τ, β), it follows that

k∑
i=1

(τµ− λi)
2 =

∥∥(τµe−Q
x

1
2
s)+

∥∥2
F
≤ β2τ2µ2. (3.10)
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Thus, for any i = 1, . . . , k, we have

(1− β)τµ ≤ λi ≤ (1 + β)τµ,

and then √
λi +

√
τµ ≥

√
(1− β)τµ+

√
τµ. (3.11)

Using the fact that

τµ− λi = (
√
λi +

√
τµ)(

√
τµ−

√
λi)

together with (3.10) and (3.11), we can write that

∥∥(√τµe−√
Q

x
1
2
s
)+∥∥2

F
=

k∑
i=1

(√
τµ−

√
λi
)2

=

k∑
i=1

(τµ− λi)
2(√

τµ+
√
λi
)2

≤ 1

(1 +
√
1− β)2τµ

k∑
i=1

(τµ− λi)
2

=
1

(1 +
√
1− β)2τµ

∥∥(τµe−Q
x

1
2
s
)+∥∥2

F

≤ β2τ2µ2

(1 +
√
1− β)2τµ

=
β2

(1 +
√
1− β)2

τµ

= (1−
√
1− β)2τµ ≤ β2τµ ≤ βτµ,

where the last inequality is due to 0 < β < 1. If we take the square root of both sides of the
above inequality, we obtain∥∥(√τµe−√

Q
x

1
2
s
)+∥∥

F
≤

√
βτµ.

This means that (x, y, s) ∈ N (
√
τ ,
√
β) and hence the inclusion holds. This completes the

proof of the lemma.

We now are in a position to state the theoretical framework of the interior-point algo-
rithm.

Algorithm 1
Step 1 Choose an initial point (x0, y0, s0) ∈ N (

√
τ ,
√
β) with µ0 > 0.

Select an accuracy parameter ε > 0 and
neighborhood parameters τ ≤ 1

19 and β ≤ 1
19 . Let k = 0.

Step 2 If µk ≤ ε, then stop, else go to Step 3.

Step 3 Take p = [Q
(xk)

1
2
(Q

(xk)
1
2
sk)−

1
2 ]−

1
2 . Set x̃k = Qpx

k and s̃k = Qp−1sk.

Step 4 Compute (∆x̃k−,∆y
k
−,∆s̃

k
−) and (∆x̃k+,∆y

k
+,∆s̃

k
+) by solvingthe scaled

Newton systems (3.7) and (3.8), respectively.
Step 5 Choose step size vector αk = (αk

1 , α
k
2) such that

(x̃k+1, yk+1, s̃k+1) := (x̃(αk), y(αk), s̃(αk)) ∈ N (
√
τ ,
√
β).

Step 6 Let (xk+1, yk+1, sk+1) = (Qp−1 x̃k+1, yk+1, Qps̃
k+1) and

µk+1 = ⟨xk+1,sk+1⟩
r . Set k := k + 1 and go to Step 2.

Figure 1. Primal− dual interior− point algorithm.



AN IPM FOR SO BASED ON A NEW WIDE NEIGHBORHOOD 631

4 Analysis of the Algorithm

Let us define

v := Qpx [= Qp−1s], dx̃− := Qp∆x̃−, ds̃− := Qp−1∆s̃−, dx̃+ := Qp∆x̃+,

and
ds̃+ := Qp−1∆s̃+, ∆x̃(α) = α1∆x̃− + α2∆x̃+, ∆s̃(α) = α1∆s̃− + α2∆s̃+.

Using these notations and invoking the third equations of systems (3.7), (3.8) and the
equality (3.9), we obtain

x̃(α) ◦ s̃(α) = h(α) + ∆x̃(α) ◦∆s̃(α), (4.1)

where

h(α) = v2 + 2α1v ◦ (
√
τµe− v)− + 2α2v ◦ (

√
τµe− v)+.

Proposition 4.1. We have ⟨∆x̃(α),∆s̃(α)⟩ = 0

Proof. It follows directly from the first two equations of systems (3.7), (3.8) and using the
definitions of ∆x̃(α) and ∆s̃(α).

Lemma 4.2. Let (x̃, y, s̃) ∈ N (
√
τ ,
√
β) and µ̃(α) = ⟨x̃(α),s̃(α)⟩

r with α = (α1, α2) ∈ (0, 1]2.
Then, we have µ̃(α) ≥ (1− 2α1)µ̃.

Proof. Using (4.1) and Proposition 4.1, we have

µ̃(α) =
1

r
⟨x̃(α), s̃(α)⟩ = 1

r
Tr(h(α)) +

1

r
⟨∆x̃(α),∆s̃(α)⟩

= µ̃+
2α1

r
Tr

(
v ◦ (√τµe− v)−

)
+

2α2

r
Tr

(
v ◦ (√τµe− v)+

)
= µ̃+

2α1

r

r∑
i=k+1

√
λi(

√
τµ−

√
λi) +

2α2

r

k∑
i=1

√
λi(

√
τµ−

√
λi)

≥ µ̃+
2α1

r

r∑
i=k+1

−λi ≥ µ̃+
2α1

r

r∑
i=1

−λi = µ̃− 2α1

r
Tr(x̃ ◦ s̃)

= (1− 2α1)µ̃.

The proof is completed.

Lemma 4.3. Let (x̃, y, s̃) ∈ N (
√
τ ,
√
β), then

(i) Tr((τµe− v2)−) ≤ −(1− τ)rµ.

(ii) λi(v ◦ (
√
τµe+ v)−1) ≥ 1−

√
β

2−
√
β
, i = 1, . . . , r.

Proof. We have

Tr((τµe− v2)−) = Tr(τµe− v2)− Tr((τµe− v2)+)

≤ Tr(τµe− v2) = τµr − Tr(v2)

= τµr − rµ̃ = −(1− τ)rµ.
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This completes the proof of the first part of the lemma. For (ii), since v2 = x̃ ◦ s̃ =
λ1c1 + · · · + λrcr, thus we get

√
τµe + v = (

√
τµ +

√
λ1)c1 + · · · + (

√
τµ +

√
λr)cr. These

imply that
√
λi√

τµ+
√
λi
, i = 1, . . . , r are the eigenvalues of v◦(√τµe+v)−1. On the other hand,

from the fact that (x̃, y, s̃) ∈ N (
√
τ ,
√
β) it follows that

√
λi ≥ (1 −

√
β)

√
τµ, i = 1, . . . , r.

Hence, we will have

λi(v ◦ (
√
τµe+ v)−1) =

√
λi√

τµ+
√
λi

≥ 1−
√
β

2−
√
β
, i = 1, . . . , r

where the inequality concludes from the fact that the right-hand side of the equality is
increasing for

√
λi ≥ (1−

√
β)

√
τµ. This proves the second claim, and the proof is completed.

The following lemma ensures that Algorithm 1 reduces the duality gap if the generated
iterates by the algorithm belong to the neighborhood presented.

Lemma 4.4. Let (x̃, y, s̃) ∈ N (
√
τ ,
√
β) and µ̃(α) = ⟨x̃(α),s̃(α)⟩

r with α = (α1, α2) ∈ (0, 1]2.
Then, we have

µ̃(α) ≤
(
1− 2α1(1−

√
β)(1− τ)

2−
√
β

+
2α2τ

√
β√

r

)
µ.

Proof. In a manner similar to the proof of Lemma 4.2 and using µ̃ = µ, we obtain

µ̃(α) = µ+
2α1

r
Tr

(
v ◦ (√τµe− v)−

)
+

2α2

r
Tr

(
v ◦ (√τµe− v)+

)
= µ+

2α1

r
Tr

((
v ◦ (√τµe+ v)−1

)
◦ (τµe− v2)−

)
+
2α2

r
Tr

(
v ◦ (√τµe− v)+

)
≤ µ+

2α1

r
λmax

(
v ◦ (√τµe+ v)−1

)
Tr

(
(τµe− v2)−

)
+
2α2

r

k∑
i=1

√
λi
(√
τµ−

√
λi
)

≤ µ− 2α1(1−
√
β)(1− τ)

2−
√
β

µ+
2α2

√
τµ

r

k∑
i=1

(√
τµ−

√
λi
)

= µ− 2α1(1−
√
β)(1− τ)µ

2−
√
β

+
2α2

√
τµ

r
Tr

(
e ◦ (√τµe−

√
x̃ ◦ s̃)+

)
≤ µ− 2α1(1−

√
β)(1− τ)µ

2−
√
β

+
2α2

√
τµ

√
r

∥∥(√τµe−√
x̃ ◦ s̃)+

∥∥
F

≤
(
1− 2α1(1−

√
β)(1− τ)

2−
√
β

+
2α2τ

√
β√

r

)
µ,

where the second inequality is due to Lemma 4.3 and the fact that
√
λi ≤ √

τµ for i =
1, . . . , k. The third inequality follows from the Cauchy-Schwartz inequality and the last
inequality becomes from the fact that (x̃, y, s̃) ∈ N (

√
τ ,
√
β). The proof is complete.

Corollary 4.5. Let (x̃, y, s̃) ∈ N (
√
τ ,
√
β), τ ≤ 1

19 and β ≤ 1
19 . If α1 = α2

√
βτ
2r and

0 < α2 ≤ 1, then

µ̃(α) ≤
(
1− 1

6
α1

)
µ.
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Proof. Using Lemma 4.4, we have

µ̃(α) ≤
(
1− 2α1(1−

√
β)(1− τ)

2−
√
β

+
2α2τ

√
β√

r

)
µ

=
(
1−

(2(1−√
β)(1− τ)

2−
√
β

− 2
√
2τ

)
α1

)
µ

≤
(
1−

( 36(
√
19− 1)

19(2
√
19− 1)

− 2
√
2√
19

)
α1

)
µ

≤
(
1− 1

6
α1

)
µ,

where the second inequality follows from β ≤ 1
19 and τ ≤ 1

19 . The proof is completed.

Lemma 4.6. Let x, s ∈ intK and (x̃, y, s̃) ∈ N (
√
τ ,
√
β). Then

(i) ∥(Lx̃Ls̃)
− 1

2 (
√
τµv − v2)+∥2F ≤ βτµ.

(ii) ∥(Lx̃Ls̃)
− 1

2 (
√
τµv − v2)−∥2F ≤ rµ.

Proof. Let x̃ ◦ s̃ = λ1c1 + · · ·+ λrcr be the spectral decomposition of x̃ ◦ s̃. In this way, we
have Lx̃Ls̃ci = x̃ ◦ (s̃ ◦ ci) = λici, i = 1, . . . , r. From this, we deduce that

(Lx̃Ls̃)
−1ci =

1

λi
ci,

and

λmax

(
(Lx̃Ls̃)

−1
)
=

1

λmin(x̃ ◦ s̃)
=

1

λmin

(
Q

x̃
1
2
s̃
) ≤ 1

(1−
√
β)2τµ

, (4.2)

where the second equality is due to Lemma 2.4 and the inequality follows from the fact that
(x̃, y, s̃) ∈ N (

√
τ ,
√
β). Therefore, we have

∥(Lx̃Ls̃)
− 1

2 (
√
τµv − v2)+∥2F =

k∑
i=1

(√
τµλi − λi

)2
λi

=

k∑
i=1

(
√
τµ−

√
λi)

2 =
∥∥(√τµe−√

Q
x̃

1
2
s̃
)+∥∥2

F
≤ βτµ.

This proves the assertion (i). In a manner similar to the case (i), we obtain

∥(Lx̃Ls̃)
− 1

2 (
√
τµv − v2)−∥2F =

r∑
i=k+1

(√
τµλi − λi

)2
λi

≤
r∑

i=1

λi = Tr(x̃ ◦ s̃) = rµ.

This completes the proof.

Lemma 4.7 ([23, Lemmas 33 and 36]). Let u, v ∈ J and G a positive definite matrix which
is symmetric with respect to the scalar product ⟨·, ·⟩. Then

∥u∥F ∥v∥F ≤ 1

2

(
∥G− 1

2u∥2F + ∥G 1
2 v∥2F

)
.
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The following lemma gives an upper bound on the Frobenius norm of ∆x̃(α) ◦∆s̃(α).

Lemma 4.8. If G = L−1
s̃ Lx̃, α1 = α2

√
βτ
2r and (x̃, y, s̃) ∈ N (

√
τ ,
√
β), then we have∥∥∆x̃(α) ◦∆s̃(α)∥∥

F
≤ 3α2

2βτµ.

Proof. Using the third equations of systems (3.7) and (3.8), we deduce that

∆x̃(α) ◦ s̃+ x̃ ◦∆s̃(α) = 2α1(
√
τµv − v2)− + 2α2(

√
τµv − v2)+.

Multiplying the above equation by (Lx̃Ls̃)
− 1

2 and in view of Lx̃s̃ = x̃ ◦ s̃, we obtain

G− 1
2∆x̃(α) +G

1
2∆s̃(α) = 2α1(Lx̃Ls̃)

− 1
2 (
√
τµv − v2)−

+2α2(Lx̃Ls̃)
− 1

2 (
√
τµv − v2)+.

Taking norm-squared on both sides of the above equation and using Proposition 4.1, we can
find that

∥G− 1
2∆x̃(α)∥2F + ∥G 1

2∆s̃(α)∥2F =
∥∥2α1(Lx̃Ls̃)

− 1
2 (
√
τµv − v2)−

+2α2(Lx̃Ls̃)
− 1

2 (
√
τµv − v2)+

∥∥2
F

= 4α2
1

∥∥Lx̃Ls̃)
− 1

2 (
√
τµv − v2)−

∥∥2
F

+4α2
2

∥∥Lx̃Ls̃)
− 1

2 (
√
τµv − v2)+

∥∥2
F

≤ 4α2
1rµ+ 4α2

2βτµ = 6α2
2βτµ,

where the inequality is due to Lemma 4.6. By invoking Lemmas 2.3, 4.7 and the above
inequality, we conclude that∥∥∆x̃(α) ◦∆s̃(α)∥∥

F
≤ ∥∆x̃(α)∥F ∥∆s̃(α)∥F

≤ 1

2

(
∥G− 1

2∆x̃(α)∥2F + ∥G 1
2∆s̃(α)∥2F

)
≤ 3α2

2βτµ.

This follows the desired result.

Lemma 4.9. If (x̃, y, s̃) ∈ N (
√
τ ,
√
β), α1 = α2

√
βτ
2r and α2 = 1, then∥∥(τ µ̃(α)e− h(α)

)+∥∥
F
≤ βτµ̃(α).

Proof. By Corollary 4.5, it is clear that µ̃(α) ≤ µ. For i = 1, . . . , k, we have

τ µ̃(α)− λi(h(α)) ≤ τ µ̃(α)− µ̃(α)

µ
λi(h(α))

=
µ̃(α)

µ

(
τµ− λi(h(α))

)
=
µ̃(α)

µ

(
τµ− λi(v

2 + 2v ◦ (√τµe− v)
)

=
µ̃(α)

µ

(
τµ+ λi − 2

√
τµ

√
λi
)

=
µ̃(α)

µ

(√
τµ−

√
λi
)2
> 0.
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On the other hand, for i = k + 1, . . . , r, we get τ µ̃(α)− λi(h(α)) ≤ τµ− τµ = 0. Therefore,
we obtain ∥∥(τ µ̃(α)e− h(α)

)+∥∥
F
≤ µ̃(α)

µ

∥∥((√τµe− v)+
)2∥∥

F

≤ µ̃(α)

µ

∥∥(√τµe− v)+
∥∥2
F

=
µ̃(α)

µ

∥∥(√τµe−√
x̃ ◦ s̃)+

∥∥2
F

=
µ̃(α)

µ

∥∥(√τµe−√
Q

x̃
1
2
s̃
)+∥∥2

F

=
µ̃(α)

µ

∥∥(√τµe−√
Q

x
1
2
s
)+∥∥2

F

≤ βτµ̃(α),

where the first equality is due to the definition of the vector v, the second equality fol-
lows from Lemma 2.4, the third equality becomes from the fact that the neighborhood
N (

√
τ ,
√
β) is scaling invariant and the last inequality is obtained from the assumption

(x, y, s) ∈ N (
√
τ ,
√
β). The proof is complete.

Lemma 4.10. Let (x̃, y, s̃) ∈ N (
√
τ ,
√
β), α1 = α2

√
βτ
2r and α2 = 1, then

λmin(x̃(α) ◦ s̃(α)) ≥ (1− 4β)τµ.

Proof. For i = 1, . . . , k, we have

λmin(h(α)) = λmin

(
v2 + 2α1v ◦ (

√
τµe− v)− + 2α2v ◦ (

√
τµe− v)+

)
≥ (1− 2α2)λmin + 2α2

√
τµλmin

≥ (1− 2α2)(1−
√
β)2τµ+ 2α2(1−

√
β)τµ = (1− β)τµ.

Let i = k + 1, . . . , r and α1 <
1
2 , then we have

λmin(h(α)) ≥ (1− 2α1)λmin + 2α1

√
τµλmin

≥ (1− 2α1)τµ+ 2α1τµ = τµ

≥ (1− β)τµ.

Using (4.1), we obtain

λmin(x̃(α) ◦ s̃(α)) ≥ λmin(h(α))−
∥∥∆x̃(α) ◦∆s̃(α)∥∥

F

≥ (1− β)τµ− 3βτµ = (1− 4β)τµ.

where the second inequality follows from the above inequalities and Lemma 4.8. The proof
is complete.

The following lemma gives a sufficient condition for which all the generated iterates by
Algorithm lie in the neighborhood N (

√
τ ,
√
β).

Lemma 4.11. Let (x̃, y, s̃) ∈ N (
√
τ ,
√
β), β ≤ 1

19 and τ ≤ 1
19 . If α1 = α2

√
βτ
2r and α2 = 1,

then (x̃(α), y(α), s̃(α)) ∈ N (
√
τ ,
√
β).
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Proof. To prove the lemma, we need to show∥∥(√τ µ̃(α)e−
√
Q

x̃(α)
1
2
s̃(α)

)+∥∥
F
≤

√
τβµ̃(α)

and (x̃(α), s̃(α)) ∈ intK × intK. To this end, using Lemmas 2.4, 4.10 and (4.2), we have∥∥(√τ µ̃(α)e−
√
Q

x̃(α)
1
2
s̃(α)

)+∥∥
F
=

∥∥(√τ µ̃(α)e−
√
x̃(α) ◦ s̃(α)

)+∥∥
F

≤ 1

λmin(
√
τ µ̃(α)e+

√
x̃(α) ◦ s̃(α))

∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α)
)+∥∥

F

=
1√

τ µ̃(α) +
√
λmin(x̃(α) ◦ s̃(α))

∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α)
)+∥∥

F

≤ 1√
τ µ̃(α)

∥∥(τ µ̃(α)e− x̃(α) ◦ s̃(α)
)+∥∥

F

=
1√
τ µ̃(α)

∥∥(τ µ̃(α)e− h(α)−∆x̃(α) ◦∆s̃(α)
)+∥∥

F

≤ 1√
τ µ̃(α)

(∥∥(τ µ̃(α)e− h(α)
)+∥∥

F
+

∥∥(−∆x̃(α) ◦∆s̃(α)
)+∥∥

F

)
≤ 1√

τ µ̃(α)

(∥∥(τ µ̃(α)e− h(α)
)+∥∥

F
+
∥∥∆x̃(α) ◦∆s̃(α)∥∥

F

)
≤ 1√

τ µ̃(α)

(
βτµ̃(α) + 3α2

2βτµ
)

≤ 1√
τ µ̃(α)

(
βτµ̃(α) +

3α2
2βτ

1− 2α1
µ̃(α)

)
=

(
1 +

3α2
2

1− 2α1

)√
β
√
βτµ̃(α)

≤
(4−√

2βτ

1−
√
2βτ

)√
β
√
βτµ̃(α) ≤

√
βτµ̃(α),

where the third equality is due to (4.1), the third inequality follows from Lemma 2.2, the fifth
inequality becomes from Lemmas 4.9 and 4.8, the sixth inequality concludes from Lemma

4.2, in the second last inequality we have used the assumptions α1 = α2

√
βτ
2r and α2 = 1

and the last inequality is due to the fact that f(t) = 4−t
1−t is monotonically increasing, so,

using t =
√
2βτ , we get g(

√
2βτ)

√
β ≤ 0.973 < 1. The proof is completed.

Now we are in a position to present our complexity results.

Theorem 4.12. Suppose that β ≤ 1
19 , τ ≤ 1

19 , α1 = α2

√
βτ
2r and α2 = 1 are fixed for

all iterations. Then, Algorithm 1 terminates in O(
√
r log µ0

ε ) iterations with an ε-optimal
solution such that µk ≤ ε.

Proof. Since the assumptions of Lemma 4.11 hold, we conclude that (x̃(α), y(α), s̃(α)) ∈
N (

√
τ ,
√
β). Furthermore, according to Corollary 4.5, we also have

µ̃(α) ≤
(
1− 1

6

√
βτ

2r

)
µ.
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Therefore,

µ̃k ≤
(
1− 1

6

√
βτ

2r

)k

µ0.

So, after k steps the duality gap, will be less that ε if(
1− 1

6

√
βτ

2r

)k

µ0 ≤ ε.

Taking logarithms gives

k log
(
1− 1

6

√
βτ

2r

)
≤ − log

µ0

ε
.

Since log(1 + ξ) ≤ ξ, ξ ≥ −1, using ξ = − 1
6

√
βτ
2r , we obtain that the above inequality holds

if

k ≥ 6

√
2r

βτ
log

µ0

ε
,

this proves the lemma.

5 Numerical Results

In this section, we compare the proposed primal-dual algorithm with the Ai-Zhang’s primal-
dual algorithm [2]. These two algorithms will be denoted, respectively, by Algor. 1 and
Algor. 2. We present some numerical results for the test problems given in Table 1 that are
taken from the standard NETLIB test set for LO. All of our tests are run on an Intel Core i3

(3.40 GHz) under Windows XP and MATLAB 7.8.0 (R2009a). We select α1 = α2

√
βτ
2r and

α2 = 1 for both Algorithms. Moreover, we choose the parameters according to the given
default values in algorithms, that is, τ = β = 1

19 for Algor. 1 and τ = 1
4 , β = 1

2 for Algor.
2. Both algorithms stop if the relative duality gap satisfies

⟨x, s⟩
1 + ⟨c, x⟩

≤ 10−8.

Table 1 lists the names of the test problems, the number of iterations (iter), the total CPU
time (time) and the relative duality gap (regap) when Algorithms terminate. Based on the
obtained results, we conclude that our wide neighborhood algorithm outperforms Algor. 2.

6 Concluding Remarks

In this paper, we have presented a primal-dual IPM for SO based on a new large neigh-
borhood of the central path, which differs from those that are available. We have focused
our attention on the analysis of the theoretical properties of the proposed algorithm and
have proved that its complexity bound coincides with the best-known one obtained by any
feasible interior-point method for SO. We highlighted the practical efficiency of the method
by providing numerical results on the selected set of test problems from NETLIB. Due to
the numerical results, we concluded that our algorithm is promising and efficient than Al-
gorithm 2.
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Table 1
name row column Algor. 1 Algor. 2

time iter regap time iter regap
adlittle 56 138 0.8105 21 2.414e-11 0.8222 21 2.3415e-9
afiro 27 51 0.0559 15 1.6355e-8 0.0886 19 3.7222e-9

bandm 305 472 33.6426 33 1.1582e-7 36.9278 36 5.3629e-9
blend 74 114 0.4042 17 2.8080e-8 0.5355 21 3.0453e-9
kb2 43 68 0.1194 13 6.1825e-8 0.1574 17 8.6648e-9
lotfi 153 366 4.2149 23 2.5303e-6 5.3554 30 6.9311e-9

share2b 96 162 0.9056 20 4.7176e-9 1.0762 22 4.6318e-9
share1b 117 253 5.1022 42 2.4320e-7 6.1116 51 6.0652e-9
grow7 140 301 1.3978 11 1.6875e-8 1.9361 16 9.3579e-9
sc50a 50 78 0.1474 16 6.8262e-9 0.2223 19 9.5413e-9
sc105 105 163 0.5216 15 6.2696e-7 0.6932 20 2.8704e-9
sc205 205 317 2.6861 18 3.5369e-7 3.2702 22 6.5849e-9
sc50b 50 78 0.1464 13 9.9829e-8 0.1418 18 3.0459e-9

beaconfd 173 295 3.5275 18 4.2074e-10 3.4556 19 3.7559e-9
brandy 220 303 7.9932 33 1.1478e-8 8.5047 35 8.8508e-9
e226 223 472 21.6580 36 2.5837e-8 22.6352 38 2.5032e-9
scagr7 129 185 2.2305 20 2.7814e-10 1.9981 19 3.3285e-9
scagr25 471 671 79.2994 27 4.8663e-11 72.7878 25 8.0152e-9
scfxm1 330 600 39.2637 40 3.5502e-8 41.8576 43 2.7347e-9
scfxm2 660 1200 498.4486 47 2.2702e-8 566.4426 52 3.3547e-9
scsd6 147 1350 274.3768 19 1.0537e-7 347.2908 24 3.1264e-9
sctap1 300 610 61.2735 34 4.2291e-9 78.5686 40 5.1767e-9
seba 515 1036 381.5771 43 2.2863e-8 396.3231 50 7.2605e-9
agg 488 615 33.3743 31 7.5871e-9 35.8101 31 4.3443e-9
agg2 516 758 52.7349 28 1.5198e-9 57.3524 29 4.5172e-9
agg3 516 756 59.6196 31 5.8488e-9 72.6941 33 5.9559e-9

boeing1 351 726 46.0068 24 6.8585e-6 70.0903 33 5.7699e-9
boeing1 166 305 5.2150 25 1.9039e-7 6.3456 32 3.9990e-9
capri 271 496 20.2361 33 5.9191e-8 21.8378 34 6.4709e-9

Table 1: Comparison with Ai-Zhang’s algorithm given in [2]
.
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[24] P.R. Takács and Zs. Darvay, A primal-dual interior-point algorithm for symmetric op-
timization based on a new method for finding search directions, Optimization 67 (2018)
889–905.

[25] G.Q. Wang and Y.Q. Bai, A new full Nesterov-Todd step primal-dual path-following
interior-point algorithm for symmetric optimization, J. Optim. Theory Appl. 154 (2012)
966–985.

[26] G.Q. Wang, X.J. Fan, D.T. Zhu and D.Z. Wang, New complexity analysis of a full-
Newton step feasible interior-point algorithm for P∗(κ)-LCP, Optim. Lett. 9 (2015)
1105–1119.

[27] G.Q. Wang, Y.Q. Bai, X.Y. Gao and D.Z. Wang, Improved complexity analysis of
full Nesterov-Todd step interior point methods for semidefinite optimization, J. Optim.
Theory Appl. 165 (2015) 242–262.

[28] G.Q. Wang, L.C. Kong, J.Y. Tao and G. Lesaja, Improved complexity analysis of
full Nesterov-Todd step feasible interior-point method for symmetric optimization, J.
Optim. Theory Appl. 166 (2015) 588–604.

[29] G.Q. Wang, C.J. Yu and K.L. Teo, A new full Nesterov-Todd step feasible interior-point
method for convex quadratic optimization over symmetric cone, Appl. Math. Comput.
221 (2013) 329–343.

[30] J. Zhang and K. Zhang, Polynomial complexity of an interior point algorithm with
a second order corrector step for symmetric cone programming, Math. Methods Oper.
Res. 73 (2011) 75–90.

Manuscript received 19 June 2019
revised 12 March 2020

accepted for publication 13 April 2020

Behrouz Kheirfam
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, Iran
E-mail address: b.kheirfam@azaruniv.ac.ir


