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concept of variational analysis and it has a crucial role in many areas of mathematics such
as analysis of convergence of optimization algorithms, necessary/sufficient conditions for
optimization problems and control problems, fixed point theory, coincidence point theory
and so on.

Metric regularity goes back to the Banach open mapping theorem for linear operators;
its extension to nonlinear operators known as the Lyusternik [29] and Graves theorem [24],
and to closed convex set-valued mappings known as the Robinson-Ursescu theorem ([39,43]).
These results were further extended to the case of the sum of a set-valued mapping with a
single-valued one by Arutyunov [1, 2], Dontchev, Lewis [13], Lewis, Dontchev, Rockafellar
[14], Ioffe [26], Mordukhovich [30]. Subsequently, they were studied and developed recently
by several authors. In [19], Durea and Strugariu established the openness for the sum of two
set-valued mappings. Next, Ngai, Tron, Théra [33] considered metric regularity of the sum
of two set-valued mappings. In [45], Zheng, Ng studied metric regularity of the composition
of a set-valued mapping with a single-valued one. Later, Durea, Strugariu [18, 20] obtained
linear openness for nonparametric composition of set-valued mappings defined as in (2.1),
and Durea, Huynh, Nguyen, Strugariu [23] established metric regularity for this mapping.

There are many variant versions of regularity properties, including Lipschitz-likeness,
linear openness, metric subregularity, semiregularity, calmness, etc. For a detailed account,
of these various regularities of set-valued mappings, as well as their diverse applications, the
reader is referred to the works [5, 8, 11,14,26–28,30,40], and the references given therein.

The main goal of this article is to establish metric regularity, semiregularity of the
parametrized epigraphical and composition set-valued mapping and to derive the stability
of the solution set of generalized equations (called also implicit set-valued mapping). Con-
cretely, we derive calmness, Lipschitz-likeness and Robinson metric regularity of implicit
set-valued mappings associated to generalized equations. In recent years, the topic on sta-
bility of generalized equations has also attracted the interest and the study of many authors
from community of variational analysis and many important results had been obtained. We
refer the reader to various contributions such as for instance [5,6,16,19,25,26,30,32,34,35,44].

Our work, is an expository paper about sensitivity analysis of generalized equations that
also recent results in this direction such as [18–20,23,33,45] and the one given very recently
by Cibulka, Fabian, Kruger [9]. Ideas and techniques in the paper benefitted from the
contributions by Ngai, Tron, Théra [33] and Durea, Huynh, Nguyen, Strugariu [23].

The rest of this paper is organized in main sections. Section 2 introduces preliminaries
and notations necessary for the next sections. The next one focuses on semiregularity
of parametric composition set-valued mapping, and metric regularity of the parametrized
epigraphical set-valued mapping. In the final section, we establish some types of regularities
on implicit set-valued mappings such as Lipschitz-likeness, calmness, and Robinson metric
regularity.

2 Premilinaries

In this section, we recall the necessary knowledge and notations used throughout the paper.
Let X be a metric space, and let A be a nonempty subset of X. Given x ∈ X, the distance
from x to the set A is denoted by d(x,A) and is defined by d(x,A) := infa∈A d(x, a). The
excess of a set C over another one D is given by e(C,D) = sup{d(x,D)|x ∈ C}. When X
being a normed space, we denote BX to be closed unit in X. One of the important tools
used in this paper is the so-called the strong slope of a lower semicontinuous function. For a
lower semicontinuous function h : X → R ∪ {+∞} defined on a metric space X, the strong
slope of h at x̄ ∈ dom h is defined by |∇h|(x̄) = 0 if x̄ is a local minimum of h and otherwise
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by

|∇h|(x̄) := lim sup
x→x̄

h(x̄)− h(x)

d(x̄, x)
.

For x̄ /∈ dom h, we set |∇h|(x̄) = +∞. Given a set-valued mapping T : X ⇒ Y , the lower
semicontinuous envelope associated T is defined by φT (x, y) := lim infu→x d(y, T (u)), and
given a parametrized set-valued mapping T : X × P ⇒ Y , its lower envelope defined by
φp
T (x, y) := lim infu→x d(y, T (u, p)) will play a significant role in what follows. We next

recall important concepts of regularities used in variational analysis.

Definition 2.1. A set- valued mapping T : X ⇒ Y defined between metric spaces X,Y is
said to be metrically regular around (x̄, ȳ) ∈ gph T with modulus τ > 0 if there exists a
neighborhood U × V of (x̄, ȳ) such that for every (x, y) ∈ U × V,

d(x, T−1(y)) ≤ τd(y, T (x)).

Parametrized version of this property can be similarly defined as follows:

Definition 2.2. Let X,Y be metric space, P is a topological space, T : X × P ⇒ Y a set-
valued mapping. T is said to be metrically regular around (x̄, p̄, ȳ) ∈ gph T with respect
to (x, y), uniformly in p with modulus τ > 0 if there exists a neighborhood U × V ×W of
(x̄, ȳ, p̄) such that for every (x, y, p) ∈ U × V ×W,

d(x, T−1
p (y)) ≤ τd(y, T (x, p)).

Here, the notation T−1
p means by x ∈ T−1

p (y) ⇐⇒ y ∈ T (x, p).

Definition 2.3. T : X ⇒ Y is said to be Lipschitz-like (or pseudo-Lipschitz or to has the
Aubin property) around (x̄, ȳ) ∈ gph T with modulus τ > 0 if there exists a neighborhood
U × V of (x̄, ȳ) such that, for every x, x′ ∈ U ,

T (x) ∩ V ⊂ T (x′) + τd(x, x′)BY .

In this definition, if we fix x′ by x̄, one obtains a weaker property called the calmness
property:

Definition 2.4. T : X ⇒ Y is said to be calm around (x̄, ȳ) ∈ gph T with modulus τ > 0
if there exists a neighborhood U × V of (x̄, ȳ) such that, for every x ∈ U ,

T (x) ∩ V ⊂ T (x̄) + τd(x, x̄)BY .

A variant of metric regularity was recently studied ([9]) in order to achieve the conver-
gence of Newton’s method for generalized equations.

Definition 2.5. T : X ⇒ Y is said to be metrically semiregular around (x̄, ȳ) ∈ gph T
with modulus τ > 0 if there exists a neighborhood V of ȳ such that, for every y ∈ V,

d(x̄, T−1(y)) ≤ τd(y, ȳ).

Our main motivation in this paper is to study various regularities mentioned above for
the composition of set-valued mappings.

Hp(x) := H(x, p) = T (T1(x), T2(x, p)) =
∪

(y1,y2)∈T1(x)×T2(x,p)

T (y1, y2), (2.1)
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and parametrized variational system associated to this map

z ∈ Hp(x), (2.2)

where T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z are set-valued mappings,
X,Y1, Y2 are metric spaces, Z is a normed linear space, P is a topological space. In some
applications, we need only to consider (2.2) with z a point which is fixed. In particular,
without loss of generality, one considers the case (2.2) when z ≡ 0:

0 ∈ Hp(x). (2.3)

We now consider a parametrized epigraphical-type set-valued mapping associated to H and
defined by

Ep
H(x, y1, y2) := EH((x, p), y1, y2) =

{
T (y1, y2) if (y1, y2) ∈ T1(x)× T2(x, p),
∅ otherwise.

EH is closed-graph when partial set-valued mappings are closed ones while the original
mapping H in general fails to be closed. Hence, it is convenient to work with EH instead of
H. For every (z, p) ∈ Z × P , let us define

SEH
(z, p) := {(x, y1, y2) ∈ X × Y1 × Y2 : z ∈ Ep

H(x, y1, y2)},

and

SH(z, p) := {x ∈ X : z ∈ T (T1(x), T2(x, p)) = Hp(x)},

and the lower semicontinuous function associated to EH defined for every (x, p, y1, y2, z) ∈
X × P × Y1 × Y2 × Z by,

φp
EH

((x, y1, y2), z)

=


lim inf

(v1,v2)∈T1(u)×T2(u,p),
(u,v1,v2)→(x,y1,y2)

d(z, T (v1, v2)) if (y1, y2) ∈ T1(x)× T2(x, p),

+∞ otherwise.

Next we recall the local composition-stability introduced by Durea and Strugariu in [20] with
the aim to establish the Aubin property of the composition of two set-valued mappings.

Definition 2.6. Let F : X ⇒ Y and G : Y ⇒ Z be two set-valued mappings between
metric spaces. The pair (F,G) is said to be locally composition stable around (x̄, ȳ, z̄) with
z̄ ∈ G(ȳ), ȳ ∈ F (x̄) if for every ε > 0, there is δ > 0 such that for any x ∈ B(x̄, δ) and any
z ∈ (G ◦ F )(x) ∩B(z̄, δ), there exists y ∈ F (x) ∩B(ȳ, ε) such that z ∈ G(y).

Durea and Strugariu in [20] gave an example of a pair (F,G) which is not locally com-
position stable around (x̄, ȳ, z̄), such that the composite mapping G ◦ F fails to have the
Aubin property even if F and G have the Aubin property. In the case of the sum of two
closed set-valued mappings, Ngai, Tron, Théra ([33]) showed that the sum of a metrically
regular set-valued mapping and a pseudo-Lipschitz one is not in general metrically regular
without the sum-stability. Two interesting cases which ensure this property can be found
in [23], Proposition 3.4 and 3.5.
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3 Regularity of Parametrized Epigraphical and Composition Set-
Valued Mappings

In this section, we will use a result given by Ngai, Tron, Théra ([33], Theorem 3. 2) to
establish metric regularity of the parametrized epigraphical set-valued mapping associated
to the general composition one mentioned above, and then we will obtain the semiregularity
ofHp̄ as defined in (2.2). The following proposition gives a characterization of a parametrized
set-valued mapping through the strong slope of the lower envelope function associated to it.
This characterization has an important role in the sequel. Before stating this proposition, we
recall the definition of lower semicontinuity for a set-valued mapping. Let F : X ⇒ Y be a
set-valued mapping between two topological spaces. We say that F is lower semicontinuous
at x̄ ∈ X if for any ȳ ∈ F (x̄) and any neighborhood V of ȳ, there exists a neighborhood U
of x̄ such that

∀x ∈ U,F (x) ∩ V ̸= ∅.

Proposition 3.1. Let X be a complete metric space, P be a topological space and Y be a
normed space, T : X×P ⇒ Y be a set-valued mapping with (x̄, p̄, ȳ) ∈ gph T and satisfying:

(a) the set-valued mapping p ⇒ T (x̄, p) is lower semicontinuous at p̄;

(b) for any p near p̄, the set-valued mapping x ⇒ T (x, p) is a closed (i.e., has closed graphs).

Then,

(i) T is metrically regular around (x̄, p̄, ȳ) with respect to (x, y), uniformly in p with mod-
ulus τ > 0 if and only if there exists a neighborhood U ×W × V of (x̄, p̄, ȳ) such that
for all (x, p, y) ∈ U ×W × V with 0 < φp

T (x, y) < +∞, one has

|∇φp
T (y)|(x) ≥ τ−1; (3.1)

(ii) T is metrically regular around (x̄, p̄, ȳ) with respect to (x, y), uniformly in p with mod-
ulus τ > 0 if and only if there exists a neighborhood U ×W × V of (x̄, p̄, ȳ) such that
for any (x, p, y) ∈ U × W × V with 0 < φp

T (x, y) < +∞ and for any ε > 0, for any
sequence {xn} ⊂ X tending to x with lim infn→∞ d(y, T (xn, p)) = φp

T (x, y), there exists
a sequence {un} ⊂ X with lim infn→∞ d(un, x) > 0 such that

lim sup
n→∞

d(y, T (xn, p))− d(y, T (un, p))

d(xn, un)
>

1

τ + ε
.

Remark 3.2. (i) We say a function f : X ×P → R∪ {+∞} is epi-upper semicontinuous
at (x̄, p̄) ∈ X × P if

f̃(x̄, p̄) ≤ f(x̄, p̄),

where f̃(x̄, p̄) is defined by

f̃(x̄, p̄) := sup
ε>0

inf
δ>0

sup
p∈B(p̄,δ)

inf
x∈B(x̄,ε)

f(x, p).

In fact,

f̃(x̄, p̄) = sup
ε>0

(
lim sup

p→p̄

(
inf

x∈B(x̄,ε)
f(x, p)

))
= lim

ε↘0

(
lim sup

p→p̄

(
inf

x∈B(x̄,ε)
f(x, p)

))
.
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Then, the assumption on (b) on the upper semicontinuity of the mapping p → f(x̄, p)
given in Theorem 2 by Ngai, Tron, Théra [33] to ensure the existence of a local uniform
error bound for the parametric system

f(x, p) ≤ 0

is replaced by the epi-upper semicontinuity of the mapping (x, p) → f(x, p) as given
in Theorem 3.1 by Azé and Benahmed [6].

(ii) So, the conclusion of Proposition 3.1 still holds if we replace the assumption (a) : ”the
set-valued mapping p ⇒ T (x̄, p) is lower semicontinuous at p̄” by a weaker one (a′):
”the set-valued mapping (x, p) ⇒ T (x, p) is epi-lower semicontinuous at (x̄, p̄) ” which
is defined by

Definition 3.3. We say that the set-valued mapping (x, p) ⇒ T (x, p) is epi-lower semicon-
tinuous at (x̄, p̄) with ȳ ∈ T (x̄, p̄) if for any neighborhood V of ȳ with V ∩ T (x̄, p̄) ̸= ∅, for
any ε > 0, there exists a neighborhood U of p̄ such that for every p ∈ U , there is xp ∈ B(x̄, ε)
satisfying V ∩ T (xp, p) ̸= ∅.

(iii) Noting that if the set-valued mapping (x, p) ⇒ T (x, p) is epi-lower semicontinuous at
(x̄, p̄) then the distance function (x, p) → d(ȳ, Tp(x)) is epi-upper semicontinuous at
(x̄, p̄) (a similar result can be seen, e.g., Aubin, Ekeland, ([4], Corollary 20)).

The following two lemmas will be useful in the sequel.

Lemma 3.4. Let T1 : X ⇒ Y1, T2 : X×P ⇒ Y2 and T : Y1×Y2 ⇒ Z be set-valued mappings,
X,Y1, Y2, Z be metric spaces, P be a topological space. Then, for every (z, p) ∈ Z × P , one
has

SEH
(z, p) := {(x, y1, y2) ∈ X × Y1 × Y2 : z ∈ T (y1, y2), (y1, y2) ∈ T1(x)× T2(x, p)}.

Proof. The proof of this lemma follows directly from the definition of map SEH
.

Lemma 3.5. Let T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z be set-valued
mappings, X,Y1, Y2, Z be metric spaces, P be a topological space satisfying the following
conditions for some (x̄, p̄, ȳ1, ȳ2, z̄) ∈ X × P × Y1 × Y2 × Z:

(a) (x̄, ȳ1, ȳ2) ∈ SEH
(z̄, p̄);

(b) the set-valued mapping (y1, y2) ⇒ T (y1, y2) is lower semicontinuous at (ȳ1, ȳ2), x ⇒
T1(x) is lower semicontinuous at x̄, p ⇒ T2(x̄, p) is lower semicontinuous at p̄;

(c) the set-valued mappings T1, T have closed graphs, and for any p near p̄, the set-valued
mapping x ⇒ T2(x, p) is a closed set-valued mapping.

Then,

(i) for ever p near p̄, the epigraphical set-valued mapping Ep
H has a closed graph; and the

set-valued mapping Ep
H is epi-lower semicontinuous at (x̄, p̄, ȳ1, ȳ2) and Hp(x̄) is lower

semicontinuous at p̄;

(ii) the function (x, p, y1, y2) 7→ φp
EH

((x, y1, y2), z̄) is epi-upper semicontinuous at
(x̄, p̄, ȳ1, ȳ2);
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(iii) for each (z, p) ∈ Z × P, one has

{(x, y1, y2) ∈ X × Y1 × Y2 : φp
EH

((x, y1, y2), z) = 0} = SEH
(z, p).

Proof. For (i), it is obvious that the epigraphical set-valued mapping Ep
H has a closed graph

when the set-valued mappings T1, T have closed graphs, and the set-valued mapping x ⇒
T2(x, p) is a closed set-valued mapping for any p near p̄. Using the conservation of the lower
semicontinuity of composition mappings, we obtain the lower semicontinuity at p̄ of the
mapping Hp(x̄). For proving the epi-lower semicontinuity of the mapping Ep

H at (x̄, p̄, ȳ1, ȳ2),
we take an arbitrary neighborhood W of z̄ with W ∩Ep

H(x̄, p̄, ȳ1, ȳ2) ̸= ∅ and ε > 0. Since the
set-valued mapping (y1, y2) ⇒ T (y1, y2) is lower semicontinuous at (ȳ1, ȳ2), we can choose a
positive real δ < ε such that

W ∩ T (y1, y2) ̸= ∅, ∀(y1, y2) ∈ B(ȳ1, δ)×B(ȳ2, δ). (3.2)

On the other hand, due to the lower semicontinuity of the mapping p ⇒ T2(x̄, p) at p̄, as
Remark 3.2, the set-valued mapping (x, p) ⇒ T2(x, p) is epi-lower semicontinuous at (x̄, p̄).
Thus, for any ε > 0 arbitrarily, there is a neighborhood U of p̄ such that for every p ∈ U ,
there is xp ∈ B(x̄, ε) we have

B(ȳ2, δ) ∩ T2(xp, p) ̸= ∅. (3.3)

Moreover, since x ⇒ T1(x) is lower semicontinuous at x̄, there is a neighborhood U1 of x̄
such that

T1(x) ∩B(ȳ1, δ) ̸= ∅, ∀x ∈ U1. (3.4)

From (3.3), we have that for every p ∈ U , there exists yp2 ∈ B(ȳ2, δ) ∩ T2(xp, p). Taking
ε smaller if necessary, we can assume that B(x̄, ε) ⊂ U1. Then, by (3.4), we get T1(xp) ∩
B(ȳ1, δ) ̸= ∅. Therefore, there is a yp1 ∈ T1(xp) ∩B(ȳ1, δ). Next, according to (3.2), one has
that

W ∩ T (yp1 , y
p
2) ̸= ∅.

Consequently, W ∩ T (yp1 , y
p
2) ̸= ∅ with xp ∈ B(x̄, ε), yp1 ∈ T1(xp) ∩B(ȳ1, δ), y

p
2 ∈ B(ȳ2, δ) ∩

T2(xp, p). In other words, for every p ∈ U , one gets a point (xp, y
p
1 , y

p
2) ∈ B(x̄, ε)×B(ȳ1, δ)×

B(ȳ2, δ) ⊂ B(x̄, ε)×B(ȳ1, ε)×B(ȳ2, ε) such that

W ∩ Ep
H(xp, y

p
1 , y

p
2) ̸= ∅,

which imples that the set-valued mapping Ep
H is epi-lower semicontinuous at (x̄, p̄, ȳ1, ȳ2).

For (ii), since the set-valued mapping Ep
H is epi-lower semicontinuous at (x̄, p̄, ȳ1, ȳ2)

(by (i)), the function (x, p, y1, y2) → d(z̄, Ep
H(x, y1, y2)) is epi-upper semicontinuous at

(x̄, p̄, ȳ1, ȳ2). Thus,

lim sup
p→p̄

(
inf

(x,y1,y2)∈B(x̄,ε)×B(ȳ1,ε)×B(ȳ2,ε)
φp
EH

((x, y1, y2), z̄)

)
≤ lim sup

p→p̄
d(z̄, Ep

H(x̄, ȳ1, ȳ2))

≤ d(z̄, E p̄
H(x̄, ȳ1, ȳ2)) = 0

= φp̄
EH

((x̄, ȳ1, ȳ2), z̄),

which implies that

φ̃p̄
EH

((x̄, ȳ1, ȳ2), z̄) = inf
ε>0

lim sup
p→p̄

(
inf

(x,y1,y2)∈B(x̄,ε)×B(ȳ1,ε)×B(ȳ2,ε)
φp
EH

((x, y1, y2), z̄)

)
≤ φp̄

EH
((x̄, ȳ1, ȳ2), z̄).

This proves (ii). (iii) is clear. The proof is completed.
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Using the results above, we establish metric regularity of the parametrized epigraphical
set-valued mapping Ep

H and semiregularity of Hp̄. This is one of our main results in this
paper. The proof is inspired from the work by Durea, Huynh, Nguyen, Strugariu [23].
However, our argument is somewhere simpler.

Theorem 3.6. Let T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z be set-
valued mappings, X,Y1, Y2 be complete metric spaces, Z be a normed linear space, P be
a topological space satisfying conditions (a), (b), (c) in Lemma 3.5 around (x̄, p̄, ȳ1, ȳ2, z̄) ∈
X × P × Y1 × Y2 × Z. Suppose that

(i) T1 is metrically regular around (x̄, ȳ1) with modulus m > 0;

(ii) T2 has the Lipschitz-like property around ((x̄, p̄), ȳ2) with respect to (x, y2), uniformly
in p with modulus l > 0;

(iii) T is metrically regular around ((ȳ1, ȳ2), z̄) with respect to (y1, z), uniformly in y2 with
modulus λ > 0;

(iv) T is Lipschitz-like around ((ȳ1, ȳ2), z̄) with respect to (y2, z), uniformly in y1 with
modulus γ > 0;

(v) λmγl < 1.

Assume that the product space X × Y1 × Y2 is endowed with the metric defined by

d((x, y1, y2), (u, v1, v2)) = max
{
d(x, u),md(y1, v1), l

−1d(y2, v2)
}
.

Then,

(a) Ep
H is metrically regular around (x̄, p̄, ȳ1, ȳ2, z̄) with respect to (x, y1, y2) uniformly in p

with modulus mλ
1−mλlγ ;

(b) Hp̄ is metrically semiregular at (x̄, z̄) with modulus mλ
1−mλlγ .

Proof. • For proving (a), according to (i), T1 is metrically regular around (x̄, ȳ1) with mod-
ulus m > 0, and therefore, there are δ1 > 0 such that

d(x, T−1
1 (y1)) ≤ md(y1, T1(x)) for all (x, y1) ∈ B(x̄, δ1)×B(ȳ1, δ1). (3.5)

By (ii), T2 is Lipschitz-like around ((x̄, p̄), ȳ2) with respect to (x, y2), uniformly in p with
modulus l > 0. Hence, there are δ2 > 0 and a neighborhood U of p̄ such that

T2(x, p) ∩B(ȳ2, δ2) ⊂ T2(u, p) + ld(x, u)B̄Y2 , (3.6)

for all x, u ∈ B(x̄, δ2), p ∈ U . Next, by (iv), there is δ3 > 0 such that

T (y1, y2) ∩B(z̄, δ3) ⊂ T (y1, y
′
2) + γd(y2, y

′
2)B̄Z , (3.7)

for all y1 ∈ B(ȳ1, δ3), (y2, y
′
2) ∈ B(ȳ2, δ3). Moreover, by (iii) and using Proposition 3.1 (i),

there is δ4 > 0 such that

|∇φy2

T (z)|(y1) ≥
1

λ

for all (y1, y2, z) ∈ B(ȳ1, δ4) × B(ȳ2, δ4) × B(z̄, δ4) with 0 < φy2

T ((y1, y2), z) < +∞. So, for
any ε > 0, there exists v1 ∈ B(ȳ1, δ4), v1 ̸= y1 such that

φy2

T ((y1, y2), z)− φy2

T ((v1, y2), z)

d(y1, v1)
>

1

λ+ ε
. (3.8)
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Setting δ := min{δ1, δ2, δ3, δ4}. Then, for every (x, p, y1, y2, z) ∈ B(x̄, δ) × U × B(ȳ1, δ) ×
B(ȳ2, δ)×B(z̄, δ), z /∈ T (y1, y2), (y1, y2) ∈ T1(x)×T2(x, p) with 0 < φp

EH
((x, y1, y2), z) < +∞,

any ε > 0, any {xn}n∈N ⊆ X converging to x, {y1n}n∈N ⊆ Y1 converging to y1, {y2n}n∈N ⊆
Y2 converging to y2 with z /∈ T (y1n, y2n), (y1n, y2n) ∈ T1(xn)× T2(xn, p) and

lim
n→∞

d(z, T (y1n, y2n)) = lim inf
(x′,y′

1,y
′
2)→(x,y1,y2),

(y′
1,y

′
2)∈T1(x

′)×T2(x
′)

d(z, T (y′1, y
′
2)) = φp

EH
((x, y1, y2), z), (3.9)

one derives by the definition of φy2

T , there exists v1n converging to v1 such that
limn→∞ d(z, T (v1n, y2)) = φT ((v1, y2), z), with lim infn→∞ d(v1n, y1n) > 0, and from the
relations (3.8) and (3.9) that

lim sup
n→∞

d(z, T (y1n, y2))− d(z, T (v1n, y2))

d(y1n, v1n)
≥

φy2

T ((y1, y2), z)− φy2

T ((v1, y2), z)

d(y1, v1)

lim sup
n→∞

d(y1, v1)

d(y1n, v1n)
>

1

λ+ ε
. (3.10)

Since (v1n) converges to y1, without loss of generality, we can assume that v1n ∈ B(ȳ1, δ).
Then, by (3.5), we see that d(xn, T

−1
1 (v1n)) ≤ md(v1n, T1(xn)) ≤ md(v1n, y1n). It follows

that there is un ∈ T−1
1 (v1n) such that

d(xn, un) ≤ md(v1n, y1n). (3.11)

Moreover, since (y2n) converges to y2, for sufficiently large n we have y2n ∈ B(ȳ2, δ). Note
that y2n ∈ T2(xn, p); thus by (3.6), there exists w2n ∈ T2(un, p) such that

d(y2n, w2n) ≤ ld(xn, un). (3.12)

Furthermore, by (3.7), one has

d(z, T (v1n, w2n)) ≤ d(z, T (v1n, y2n)) + e(T (v1n, y2n), T (v1n, w2n))

≤ d(z, T (v1n, y2n)) + γd(y2n, w2n). (3.13)

Thus, lim infn→∞ d
(
(un, v1n, w2n), (x, y1, y2)

)
≥ lim infn→∞ d(v1n, y1) > 0, and by using

the relations (3.9)-(3.13), for large n, one obtains that

d (z, T (y1n, y2n))− d(z, T (v1n, w2n))

d((xn, y1n, y2n), (un, v1n, w2n))

≥ d(z, T (y1n, y2n))− d(z, T (v1n, y2n))− γd(y2n, w2n)

max{d(xn, un),md(y1n, v1n), l−1d(y2n, w2n)}

≥ d(z, T (y1n, y2n))− d(z, T (v1n, y2n))

max{d(xn, un),md(y1n, v1n), l−1d(y2n, w2n)}

− γd(y2n, w2n)

max{d(xn, un),md(y1n, v1n), l−1d(y2n, w2n)}

≥ d(z, T (y1n, y2n))− d(z, T (v1n, y2n))

max{d(xn, un),md(y1n, v1n), l−1d(y2n, w2n)}
− γd(y2, w2n)

l−1d(y2n, w2n)

=
d(z, T (y1n, y2n))− d(z, T (v1n, y2n))

max{d(xn, un),md(y1n, v1n)}
− lγ

=
d (z, T (y1n, y2))− d(z, T (v1n, y2))

d(y1n, v1n)
· d(y1n, v1n)

max{d(xn, un),md(y1n, v1n)}
− lγ
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≥ 1

m(λ+ ε)
− lγ.

Since λmγl < 1, by choosing ε > 0 sufficiently small, one has 1
m(λ+ε) − lγ > 0. Therefore,

by taking into account Lemma 3.5 and applying Proposition 3.1, (ii) for Ep
H , we obtain that

Ep
H is metrically regular around (x̄, p̄, ȳ1, ȳ2, z̄) with respect to (x, y1, y2) uniformly in p with

modulus mλ
1−mλlγ .

• For proving (b), according to (a), there exist r > 0 and a neighborhood V of p̄ such
that

d((x, y1, y2),SEH
(z, p)) ≤ mλ

1−mλlγ
φp
EH

((x, y1, y2), z) (3.14)

for all (x, p, y1, y2, z) ∈ B(x̄, r) × V × B(ȳ1, r) × B(ȳ2, r) × B(z̄, r). Taking (x̄, p̄, ȳ1, ȳ2) in
(3.14), one gets the estimation

d((x̄, ȳ1, ȳ2),SEH
(z, p̄)) ≤ mλ

1−mλlγ
φp̄
EH

((x̄, ȳ1, ȳ2), z).

Taking (x′, y′1, y
′
2) ∈ SEH

(z, p̄) such that

d((x̄, ȳ1, ȳ2), (x
′, y′1, y

′
2)) ≤

mλ

1−mλlγ
φp̄
EH

((x̄, ȳ1, ȳ2), z), (3.15)

(3.15) yields

d(x̄, x′) ≤ d((x̄, ȳ1, ȳ2), (x
′, y′1, y

′
2))

≤ mλ

1−mλlγ
φp̄
EH

((x̄, ȳ1, ȳ2), z)

≤ mλ

1−mλlγ
d(z, T (ȳ1, ȳ2))

≤ mλ

1−mλlγ
∥z − z̄∥.

By noting that z ∈ T (y′1, y
′
2) ⊂ T (T1(x

′), T2(x
′, p̄)) = Hp̄(x

′), i.e., x′ ∈ H−1
p̄ (z), we deduce

that for all z near z̄,

d(x̄,H−1
p̄ (z)) ≤ mλ

1−mλlγ
d(z, T (ȳ1, ȳ2)) ≤

mλ

1−mλlγ
∥z − z̄∥.

So, Hp̄ is metrically semiregular at (x̄, z̄) with modulus mλ
1−mλlγ . The proof is completed.

The following corollary was given recently by Durea, Huynh, Nguyen, Strugariu [23]. It
could be considered as a nonparametric case of Theorem 3.6.

Corollary 3.7. Let X,Y1, Y2 be complete metric spaces, Z be a normed space. Suppose
that T1 : X ⇒ Y1, T2 : X ⇒ Y2 and T : Y1 × Y2 ⇒ Z are closed set-valued mappings
satisfying for some (x̄, ȳ1, ȳ2, z̄) ∈ X × Y1 × Y2 × Z with (x̄, ȳ1) ∈ gph T1, (x̄, ȳ2) ∈ gph T2,
((ȳ1, ȳ2), z̄) ∈ gph T the five following conditions:

(i) T1 is metrically regular around (x̄, ȳ1) with modulus m > 0;

(ii) T2 is Lipschitz-like around (x̄, ȳ2) with modulus l > 0;
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(iii) T is metrically regular around ((ȳ1, ȳ2), z̄) with respect to y1, uniformly in y2 with
modulus λ > 0;

(iv) T is Lipschitz-like around ((ȳ1, ȳ2), z̄) with respect to y2, uniformly in y1 with modulus
γ > 0;

(v) λmγl < 1.

Assume that the product space X × Y1 × Y2 is endowed with the metric defined by

d((x, y1, y2), (u, v1, v2)) = max
{
d(x, u),md(y1, v1), l

−1d(y2, v2)
}
.

Then,

(a) there exists a neighborhood U ×V ×W ×Z ⊆ X × Y1 × Y2 ×Z of (x̄, ȳ1, ȳ2, z̄) such that

d((x, y1, y2),SEH
(z)) ≤ mλ

1−mλlγ
φEH

((x, y1, y2), z)

for all (x, y1, y2, z) ∈ U × V ×W ×Z;

(b) H is metrically semiregular around (x̄, z̄) with modulus mλ
1−mλlγ .

Remark 3.8. (i) If T is metrically subregular around (ȳ1, ȳ2, z̄) with respect to y1, uni-
formly in y2 with modulus λ > 0, then the mapping EH is metrically subregular around
(x̄, ȳ1, ȳ2, z̄) with modulus mλ

1−mλlγ (see, for instance [17]).

(ii) If in the theorem above we suppose further that ((T1, T2), T ) is locally composition-
stable around (x̄, (ȳ1, ȳ2), z̄), then H is metrically regular at (x̄, z̄) (see [18], [20], [23]).

A special case of the above result is when Y1 ≡ Y2 ≡ Y with Y being a normed space,
T (y1, y2) = {y1 + y2}, H(x) = T1(x) + T2(x), we can reobtain metric regularity of the sum
mapping as well as the one of associated epigraphical map through regularities of component
mappings (see, for instance [22], [33]). Further, we achieve semiregularity of the sum set-
valued mapping given recently in [9].

Corollary 3.9. Let X be a complete metric space, Y be a normed space and let T1, T2 :
X ⇒ Y be closed set-valued mapping. If T1 is metrically regular around (x̄, ȳ1) ∈ gph T1

with modulus τ and T2 is Lipschitz-like around (x̄, ȳ2) ∈ gph T2 with modulus λ such that

τλ < 1, then T1+T2 is metrically semiregular around (x̄, ȳ1+ ȳ2) with modulus
(
τ−1 − λ

)−1
.

The next corollary is also a special case of Theorem 3.7 when Y1 ≡ Y2 ≡ Y , T1 ≡ S :
X ⇒ Y and T ≡ Q : Y ⇒ Z.

Corollary 3.10. Let X be a complete metric space, Y be a metric space, Z be a normed
space. Suppose that S : X ⇒ Y and Q : Y ⇒ Z are closed set-valued mappings satisfying
the following conditions for some (x̄, ȳ, z̄) ∈ X × Y ×Z with (x̄, ȳ) ∈ gph S, (ȳ, z̄) ∈ gph Q:

(i) S is metrically regular around (x̄, ȳ) with modulus τ > 0;

(ii) Q is metrically regular around (ȳ, z̄) with modulus λ > 0;

Suppose that the product space X × Y is endowed with the metric defined by

d((x, y), (u, v)) = max {d(x, u), τd(y, v)} .

Then,
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(a) the set-valued mapping EQ◦S is metrically regular at (x̄, ȳ, z̄) with modulus τλ;

(b) Q ◦ S is metrically semiregular around (x̄, z̄) with modulus τλ.

In Corollary 3.10, if we consider the special case which the map S : X → Y is continuous,
then the pair (S,Q) is locally composition-stable around the considerable point, we recover
a result given by Zheng and Ng in [45].

Corollary 3.11. Let X be a complete metric space, Y be a metric space, Z be a normed
space. Suppose that S : X → Y is continuous and Q : Y ⇒ Z is closed set-valued mapping
satisfying the following conditions for some (x̄, ȳ, z̄) ∈ X × Y × Z with (x̄, ȳ) ∈ gph S,
(ȳ, z̄) ∈ gph Q :

(i) S is metrically regular around (x̄, ȳ) with modulus τ > 0;

(ii) Q is metrically regular around (ȳ, z̄) with modulus λ > 0;

Then Q ◦ S is metrically regular around (x̄, z̄) with modulus τλ.

Proof. According to Corollary 3.10, one obtains that the set-valued mapping EQ◦S is metri-
cally regular at (x̄, ȳ, z̄) with modulus τλ. Since (S,Q) is locally composition-stable around
(x̄, ȳ, z̄), by taking into account Remark 3.8 (ii) above, it is metrically regular around (x̄, z̄)
with modulus τλ.

4 Stability of Implicit Set-Valued Mappings

4.1 Stability of implicit set-valued mappings associated to epigraphical set-
valued mapping

The goal of this section is to establish Lipschitz-likeness, calmness of the solution set-valued
mapping SEH

, when the space of parameters P is a metric space.

Theorem 4.1. Let T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z be set-valued
mappings, X,Y1, Y2, be complete metric spaces, P be a metric space, Z be a normed linear
space satisfying conditions (a), (b), (c) in Lemma 3.5 around (x̄, p̄, ȳ1, ȳ2, z̄) ∈ X × P × Y1 ×
Y2 × Z. Furthermore, suppose that

(i) T1 is metrically regular around (x̄, ȳ1) with modulus m > 0;

(ii) T2 has the Lipschitz-like property around ((x̄, p̄), ȳ2) with respect to x, uniformly in p
with modulus l > 0;

(iii) T is metrically regular around ((ȳ1, ȳ2), z̄) with respect to y1, uniformly in y2 with
modulus λ > 0;

(iv) T is Lipschitz-like around ((ȳ1, ȳ2), z̄) with respect to y2, uniformly in y1 with modulus
γ > 0;

(v) λmγl < 1;

(vi) T2 has Lipschitz-like property around ((x̄, p̄), ȳ2) with respect to p, uniformly in x with
modulus θ > 0.

Then SEH
is Lipschitz-like around ((z̄, p̄), (x̄, ȳ1, ȳ2)) with modulus θ

(
mλγ

1−mλlγ +1
)
+ mλ

1−mλlγ .
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Proof. By using Theorem 3.6, one obtains that Ep
H is metrically regular around

(x̄, p̄, ȳ1, ȳ2, z) with respect to (x, y1, y2) uniformly in p with modulus mλ
1−mλlγ . Then, there

is δ1 > 0 such that

d ((x, y1, y2),SEH
(z, p)) ≤ mλ

1−mλlγ
φp
EH

((x, y1, y2), z), (4.1)

for all (x, p, y1, y2, z) ∈ B((x̄, p̄, ȳ1, ȳ2, z̄), δ1). By (vi), there is δ2 > 0 such that

T2(x, p) ∩B(ȳ2, δ2) ⊂ T2(x, p
′) + θd(p, p′)B̄Y2 , (4.2)

for all p, p′ ∈ B(p̄, δ2), for all x ∈ B(x̄, δ2). Moreover, by (iv), there exists δ3 > 0 such that
for all y1 ∈ B(ȳ1, δ3), and for all y2, y

′
2 ∈ B(ȳ2, δ3), one has

T (y1, y2) ∩B(z̄, δ3) ⊂ T (y1, y
′
2) + γd(y2, y

′
2)B̄Z . (4.3)

Set α := min
{

δ1
2θ+1 , δ2, δ3

}
. Fix (z, p), (z′, p′) ∈ B(z̄, α) × B(p̄, α) and take (x, y1, y2) ∈

SEH
(z, p))∩B(x̄, α)×B(ȳ1, α)×B(ȳ2, α). Then z ∈ T (y1, y2), (y1, y2) ∈ T1(x)×T2(x, p) and

(x, y1, y2) ∈ B(x̄, α) × B(ȳ1, α) × B(ȳ2, α). Taking into account (4.2), select y2
′ ∈ T2(x, p

′)
such that

d(y2, y
′
2) ≤ θd(p, p′) < 2θα. (4.4)

Therefore, y2
′ ∈ B(ȳ2, δ1), and then, by (4.1), one gets

d((x, y1, y2
′),SEH

(z′, p′)) ≤ mλ

1−mλlγ
φp′

EH
((x, y1, y2

′), z′) (4.5)

≤ mλ

1−mλlγ
d(z′, T (y1, y2

′))). (4.6)

Using the relations (4.4)-(4.6) and observing that z ∈ T (y1, y2), we deduce that

d((x, y1, y2),SEH
(z′, p′)) ≤ d(y2, y

′
2) + d((x, y1, y2

′),SEH
(z′, p′))

≤ θd(p, p′) +
mλ

1−mλlγ
d(z′, T (y1, y2

′)).

≤ θd(p, p′) +
mλ

1−mλlγ
∥z − z′∥

+
mλ

1−mλlγ
d(z, T (y1, y2

′)).

(4.7)

On the other hand, since z ∈ T (y1, y2), thus by (4.3),

d(z, T (y1, y2
′)) ≤ e(T (y1, y2), T (y1, y2

′)) (4.8)

≤ γd(y2, y
′
2) (4.9)

≤ γθd(p, p′). (4.10)

Thus, by the relations (4.7)-(4.10), we derive that

d((x, y1, y2),SEH
(z′, p′)) ≤ θd(p, p′) +

mλ

1−mλlγ
∥z − z′∥+ mλγ

1−mλlγ
θd(p, p′)

≤ θ

(
mλ

1−mλlγ
+ 1

)
d(p, p′) +

mλγ

1−mλlγ
∥z − z′∥.

It follows that

SEH
(z, p)) ∩ [B(x̄, α)×B(ȳ1, α)×B(ȳ2, α)] ⊂ SEH

(z′, p′) + Ld((p, z), (p′, z′))BX×Y1×Y2
,

where L := θ
(

mλγ
1−mλlγ + 1

)
+ mλ

1−mλlγ . This completes the proof.
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In the next result we establish the calmness of the implicit set-valued mapping SEH
if in

Theorem 4.1 we replace the condition (vi) that T2 has the calmness property.

Theorem 4.2. Let T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z be set-valued
mappings, X,Y1, Y2, be complete metric spaces, P be a metric space, Z be a normed linear
space satisfying conditions (a), (b), (c) in Lemma 3.5 around (x̄, p̄, ȳ1, ȳ2) ∈ X×P ×Y1×Y2.
Furthermore, we assume that

(i) T1 is metrically regular around (x̄, ȳ1) with modulus m > 0;

(ii) T2 is Lipschitz-like around ((x̄, p̄), ȳ2) with respect to x, uniformly in p with modulus
l > 0;

(iii) T is metrically regular around ((ȳ1, ȳ2), z̄) with respect to y1, uniformly in y2 with
modulus λ > 0;

(iv) T is Lipschitz-like around ((ȳ1, ȳ2), z̄) with respect to y2, uniformly in y1 with modulus
γ > 0;

(v) λmγl < 1.

(vi) T2 is calm around ((x̄, p̄), ȳ2) with respect to p, uniformly in x with modulus θ > 0.

Then SEH
is calm around ((z̄, p̄), (x̄, ȳ1, ȳ2)) with modulus θ

(
mλγ

1−mλlγ + 1
)
+ mλ

1−mλlγ .

Proof. According to Theorem 3.6, there is δ1 > 0 such that

d ((x, y1, y2),SEH
(z, p)) ≤ mλ

1−mλlγ
φp
EH

((x, y1, y2), z), (4.11)

for all (x, p, y1, y2, z) ∈ B((x̄, p̄, ȳ1, ȳ2, 0), δ1).

And, by (vi), there is δ2 > 0 such that

T2(x, p) ∩B(ȳ2, δ2) ⊂ T2(x, p̄) + θd(p, p̄)B̄Y2 , (4.12)

for all p ∈ B(p̄, δ2), for all x ∈ B(x̄, δ2).
Moreover, by (iv), there δ3 > 0 such that for all y1 ∈ B(ȳ1, δ3), and for all y2, y

′
2 ∈ B(ȳ2, δ3),

we have that

T (y1, y2) ∩B(z̄, δ3) ⊂ T (y1, y
′
2) + γd(y2, y

′
2)B̄Z , (4.13)

Set α := min
{

δ1
θ+1 , δ2, δ3

}
, and fix (z, p) ∈ B(z̄, α)×B(p̄, α). Taking (x, y1, y2) ∈ SEH

(z, p))∩
[B(x̄, α)×B(ȳ1, α)×B(ȳ2, α)], then z ∈ T (y1, y2), (y1, y2) ∈ T1(x)×T2(x, p) and (x, y1, y2) ∈
B(x̄, α)×B(ȳ1, α)×B(ȳ2, α). By (4.12), select y2

′ ∈ T2(x, p̄) such that

d(y2, y2
′) ≤ θd(p, p̄) < θα. (4.14)

Thus, y2
′ ∈ B(ȳ2, δ1) and by (4.11), one obtains

d((x, y1, y2
′),SEH

(z̄, p̄)) ≤ mλ

1−mλlγ
φp̄
EH

((x, y1, y2
′), z̄) (4.15)

≤ mλ

1−mλlγ
d(z̄, T (y1, y2

′)). (4.16)
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Noticing that z ∈ T (y1, y2) and using the relations (4.14)-(4.16), one derives that

d((x, y1, y2),SEH
(z̄, p̄)) ≤ d(y2, y

′
2) + d((x, y1, y2

′),SEH
(z̄, p̄)) (4.17)

≤ θd(p, p̄) +
mλ

1−mλlγ
d(z̄, T (y1, y2

′)) (4.18)

≤ θd(p, p̄) +
mλ

1−mλlγ
∥z − z̄∥ (4.19)

+
mλ

1−mλlγ
d(z, T (y1, y2

′)). (4.20)

On the other hand, since z ∈ T (y1, y2), by (4.13) we have

d(z, T (y1, y2
′)) ≤ e(T (y1, y2), T (y1, y2

′)) (4.21)

≤ γd(y2, y
′
2) (4.22)

≤ θγd(p, p̄). (4.23)

Thus, by combining the relations from (4.15) to (4.23), one gets

d((x, y1, y2),SEH
(z̄, p̄)) ≤ θd(p, p′) +

mλ

1−mλlγ
∥z − z̄∥+ mλγ

1−mλlγ
θd(p, p′) (4.24)

≤ θ

(
mλγ

1−mλlγ
+ 1

)
d(p, p′) +

mλ

1−mλlγ
∥z − z̄∥. (4.25)

It follows that

SEH
(z, p)) ∩ [B(x̄, α)×B(ȳ1, α)×B(ȳ2, α)] ⊂ SEH

(z̄, p̄) + Ld((p, z), (p̄, z̄))BX×Y1×Y2 ,

This completes the proof.

4.2 Stability of the implicit set-valued mapping associated to a composite map-
ping

In Theorem 4.1 if we further impose hypothesis on the local composition-stability of the
pair ((T1, T2), T ) then we achieve Robinson’s metric regularity as well as the Lipschitzian
stability of the solution set mapping SH(0, ·) as given in the next theorem. Here, let us recall
concept of Robinson metric regularity studied by Robinson [36,37].

Definition 4.3. We say that SH(0, ·) is Robinson metrically regular around (x̄, p̄) with
modulus τ , if there exist neighborhoods U, V of x̄, p̄, respectively, such that

d(x, SH(0, p)) ≤ τd(0,Hp(x)), for all (x, p) ∈ U × V.

The relationships between Robinson metric regularity and Lipschitz-likeness of implicit
set-valued mappings can be found in the work by Chieu, Yao, Yen ( [10]). Before establishing
the main result, one needs the following propositions.

Proposition 4.4. Let X,Y1, Y2 are metric spaces, Z is a normed linear space, P is a topo-
logical space, and let T1 : X ⇒ Y1, T2 : X×P ⇒ Y2 and T : Y1×Y2 ⇒ Z be set-valued map-
pings. If Ep

H is metrically regular around (x̄, p̄, ȳ1, ȳ2, 0) with respect to (x, y1, y2) uniformly
in p with modulus τ, then there exist neighborhoods B(x̄, r),V, B(ȳ1, r), B(ȳ2, r), B(0, r) of
the points x, p, y1, y2, 0, respectively such that

d(x,H−1
p (z)) ≤ τd(z, T (T1(x) ∩B(ȳ1, r), T2(x, p) ∩B(ȳ2, r))),

∀ (x, p, z) ∈ B(x̄, r)× V ×B(0, r). (4.26)
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Proof. Since Ep
H is metrically regular around (x̄, p̄, ȳ1, ȳ2, 0) with respect to (x, y1, y2) uni-

formly in p with modulus τ , there exist neighborhoods B(x̄, r),V, B(ȳ1, r), B(ȳ2, r), B(0, r)
of the points x, p, y1, y2, 0, respectively such that

d((x, y1, y2),SEH
(z, p)) ≤ τd(z, Ep

H(x, y1, y2)) (4.27)

for all (x, p, y1, y2, z) ∈ B(x̄, r)× V ×B(ȳ1, r)×B(ȳ2, r)×B(0, r). We derives that

d((x, y1, y2),SEH
(z, p)) ≤ τd(z, T (y1, y2)) (4.28)

for all (x, p, y1, y2, z) ∈ B(x̄, r) × V × B(ȳ1, r) × B(ȳ2, r) × B(0, r) and (y1, y2) ∈ T1(x) ×
T2(x, p). Take (x, p, z) ∈ B(x̄, r)×V×B(0, r) and fix (y1, y2) ∈ [T1(x)∩B(ȳ1, r)]×[T2(x, p)∩
B(ȳ2, r)] such that T (y1, y2) ̸= ∅. By (4.28), for every ε > 0, there is some (x′, y′1, y

′
2) ∈

SEH
(z, p) such that

d((x, y1, y2), (x
′, y′1, y

′
2)) ≤ τd(z, T (y1, y2)) + ε.

Therefore,
d(x, x′) ≤ τd(z, T (y1, y2)) + ε.

Since z ∈ T (y′1, y
′
2), (y

′
1, y

′
2) ∈ T1(x

′)×T2(x
′, p), one has z ∈ Hp(x

′). Thus, x′ ∈ H−1
p (z) and

as a result,

d(x,H−1
p (z)) ≤ τd(z, T (T1(x) ∩B(ȳ1, r), T2(x, p) ∩B(ȳ2, r))) + ε,

∀ (x, p, z) ∈ B(x̄, r)× V ×B(0, r).

Taking ε → 0, we get the conclusion.

Proposition 4.5. Let X,Y1, Y2 be complete metric spaces, P be a topological space, Z be
a normed linear space and let T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z be
set-valued mappings satisfying conditions (a), (b), (c) in Lemma 3.5 around (x̄, p̄, ȳ1, ȳ2, 0) ∈
X × P × Y1 × Y2 ×Z. If there exist neighborhoods B(x̄, r),V, B(ȳ1, r), B(ȳ2, r) of the points
x, p, y1, y2, respectively such that

d(x, SH(0, p)) ≤ τd(0, T (T1(x)∩B(ȳ1, r), T2(x, p)∩B(ȳ2, r))), ∀ (x, p) ∈ B(x̄, r)×V, (4.29)

and ((T1, T2), T ) is locally composition-stable around ((x̄, p̄), (ȳ1, ȳ2), 0), then SH(0, ·) is
Robinson metrically regular around (x̄, p̄) with modulus τ .

Proof. Suppose that (4.29) holds for every (x, p) ∈ B(x̄, r)×V. Since ((T1, T2), T ) is locally
composition-stable around ((x̄, p̄), (ȳ1, ȳ2), 0), then there exists δ > 0 such that every (x, p) ∈
B(x̄, r)×V and every z ∈ (T ◦ (T1, T2))(x, p)∩B(0, δ), there is (y1, y2) ∈ (F1(x)∩B(ȳ1, δ))×
(F2(x, p) ∩ B(ȳ2, δ)) such that z ∈ T (y1, y2). Taking δ smaller if necessary, we may assume
that δ < r/2. Fixing now (x, p) ∈ B(x̄, δ/2)× V, we consider two cases:
• Case 1. d(0,Hp(x)) < δ/2. Choose γ > 0 small enough in order to get d(0,Hp(x)) + γ <
δ/2. It follows that there is a point t ∈ Hp(x) such that ∥t∥ < d(0,Hp(x)) + γ < δ/2.
Therefore, t ∈ (T ◦ (T1, T2))(x, p)∩B(0, δ) and thus by the local composition stability, there
is (y1, y2) ∈ (F1(x) ∩B(ȳ1, δ))× (F2(x, p) ∩B(ȳ2, δ)) such that t ∈ T (y1, y2). As a result,

d(x,SH(0, p)) ≤ τd(0, T (T1(x) ∩B(ȳ1, r), T2(x, p) ∩B(ȳ2, r))) ≤ τ∥t∥ < τ
(
d(0,Hp(x)) + γ

)
.

Since γ > 0 is arbitrarily small, one gets that

d(x, SH(0, p)) ≤ τd(0,Hp(x)).
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Since (x, p) is arbitrary in B(x̄, δ/2)× V, we obtain the conclusion.
• Case 2. d(0,Hp(x)) ≥ δ/2. By Lemma 3.5, (i) one has that the set-valued mapping
p ⇒ Hp(x̄) is lower semicontinuous at p̄. Hence, the distance function p → d(0,Hp(x̄)) is
upper semicontinuous at p̄ (see, e.g., Aubin, Ekeland, ( [4], Corollary 20)), and therefore
there exists a neighborhood W of p̄ such that

d(0,Hp(x̄)) ≤ δ/4, ∀ p ∈ W.

Shrinking W if necessary, one may assume that W ⊂ V and choose 0 < δ1 < min{δ, τδ/4}.
Taking (x, p) ∈ B(x̄, δ1) × W , then, by (4.29), for every ε > 0, there is u ∈ SH(0, p) such
that

d(x̄, u) < (1 + ε)τd(0,Hp(x̄)).

Consequently,

d(x, u) ≤d(x, x̄) + d(x̄, u) < δ1 + (1 + ε)τd(0,Hp(x̄))

< τδ/4 + (1 + ε)τδ/4

≤ τ/2d(0,Hp(x)) + τ/2(1 + ε)d(0,Hp(x)).

Since ε is arbitrarily, one gets that

d(x,SH(0, p)) ≤ τd(0,Hp(x)),

establishing the proof.

Using these propositions along with Theorem 3.6, one obtains Robinson’s metric regu-
larity and Lipschitz-likeness of the map SH(0, ·) given in Theorem 4.6 below.

Theorem 4.6. Let T1 : X ⇒ Y1, T2 : X × P ⇒ Y2 and T : Y1 × Y2 ⇒ Z be set-valued
mappings, X,Y1, Y2 be complete metric spaces, P be a metric space, Z be a normed linear
space satisfying conditions (a), (b), (c) in Lemma 3.5 around (x̄, p̄, ȳ1, ȳ2, 0) ∈ X × P × Y1 ×
Y2 × Z. Suppose that

(i) ((T1, T2), T ) is locally composition-stable around ((x̄, p̄), (ȳ1, ȳ2), 0);

(ii) T1 is metrically regular around (x̄, ȳ1) with modulus m > 0;

(iii) T2 is Lipschitz-like around ((x̄, p̄), ȳ2) with respect to x, uniformly in p with modulus
l > 0;

(iv) T2 is Lipschitz-like around ((x̄, p̄), ȳ2) with respect to p, uniformly in x with modulus
θ > 0

(v) T is metrically regular around ((ȳ1, ȳ2), 0) with respect to y1, uniformly in y2 with
modulus λ > 0;

(vi) T is Lipschitz-like around ((ȳ1, ȳ2), 0) with respect to y2, uniformly in y1 with modulus
γ > 0;

(vii) λmγl < 1.

Then SH(0, ·) is Robinson metrically regular around (x̄, p̄) with modulus mλ
1−mλlγ and SH(0, ·)

is Lipschitz-like around (x̄, p̄) with modulus γθmλ
1−mλlγ .
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Proof. • Applying Theorem 3.6, yields that Ep
H is metrically regular around (x̄, p̄, ȳ1, ȳ2, 0)

with respect to (x, y1, y2) uniformly in p with modulus mλ
1−mλlγ . Then, by Proposition 4.4,

one obtains the estimation (4.26). In this estimation, we replace z by 0, one has (4.29),
and from Poposition 4.5 along with the local composition stability of ((T1, T2), T ) around
((x̄, p̄), (ȳ1, ȳ2), 0), one obtains that SH(0, ·) is Robinson metrically regular around (x̄, p̄)
with modulus mλ

1−mλlγ .

• By the definition of Robinson’s metric regularity of SH(0, ·), we derive the existence of
some δ1 > 0 such that

d(x,SH(0, p)) ≤ mλ

1−mλlγ
d(0,H(x, p)) =

mλ

1−mλlγ
d (0, T (T1(x), T2(x, p))) , (4.30)

for all (x, p) ∈ B((x̄, p̄), δ1). By (iv), since T2 is Lipschitz-like around ((x̄, p̄), ȳ2) with respect
to p, uniformly in x with modulus θ > 0, there is δ2 > 0 such that

T2(x, p) ∩B(ȳ2, δ2) ⊂ T2(x, p
′) + θd(p, p′)BY2

, (4.31)

for all p, p′ ∈ B(p̄, δ2), for all x ∈ B(x̄, δ2).
Moreover, according to (vi), since T is Lipschitz-like around ((ȳ1, ȳ2), 0) with respect to y2,
uniformly in y1 with modulus γ > 0, there exists δ3 > 0 such that

T (y1, y2) ∩B(0, δ3) ⊂ T (y1, y
′
2) + γd(y2, y

′
2)BZ , (4.32)

for all y1 ∈ B(ȳ1, δ3), for all y2, y
′
2 ∈ B(ȳ2, δ3). Using the local composition-stability of

the pair ((T1, T2), T ) around ((x̄, p̄), (ȳ1, ȳ2), 0) in (i), selecting δ4 > 0 such that for every
(x, p) ∈ B(x̄, δ4)×B(p̄, δ4) and every z ∈ T (T1(x), T2(x, p)) ∩B(0, δ4), there exists

(y1, y2) ∈
(
T1(x) ∩B

(
ȳ1,min{δ2, δ3}

))
×
(
T2(x, p) ∩B

(
ȳ2,min{δ2, δ3}

))
,

such that z ∈ T (y1, y2).
Setting α := min{δ1, δ2, δ3, δ4}, and take p, p′ ∈ B(p̄, α), and x ∈ SH(0, p) ∩ B(x̄, α).

This means that, 0 ∈ T (T1(x), T2(x, p)) ⊂ T (T1(x), T2(x, p)) ∩B(0, δ4) and x ∈ B(x̄, α). It
follows that there exists

(y1, y2) ∈
(
T1(x) ∩B

(
ȳ1,min{δ2, δ3}

))
×
(
T2(x, p) ∩B

(
ȳ1,min{δ2, δ3}

))
,

such that 0 ∈ T (y1, y2). Consequently, for y
′
2 ∈ T2(x, p

′),

d(x, SH(0, p′)) ≤ mλ

1−mλlγ
d
(
0, T (T1(x), T2(x, p

′))
)

(4.33)

≤ mλ

1−mλlγ
d(0, T (y1, y

′
2))). (4.34)

So, by taking into account 0 ∈ T (y1, y2) and by using the estimations (4.33) and (4.34), we
have

d(x, SH(0, p′)) ≤ mλ

1−mλlγ
e (T (y1, y2), T (y1, y

′
2))

≤ γmλ

1−mλlγ
d(y2, y

′
2)

≤ θγmλ

1−mλlγ
d(p, p′),
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which implies that

SH(0, p) ∩B(x̄, α) ⊂ SH(0, p′) +
θγmλ

1−mλlγ
d(p, p′)BX .

This means that SH(0, ·) is Lipschitz-like around (x̄, p̄) with modulus γθmλ
1−mλlγ , which com-

pletes the proof.

5 Conclusions

Regularity of composite set-valued mappings were studied by many experts in the com-
munity of variational analysis ( [7], [18], [20], [23], [26], [45]) by using various tools of
variational analysis. However, in this paper, we establish regularity of the parametrized
epigraphical composition set-valued mapping and semiregularity of Hp̄ in a slightly different
way. Furthermore, using this result we have obtained some types of regularities for implicit
set-valued mappings such as calmness, Lipschitz-likeness and Robinson metric regularity
(see [18–20,23,33,45])

Our results resumes recent works by Durea, Strugariu [19], Ngai, Tron, Théra [33], Zheng,
Ng [45], Durea, Strugariu [18, 20], Durea, Huynh, Nguyen, Strugariu [23], Cibulka, Fabian,
Kruger [9]. By obtaining semiregularity of the composite set-valued mappings we hope to
obtain in a future work convergence of Newton-type methods for generalized equations of
composite type as Cibulka, Fabian, Kruger in [9] did recently for the sum case. Ideas and
techniques in the paper are inspired from the works by Ngai, Tron, Théra [33] and Durea,
Huynh, Nguyen, Strugariu [23].
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