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For many applications such as some mentioned TV models in image restoration, the
functions θ1 and θ2 usually have some special properties and it deserves to explore them
in algorithmic design. This has inspired a very active research topic of designing splitting
algorithms where the functions θi are treated individually and thus the resulting subproblems
are often easier, or even easy enough to have closed-form solutions. We focus on the primal-
dual type of algorithms whose iterative schemes can be summarized as

xk+1 := Argmin
{
Φ(x, yk) + r

2∥x− xk∥2
∣∣x ∈ X

}
,

x̄k := xk+1 + η(xk+1 − xk),

yk+1 := Argmax
{
Φ(x̄k, y)− s

2∥y − yk∥2
∣∣ y ∈ Y

}
,

(1.2)

where η ∈ [−1, 1] is a combination parameter; r and s are positive numbers1. As delineated
in many papers such as [3, 5, 30, 31], 1/r and 1/s are the step sizes associated with the
gradients (or subgradients) of θ1 and θ2, respectively. The case of (1.2) with η = 0 was
first investigated in [31]; and the so-called primal-dual hybrid gradient (PDHG) algorithm
was proposed to solve some TV image restoration models which are all special cases of the
model (1.1) where θ1(x) ≡ 0 and θ2 is a quadratic term. For PDHG in [31], the parameters
r and s were chosen in a specific form and the particular strategy was shown to be efficient
for some specific TV denoising and deblurring models. But the convergence of PDHG
with the recommended strategy of determining r and s has not yet been proved rigorously.
Then, it was shown in [9] that the PDHG algorithm in [31] is related to the inexact Uzawa
method in [1]; and under some restrictive conditions which essentially require r and s to
be sufficiently large, the convergence of PDHG for TV denoising application was proved
in [9]. Under other restrictions which also enforce the step sizes r and s to go to infinity, the
convergence of a more general scheme of the PDHG algorithm was established in [3] in the
context of subgradient method; and it was shown to be efficient for solving denoising and
deblurring models where the data fidelity functions is defined as the generalized Kullback-
Leibler divergence or the edge preserving removal of impulsive noise. In [5], the combination
parameter η was extended to [0, 1]; and it was shown that the primal-dual method has a
worst-case O(1/t) convergence rate where t is the iteration counter2 and it can be accelerated
by some acceleration techniques in the literature (e.g., [20,21]) so as to obtain an accelerated
primal-dual algorithm with a worst-case convergence rate of O(1/t2). Also, it was shown
in [5] that the primal-dual scheme (1.2) is closely related to many existing methods including
the extrapolational gradient method [17, 24], the Douglas-Rachford splitting method [8, 18,
22], and the alternating direction method of multipliers [11]. In [15], the authors focused
on a special case of (1.1) with θ1(x) ≡ 0 and θ2(y) =

λ
2 ∥By − b∥2, they proposed four types

of algorithm both in prediction-correction framework, which share the prediction step as
follows: 

x̃k := Argmin
{
−(yk)TAx+ r

2∥x− xk∥2
∣∣x ∈ X

}
,

x̄k := x̃k + η(x̃k − xk),

ỹk := Argmax
{
−λ

2 ∥By − b∥2 − yTAx̄k − s
2∥y − yk∥2

∣∣ y ∈ Y
}
,

(1.3)

1Adaptive strategies adjusting r and s are very interesting to investigate such as [12]; but for simplification
we focus on the case where they are constants in our discussion and as we shall show, our emphasis is to
investigate the uniform bound for r and s, instead of each individual choice.

2As the work [20, 21] and many others, a worst-case O(1/t) convergence rate means the accuracy to a
solution under certain criteria is of the order O(1/t) after t iterations of an iterative scheme; or equivalently,
it requires at most O(1/ϵ) iterations to achieve an approximate solution with an accuracy of ϵ.
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but adopt four different correction strategies to obtain the new iteration, and the range of
the combination parameter η was further enlarged to [−1, 1]. We only list the equivalent
form as in (1.3), more details can be found in [15, Algorithms 1-4]. In particular, the
scheme (1.2) was studied in the proximal point algorithm (see [19, 26]) context and some
algorithms in prediction-correction framework were proposed where the output of (1.2) (i.e.,
the predictor) was suggested to be corrected by some correction steps. The convergence
of these primal-dual type methods in [13–15] was established from contraction perspective
(see [2]). Later, the analysis in [15] was used in [23] to present a pre-conditioning version
of the primal-dual algorithm in [5]. Recently, the ergodic convergence rates of more general
versions of the first-order primal-dual gradient algorithm were established in [6, 25].

For primal-dual type algorithms summarized in (1.2), how to choose r and s is crucial for
ensuring their numerical efficiency. As we have mentioned, the convergence of the original
PDHG in [31] or its variants in [3, 9] was proved under the assumption that r and s are
sufficiently large. This assumption equally means that the step sizes 1/r and 1/s must tend
to zero asymptotically in iterations. A step size tending to zero inevitably leads to slow
convergence in algorithmic performance, and as a common sense, it should be absolutely
avoided for any algorithm whenever possible. The strong desire of avoiding too large values of
r and s can also be understood in the following way. In fact, for the unified scheme (1.2), we
can alternatively understand the parameters r and s as proximal parameters while r

2∥x−xk∥2
and s

2∥y − yk∥2 are proximal regularization terms (see [19, 26]). This means the proximal
term r

2∥x− xk∥2 or s
2∥y − yk∥2 with a larger value of r or s plays a more dominant role in

its objective function; hence a very large value of r (resp. s) enforces the new iterate xk+1

(resp. yk+1) to be very close to the previous iterate xk (resp. yk). That is, slow convergence
occurs. Therefore, too large values should be avoided for r and s empirically. Overall, r and
s should be large enough such that the convergence is guaranteed but meanwhile they should
not be too large in order to avoid too small steps sizes; or equivalently we prefer some smaller
values for r and s whenever they can ensure the convergence. These different requirements
in theoretical and practical senses thus require us to choose r and s very judiciously to
implement primal-dual type algorithms. Note given the symmetric role of r and s in (1.2)
and empirical advantages observed in [31], it is usual to discuss rs, rather than r and s
individually, when the requirement of these two parameters are considered in the literature.
In [5, 15,30], the requirement for rs is

rs > ∥AAT ∥ (1.4)

to ensure the convergence for primal-dual algorithms. In particular, it was analyzed in [15]
that the requirement (1.4) can be relaxed to

rs >
(1 + η)2

4
∥AAT ∥ (1.5)

provided that the output of (1.2) was corrected by certain correction step. Based on our
previous analysis, we are interested in finding a smaller upper bound for the quantity rs

whenever possible. Note the lower bound for rs is reduced by (1+η)2

4 times in (1.4); thus
there are more choices for r and s and better step sizes for primal-dual algorithms might be
sought. This correction step in [15] (see Algorithm 1 therein), however, requires to compute
a sophisticated step size at each iteration which needs considerable computation especially
for TV variational models in image restoration.

The contributions of this paper can be summarized as follows.

(1). We propose a new correction step to correct the output (1.2) in which the restriction
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for rs only needs to obey the requirement (1.5); and the step size in the correction
step is just a constant which can be easily determined, as we will show later. Thus,
a modified primal-dual algorithm with refined step sizes is proposed for (1.1); and
compared with the Algorithm 1 in [15], the new algorithm has the same requirement
on rs while with a much cheaper correction step.

(2). We prove the global convergence. And then, we establish the worst-case convergence
rate in both ergodic and non-ergodic senses for the new primal-dual algorithm under
the additional assumptions (e.g., X = ℜn and Y = ℜm). Note the convergence rate in
ergodic sense has been analyzed in [5,6] but it is derived from an entirely new technique
in this paper; and the convergence rate in non-ergodic sense is also analyzed.

(3). We conduct some numerical experiments on TV image deblurring and inpainting
problems to illustrate the advantages of this new algorithm. According to the numer-
ical results, we find that the performance of the new algorithm is sensitive with the
step size in the correction step, and the larger step size leads to better performance.
Moreover, the numerical results indicate that the sequence generated by the proposed
algorithm can converge to the ground-truth solution quickly. In addition, the pro-
posed algorithm outperforms some existing methods, including those proposed in [15],
in terms of iteration numbers and CPU computing time for solving problem (1.1).

The rest of this paper is organized as follows. In Section 2, we summarize some pre-
liminaries that are useful for further analysis. In Section 3, a primal-dual algorithm with
refined step sizes is proposed; in Section 4, we prove the global convergence and establish a
worst-case convergence rate measured by the iteration complexity in ergodic and non-ergodic
senses. The results of numerical experiments on TV image deblurring and inpainting prob-
lems are shown in Section 5. Finally, we draw some conclusions in Section 6.

2 Preliminaries

In this section, we recall some preliminaries which will be used in our analysis.
Set u := (x, y) and Ω := X × Y. We denote by Ω∗ the saddle-point set of Φ(x, y). Then

it is nonempty under our nonempty assumption on the saddle-point set of Φ(x, y).
In the following theorem, we establish a characterization for the saddle-point set Ω∗.

This characterization is useful for establishing the worst-case convergence rate in non-ergodic
sense for the new algorithm.

Theorem 2.1. The saddle-point set Ω∗ is convex and it can be characterized as

Ω∗ :=
∩

(x,y)∈Ω

{
(x̃, ỹ) ∈ Ω : Φ(x, ỹ)− Φ(x̃, y) ≥ 0

}
. (2.1)

Proof. The proof is omitted, as it is an incremental extension of Theorem 2.3.5 in [10], or
Theorem 2.1 in [16].

The following lemma, presented in [7, Lemma 1.1], is useful for establishing a worst-case
convergence rate on the consecutive iterates distance.

Lemma 2.2. If a sequence {at} ⊆ ℜ obeys: (1) at ≥ 0; (2)
∑∞

t=1 at < +∞; (3) {at} is
monotonically non-increasing, then we have at = o(1/t).
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3 A Primal-Dual Algorithm with Refined Step Sizes

In this section, we present the primal-dual algorithm with refined step sizes and give some
remarks.

First, as we have mentioned, we are more interested in the requirement (1.5) than (1.4)
because it allows more choices for r and s and thus it is more possible to seek better step
sizes for primal-dual algorithms. Let us rewrite it here as

Condition (1.5) of Step Sizes:

rs >
(1 + η)2

4
∥AAT ∥.

Note that the above inequality indicates that r and s can be any positive numbers when
η = −1, because it reduces to rs > 0 when η = −1. One obvious conclusion based on (1.5)
is that for any r and s satisfying (1.5), there exists a positive scale τ > (1 + η)2/4 such that

rs > τ∥AAT ∥. (3.1)

For example, if rs > (1 + η)2∥AAT ∥/4, we can take value less than rs/∥AAT ∥ for τ such
that τ > (1 + η)2/4 is as great as possible.

Moreover, with the determined τ by (3.1), we can determine a positive parameter σ by

σ :=
2
√
τ + (1 + η)sgn(τ − 1)

√
τ + 1√

τ
+ (1 + η)sgn(τ − 1)

> 0, (3.2)

where

sgn(τ − 1) :=


1, if τ > 1;

0, if τ = 1;

−1, if τ < 1.

In fact, it is easy to verify that

σ :


∈ (1, 2), if τ > 1;

= 1, if τ = 1;

∈ (0, 1), if τ < 1;

and thus σ is larger when τ is larger. Note that in Algorithms 2 and 3 in [15], the step sizes
always equal to 1. By using the definition (3.2), even under the same condition rs > ∥AAT ∥,
we get that the upper bound of step sizes is larger than 1.
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Algorithm 1: A primal-dual algorithm with refined step sizes for (1.1).

Step 0. Choose η ∈ [−1, 1]; r and s satisfying the condition (1.5). Let τ be the constant
satisfying (3.1) and σ be determined by (3.2). With uk := (xk, yk) ∈ X × Y, the new
iterate uk+1 := (xk+1, yk+1) is generated by the following steps.
Step 1 [Prediction Step]. Implement a primal-dual step to generate a prediction
ũk := (x̃k, ỹk):

x̃k := Argmin
{
Φ(x, yk) + r

2∥x− xk∥2
∣∣x ∈ X

}
,

x̄k := x̃k + η(x̃k − xk),

ỹk := Argmax
{
Φ(x̄k, y)− s

2∥y − yk∥2
∣∣ y ∈ Y

}
.

(3.3)

Step 2 [Correction Step]. Correct the predictor and generate a new iterate uk+1 :=
(xk+1, yk+1): (

xk+1

yk+1

)
:=

(
xk

yk

)
− α

(
In

1
rA

T

η
sA Im

)(
xk − x̃k

yk − ỹk

)
, (3.4)

where α ∈ (0, σ].

Remark 3.1. As we have mentioned, the correction step (3.4) is computationally cheap
because its step size is just a constant. If we define

M :=

(
In

1
rA

T

η
sA Im

)
, (3.5)

then using the notation uk := (xk, yk) and ũk := (x̃k, ỹk), the correction step (3.4) can be
rewritten as

uk+1 := uk − αM(uk − ũk). (3.6)

Remark 3.2. The proposed algorithm is a generalization of Algorithms 2 and 3 in [15],
and competitive with Algorithm 1 in [15]. There are three reasons as follows. Firstly, the
condition (1.5) is more relaxed than rs > ∥AAT ∥ if η ∈ [−1, 1). Secondly, if we use the
same condition rs > ∥AAT ∥, the upper bound of the step size α is larger than 1 from (3.3).
Thirdly, the proposed algorithm used the same condition (1.5) as Algorithm 1 in [15], while
the computational cost of step size of the proposed algorithm is smaller than Algorithm 1
in [15].

4 Convergence Analysis

In this section, we prove the global convergence and establish the worst-case convergence rate
for the proposed primal-dual algorithm with refined step sizes in ergodic and non-ergodic
senses. We first need to show some contraction properties for its sequence.

4.1 Contraction properties

First of all, let us take a look at how accurate the predictor ũk generated by (3.3) is to a
saddle point of Φ(x, y).
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Lemma 4.1. For given uk := (xk, yk), let ũk := (x̃k, ỹk) ∈ Ω be generated by (3.3). Then
we have

Φ(x, ỹk)− Φ(x̃k, y) ≥ (u− ũk)TQ(uk − ũk) ∀u := (x, y) ∈ Ω, (4.1)

where

Q :=

(
rIn AT

ηA sIm

)
. (4.2)

Proof. Using (1.1) and the optimality condition of (3.3), we have

θ1(x)− θ1(x̃
k) + (x− x̃k)T [−AT yk + r(x̃k − xk)] ≥ 0 ∀x ∈ X ,

and

θ2(y)− θ2(ỹ
k) + (y − ỹk)T {A[x̃k + η(x̃k − xk)] + s(ỹk − yk)} ≥ 0 ∀y ∈ Y.

Combining the above two inequalities, it yields(
θ1(x)− (ỹk)TAx− θ2(ỹ

k)
)
−
(
θ1(x̃

k)− yTAx̃k − θ2(y
))

+

(
x− x̃k

y − ỹk

)T (
rIn AT

ηA sIm

)(
x̃k − xk

ỹk − yk

)
≥ 0,

for any u := (x, y) ∈ Ω. Using the notation in (4.2), the lemma is proved.

Recall the matrix M defined in (3.5). Then, for Q defined in (4.2), we have that

Q = HM, (4.3)

where

H :=

(
rIn 0

0 sIm

)
. (4.4)

Our motivation of correcting the predictor in (3.3) by the correction step (3.4) is thus also
clear from (4.1). In detail, the term Q(ũk − uk) appears like a proximal regularization term
but the matrix Q in (4.2) is not symmetric. In both VI and proximal point algorithm (PPA)
senses, it is not easy to handle the lack of symmetry. We thus have the desire to decompose
the matrix Q into the multiplication of a symmetric matrix H and an asymmetric one M .
Note the asymmetry of Q is totally remained in M . Thus, if we use uk − αM(uk − ũk) as
the new iterate, then the diagonal matrix (which is of course symmetric) H plays the role of
a regularization coefficient and the inequality (4.1) becomes a convenient tool for analysis,
as we shall demonstrate later.

Lemma 4.2. Let r and s satisfy the condition (1.5); the matrices Q, M and H be given by
(4.2), (3.5) and (4.4), respectively; the constant τ satisfy the condition (3.1) and the constant
σ be given in (3.2). Then we have

G := QT +Q− σMTHM ≻ 0. (4.5)

Proof. Since Q = HM and HT = H, we have

MTHM = QTM =

(
rIn ηAT

A sIm

)(
In

1
rA

T

η
sA Im

)
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=

 rIn + η2

s ATA (1 + η)AT

(1 + η)A sIm + 1
rAAT

 . (4.6)

Using (4.2), we get

QT +Q =

(
2rIn (1 + η)AT

(1 + η)A 2sIm

)
. (4.7)

It follows from (4.6) and (4.7) that

G = QT +Q− σMTHM

=

 (2− σ)rIn − ση2

s ATA (1 + η)(1− σ)AT

(1 + η)(1− σ)A (2− σ)sIm − σ
rAAT


=

 σ
τ rIn − ση2

s ATA 0

0 σ
τ sIm − σ

rAAT


+

(
(2− σ − σ

τ )rIn (1 + η)(1− σ)AT

(1 + η)(1− σ)A (2− σ − σ
τ )sIm

)
. (4.8)

Recall that we have τ > (1 + η)2/4. In the following, we will prove G ≻ 0 under the
condition (3.1). To prove this assertion, there are three cases for τ to discuss, that is τ > 1,
(1 + η)2/4 < τ < 1 and τ = 1.

1) If τ > 1, from (3.2) and −1 ≤ η ≤ 1 we have

σ =
2
√
τ + 1 + η

√
τ + 1√

τ
+ 1 + η

> 0. (4.9)

It follows from (4.9) that

(1 + η)(1− σ) = −
√
τ(2− σ − σ

τ
). (4.10)

Since −1 ≤ η ≤ 1 and τ > 1, from (4.9) and (4.10), we have σ > 1 and thus

2− σ − σ

τ
=

(1 + η)(σ − 1)√
τ

≥ 0. (4.11)

Then from (4.8) and (4.10), we get

G = QT +Q− σMTHM

= σ

 r
τ In − η2

s ATA 0

0 s
τ Im − 1

rAAT

+ (2− σ − σ

τ
)

(
rIn −

√
τAT

−
√
τA sIm

)
.

By using the fact that rs > τ∥AAT ∥, −1 ≤ η ≤ 1, σ > 0 and (4.11), we have

σ

 r
τ In − η2

s ATA 0

0 s
τ Im − 1

rAA
T

 ≻ 0 and (2−σ−σ

τ
)

(
rIn −

√
τAT

−
√
τA sIm

)
⪰ 0.

And thus, the matrix G is positive definite.
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2) Similarly, we could prove that the matrix G = QT +Q− σMTHM is positive definite
if (1 + η)2/4 < τ < 1 and

σ =
2
√
τ − 1− η

√
τ + 1√

τ
− 1− η

.

3) If τ = 1, we have

σ =
2
√
τ

√
τ + 1√

τ

= 1.

And thus we get 2 − σ − σ
τ = 0 and 1 − σ = 0. Note that −1 ≤ η ≤ 1, τ = 1 and

rs > ∥AAT ∥. From (4.8), we get

G = QT +Q−MTHM =

 rIn − η2

s ATA 0

0 sIm − 1
rAAT

 ≻ 0.

The proof is complete.

Now, we can prove an important inequality in the following theorem which will give us
an estimate for the accuracy of ũk in terms of some simple quadratic terms.

Theorem 4.3. For given uk = (xk, yk), let ũk := (x̃k, ỹk) ∈ Ω be generated by (3.3) and
uk+1 be updated by (3.6). Then for any u ∈ Ω, we have

Φ(x, ỹk)− Φ(x̃k, y)

≥ 1

2α

(
∥u− uk+1∥2H − ∥u− uk∥2H

)
+

1

2
∥uk − ũk∥2G, (4.12)

where the matrices H and G are defined by (4.4) and (4.5), respectively.

Proof. Using (4.1) and α > 0, we have

α
(
Φ(x, ỹk)− Φ(x̃k, y)

)
≥ α(u− ũk)TQ(uk − ũk) ∀u ∈ Ω. (4.13)

It follows from Q = HM (see (4.3)) and the update form (3.6) that

α(u− ũk)TQ(uk − ũk) = α(u− ũk)THM(uk − ũk)

= (u− ũk)TH(uk − uk+1). (4.14)

Applying the identity

(a− b)TH(c− d) =
1

2

(
∥a− d∥2H − ∥a− c∥2H

)
+

1

2

(
∥c− b∥2H − ∥d− b∥2H

)
,

to the right-hand side of (4.14) with

a = u, b = ũk, c = uk and d = uk+1,

we thus obtain

(u− ũk)TH(uk − uk+1)

=
1

2

(
∥u− uk+1∥2H − ∥u− uk∥2H

)
+

1

2
(∥uk − ũk∥2H − ∥uk+1 − ũk∥2H). (4.15)
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For the last term of the equation (4.15), we have

∥uk − ũk∥2H − ∥uk+1 − ũk∥2H
= ∥uk − ũk∥2H − ∥(uk − ũk)− (uk − uk+1)∥2H

(3.6)
= ∥uk − ũk∥2H − ∥(uk − ũk)− αM(uk − ũk)∥2H
= 2α(uk − ũk)THM(uk − ũk)− α2∥uk − ũk∥2MTHM

(4.3)
= α(uk − ũk)T (QT +Q)(uk − ũk)− α2∥uk − ũk∥2MTHM .

Combining (4.13), (4.14), (4.15) and the above equations, we get

Φ(x, ỹk)− Φ(x̃k, y)

≥ 1

2α

(
∥u− uk+1∥2H − ∥u− uk∥2H

)
+

1

2

(
∥uk − ũk∥2(QT+Q)

−α∥uk − ũk∥2MTHM

)
. (4.16)

Using (4.5) and 0 < α ≤ σ, we get

∥uk − ũk∥2(QT+Q) − α∥uk − ũk∥2MTHM

≥ ∥uk − ũk∥2(QT+Q) − σ∥uk − ũk∥2MTHM = ∥uk − ũk∥2G.

Substituting the above inequality into (4.16), we get the assertion (4.12).

Now we are ready to show that the sequence {uk} generated by the proposed algorithm
is contractive with respect to the saddle-point set Ω∗.

Theorem 4.4. For given uk = (xk, yk), let ũk := (x̃k, ỹk) ∈ Ω be generated by (3.3) and
uk+1 be updated by (3.6). Then we have

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − α∥uk − ũk∥2G ∀u∗ ∈ Ω∗, (4.17)

where the matrices H and G are defined by (4.4) and (4.5), respectively.

Proof. Setting u = u∗ in (4.12), we get

∥uk − u∗∥2H − ∥uk+1 − u∗∥2H
≥ α∥uk − ũk∥2G + 2α

(
Φ(x̃k, y∗)− Φ(x∗, ỹk)

)
. (4.18)

Since u∗ := (x∗, y∗) ∈ Ω∗, from (2.1) we have

Φ(x̃k, y∗)− Φ(x∗, ỹk) ≥ 0.

The assertion (4.17) follows from (4.18) and the above inequality directly.

4.2 Global convergence

Based on the contraction property established in the last subsection, we can easily prove
the global convergence of the proposed algorithm. The proof follows the standard analytic
framework of contraction methods, see e.g. [2]; but we include the detail for completeness.

Theorem 4.5. The sequence {uk} generated by the proposed primal-dual algorithm con-
verges to some u∞ in the set Ω∗.
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Proof. It follows from (4.17) that the sequence {uk} is bounded and

lim
k→∞

∥uk − ũk∥G = 0. (4.19)

Combining this with G ≻ 0, we deduce that {ũk} is also bounded. Let u∞ be a cluster point
of {ũk} and {ũkj} be a subsequence which converges to u∞. Let {ukj} and {ũkj} be the
induced sequences by {uk} and {ũk}, respectively. It follows from (4.1) that ũkj ∈ Ω,

Φ(x, ỹkj )− Φ(x̃kj , y) ≥ (u− ũkj )TQ(ukj − ũkj ) ∀ u ∈ Ω.

Letting j → ∞, it follows from (4.19) and the continuity of Φ(x, y) that u∞ := (x∞, y∞) ∈ Ω,

Φ(x, y∞)− Φ(x∞, y) ≥ 0 ∀ u := (x, y) ∈ Ω.

The above inequality indicates that u∞ is a saddle point of (1.1). By using (4.19) and
limj→∞ ũkj = u∞, the subsequence {ukj} also converges to u∞. Due to (4.17), we have

∥uk+1 − u∞∥H ≤ ∥uk − u∞∥H ,

and thus {uk} converges to u∞. The proof is complete.

4.3 Convergence rate in ergodic sense

Now we show the worst-case O(1/t) convergence rate in ergodic sense for the proposed
algorithm. As we have mentioned, the first such result was established in [5] by using the
technique in [20, 21]. But here we are considering a different primal-dual algorithm (the
choices for r and s are more relaxed) combined with a correction step; and the technique
for analysis is mainly inspired by that in [15] and thus different from that in [5]. Note this
convergence rate result is lacked in [15]. The base for the analysis in this subsection is
Theorem 4.3.

Theorem 4.6. For given uk := (xk, yk), let ũk and uk+1 be generated by the proposed
algorithm. Then for any integer t > 0, we have

Φ(x, ỹt)− Φ(x̃t, y) ≥ − 1

2α(t+ 1)
∥u− u0∥2H ∀u ∈ Ω, (4.20)

where

(x̃t, ỹt) := ũt =
1

t+ 1

t∑
k=0

ũk. (4.21)

Proof. First, from (4.12), for the sequence generated by the proposed algorithm, we have
ũk ∈ Ω,

Φ(x, ỹk)− Φ(x̃k, y) +
1

2α
∥u− uk∥2H ≥ 1

2α
∥u− uk+1∥2H ∀u ∈ Ω. (4.22)

Note that ũk ∈ Ω for all k ≥ 0. Together with the convexity of X and Y, (4.21) implies
ũt ∈ Ω. Summing the inequality (4.22) over k = 0, 1, . . . , t, we obtain

(t+ 1)
(
θ1(x) + θ2(y)

)
−

t∑
k=0

(
θ1(x̃

k) + θ2(ỹ
k)
)
−
( t∑

k=0

ỹk
)T

Ax+ yTA
( t∑

k=0

x̃k
)

≥ − 1

2α
∥u− u0∥2H ∀u ∈ Ω.
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Using the notation of ũt, it can be written as

(
θ1(x) + θ2(y)

)
− 1

t+ 1

t∑
k=0

(
θ1(x̃

k) + θ2(ỹ
k)
)
− (ỹt)

TAx+ yTAx̃t

≥ − 1

2α(t+ 1)
∥u− u0∥2H ∀u ∈ Ω. (4.23)

Since θ1(x) and θ2(y) are convex and

ũt =
1

t+ 1

t∑
k=0

ũk,

we have that

θ1(x̃t) + θ2(ỹt) ≤
1

t+ 1

t∑
k=0

(θ1(x̃
k) + θ2(ỹ

k)).

Substituting it in (4.23), the assertion of this theorem follows directly.

It follows from (4.17) that the sequence {uk} generated by the propose algorithm is
bounded. According to (4.19) and G ≻ 0, the sequence {ũk} is also bounded. Since the
saddle-point set Ω∗ is assumed to be nonempty, we suppose that there exists a saddle point
u∗ := (x∗, y∗) ∈ Ω∗. Then it follows from (4.20) that

Φ(x̃t, y
∗)− Φ(x∗, ỹt) ≤

1

2α(t+ 1)
∥u∗ − u0∥2H . (4.24)

From the definition of Φ(·, ·) in (1.1), the left-hand side of (4.24) can be rewritten as

Φ(x̃t, y
∗)− Φ(x∗, ỹt)

= θ1(x̃t)− (y∗)TAx̃t − θ2(y
∗)− θ1(x

∗) + (ỹt)
TAx∗ + θ2(ỹt)

=
(
θ1(x̃t)− θ1(x

∗)− (AT y∗)T (x̃t − x∗)
)
+
(
θ2(ỹt)− θ2(y

∗)− (−Ax∗)T (ỹt − y∗)
)
. (4.25)

Assume that X := ℜn and Y := ℜm. According to the first-order optimality condition
of the saddle-point problem (1.1), we know that AT y∗ ∈ ∂θ1(x

∗) and −Ax∗ ∈ ∂θ2(y
∗).

Substituting (4.25) into (4.24), we get

Dθ1(x̃t, x
∗) +Dθ2(ỹt, y

∗) ≤ 1

2α(t+ 1)
∥u∗ − u0∥2H ,

where the generalized Bregman distance Dθi(·, ·) (i = 1, 2) [25,29] is defined as

Dθi(z, z̃) := θi(z)− θi(z̃)− pT (z − z̃) ∀z, z̃ ∈ domθi, (4.26)

with p ∈ ∂θi(z̃). This implies that ũt := (x̃t, ỹt) is an approximate saddle point of Φ(x, y)
with an accuracy of O(1/t) in the generalized Bregman distance. That is, a worst-case
O(1/t) convergence rate of the proposed algorithm in ergodic sense is established.
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4.4 Convergence rate in non-ergodic sense

Now, we prove the worst-case o(1/
√
t) convergence rate in non-ergodic sense for the proposed

algorithm. We first find a criterion to measure the accuracy of an iterate, as the criterion
(2.1) can be used for establishing the non-ergodic convergence rate. In fact, recall (4.1) and
Q = HM . If ∥M(uk − ũk)∥H = 0, we get ũk ∈ Ω,

Φ(x, ỹk)− Φ(x̃k, y) ≥ (u− ũk)THM(uk − ũk) = 0 ∀u ∈ Ω.

We thus can claim that ũk is a saddle point of (1.1) if ∥M(uk − ũk)∥H = 0; which means we
can measure the accuracy of ũk to a saddle point of (1.1) by the quantity ∥M(uk − ũk)∥H .

Let us take a deeper look at the sequence generated by the proposed algorithm and
establish more properties.

Lemma 4.7. For given uk := (xk, yk), let ũk := (x̃k, ỹk) ∈ Ω be generated by (3.3) and
uk+1 be updated by (3.6). Then for any integer k > 0, we have

α(uk − ũk)TMTHM [(uk − ũk)− (uk+1 − ũk+1)]

≥ 1

2
∥(uk − ũk)− (uk+1 − ũk+1)∥2(QT+Q), (4.27)

where the matrices Q, M and H are defined by (4.2), (3.5) and (4.4), respectively.

Proof. First, setting u = ũk+1 in (4.1), we have

Φ(x̃k+1, ỹk)− Φ(x̃k, ỹk+1) ≥ (ũk+1 − ũk)TQ(uk − ũk). (4.28)

Note that (4.1) is also true for k := k + 1 and thus we have

Φ(x, ỹk+1)− Φ(x̃k+1, y) ≥ (u− ũk+1)TQ(uk+1 − ũk+1) ∀u ∈ Ω.

Setting u = ũk in the above inequality, we obtain

Φ(x̃k, ỹk+1)− Φ(x̃k+1, ỹk) ≥ (ũk − ũk+1)Q(uk+1 − ũk+1). (4.29)

Adding (4.28) and (4.29) and using the monotonicity of F , we get

(ũk − ũk+1)TQ[(uk − ũk)− (uk+1 − ũk+1)] ≥ 0. (4.30)

Adding the term

[(uk − ũk)− (uk+1 − ũk+1)]TQ[(uk − ũk)− (uk+1 − ũk+1)]

to the both sides of (4.30), and using uTQu = 1
2u

T (QT +Q)u, we get

(uk − uk+1)TQ[(uk − ũk)− (uk+1 − ũk+1)] ≥ 1

2
∥(uk − ũk)− (uk+1 − ũk+1)∥2(QT+Q).

Substituting the term uk−uk+1 = αM(uk− ũk) into the left-hand side of the last inequality,
and using Q = HM , we obtain (4.27). The proof is complete.

Theorem 4.8. For given uk := (xk, yk), let ũk := (x̃k, ỹk) ∈ Ω be generated by (3.3) and
uk+1 be updated by (3.6). Then for any integer k > 0, we have

∥M(uk − ũk)∥2H − ∥M(uk+1 − ũk+1)∥2H ≥ 0, (4.31)

where the matrices M and H are defined by (3.5) and (4.4), respectively.
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Proof. Setting a = M(uk − ũk) and b = M(uk+1 − ũk+1) in the identity

∥a∥2H − ∥b∥2H = 2aTH(a− b)− ∥a− b∥2H ,

we obtain

∥M(uk − ũk)∥2H − ∥M(uk+1 − ũk+1)∥2H
= 2(uk − ũk)TMTHM{(uk − ũk)− (uk+1 − ũk+1)}

−∥M [(uk − ũk)− (uk+1 − ũk+1)]∥2H .

Inserting (4.27) into the first term of the right-hand side of the last equality, we obtain

∥M(uk − ũk)∥2H − ∥M(uk+1 − ũk+1)∥2H

≥ 1

α
∥(uk − ũk)− (uk+1 − ũk+1)∥2(QT+Q) − ∥(uk − ũk)− (uk+1 − ũk+1)∥2MTHM

=
1

α

(
∥(uk − ũk)− (uk+1 − ũk+1)∥2(QT+Q)

−α∥(uk − ũk)− (uk+1 − ũk+1)∥2MTHM

)
. (4.32)

Since 0 < α ≤ σ, we have

QT +Q− αMTHM ⪰ QT +Q− σMTHM ≻ 0.

It follows from the above formula that the right hand side of (4.32) is nonnegative.

Note that since G ≻ 0 and MTHM ⪰ 0, it follows from (4.17) that there is a constant
c1 > 0 such that

∥uk+1 − u∗∥2H ≤ ∥uk − u∗∥2H − c1∥uk − ũk∥2MTHM ∀u∗ ∈ Ω∗. (4.33)

To establish the worst-case convergence rate in non-ergodic sense for the proposed algo-
rithm, we give an important lemma in the following.

Lemma 4.9. Let {uk} and {ũk} be the sequences generated by the proposed algorithm. Then
for any integer t > 0, we have

∥M(ut − ũt)∥H = o(1/
√
t). (4.34)

Proof. First, it follows from (4.33) that

∞∑
k=0

c1∥M(uk − ũk)∥2H ≤ ∥u0 − u∗∥2H ∀u∗ ∈ Ω∗. (4.35)

According to (4.31), the sequence {∥M(uk − ũk)∥H} is nonincreasing. The assertion (4.34)
follows from (4.35) and Lemma 2.2 immediately.

Notice that Ω∗ is convex and closed (see Theorem 2.1). From Theorem 2.1 and Lemma
4.1, we get that ũt is a saddle point of (1.1) if ∥M(ut − ũt)∥H = 0. A worst-case o(1/

√
t)

convergence rate in non-ergodic sense is thus established for the proposed algorithm.

Theorem 4.10. Let {ut} and {ũt} be the sequences generated by the proposed algorithm.
Then for any integer t > 0 and u∗ := (x∗, y∗) ∈ Ω∗, we have

Φ(x∗, ỹt)− Φ(x̃t, y∗) ≥ −o(1/
√
t).
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Proof. It follows from Lemma 4.1 that

Φ(x, ỹt)− Φ(x̃t, y) ≥ (ũt − u)TQ(ũt − ut). (4.36)

Note that {ũt} is bounded. By using (4.36), (4.3) and (4.34), for any u∗ ∈ Ω∗, we have

Φ(x∗, ỹt)− Φ(x̃t, y∗) ≥ (u∗ − ũt)THM(ut − ũt)

≥ −∥u∗ − ũt∥H∥M(ut − ũt)∥H
= −o(1/

√
t).

The proof is complete.

Remark 4.11. Assume that X := ℜn and Y := ℜm. From (4.25) and Theorem 4.10, we
get

Dθ1(x̃
t, x∗) +Dθ2(ỹ

t, y∗) ≤ o(1/
√
t),

where the generalized Bregman distance Dθi(·, ·) (i = 1, 2) is defined in (4.26).

5 Numerical Experiments

To investigate the numerical performance of the proposed method, in this section, we apply
Algorithm 1 (denoted by “R-PDA”) to solve the TV image deblurring and inpainting prob-
lems, and compare with some existing works. All codes were written by Matlab 2014b and
all the numerical experiments were conducted on a personal computer with 4GB memory.

5.1 Image deblurring problem

In this subsection, we apply the R-PDA to solve the TV image deblurring problem and
compare it with the algorithms proposed in [15]. As discussed in [15,31], the TV deblurring
model can be reformulated as to find (x∗, y∗) ∈ X × ℜn such that

∀y ∈ ℜn Φ1(x
∗, y) ≤ Φ1(x

∗, y∗) ≤ Φ1(x, y
∗) ∀x ∈ X , (5.1)

where Φ1(x, y) := −yT∇x − λ
2 ∥By − b∥2, X = {x ∈ ℜn×2 | ∥x∥∞ ≤ 1}, b is the given

observed image, ∇ is the discrete gradient operator [31], λ > 0 is a balanced constant and B
is a matrix that represents a space-invariant blurring operator. It is obvious that problem
(5.1) is a special case of (1.1) and we can apply R-PDA to solve it. When applying R-PDA
scheme to solve problem (5.1), the x-subproblem in (3.3) reduces to

x̃k = PX (xk +
1

r
∇T yk),

where PX denotes the projection onto X which can be easily computed. The y-subproblem
in (3.3) corresponds to solve the following system of equations:

λBT (By − b) +∇x̄k + s(y − yk) = 0,

whose solution can be obtained by the Fast Fourier Transform (FFT) or Discrete Cosine
Transform (DCT) [31].

We test the images Cameraman (256×256), Peppers (256×256), Hatgirl (256×256) and
Barbara (512×512) presented in the first row in Figure 1. These original images are then
degraded by severe motion blur, and the motion blur operator is generated by the script
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Figure 1: Original images (the first row) and degraded images (the second row). From left
to right: Cameraman, Peppers, Hatgirl, Barbara.

fspecial in the MATLAB Image Processing Toolbox with theta = 135 and len = 91. The
degraded images are presented in the second row in Figure 1.

In order to recover these corrupted images and due to the sole purpose of investigating
the efficiency of each tested algorithm, as suggested in [15], we take λ = 250 in (5.1) and all
the algorithms tested in this subsection use the stopping criterion as follows:

max

{
∥xk+1 − xk∥

∥xk+1∥
,
∥yk+1 − yk∥

∥yk+1∥

}
< Tol, (5.2)

where {xk} and {yk} are generated by the tested algorithm, and we take the error Tol :=
10−4. Besides, we initial each algorithm with the degraded images. Besides, the quality of
recovered images is measured by the value of the signal-to-noise ratio (SNR) given by

SNR := 20 log10
∥y∗∥

∥ỹ − y∗∥
, (5.3)

where y∗ is the original image and ỹ is the image restored by a certain tested algorithm.

Table 1: Iteration numbers of R-PDA with different α and η for Hatgirl

Now we elaborate on the parameters setting involved in R-PDA. From the conditions
(1.5) and (3.1), we know that τ should satisfy

(1 + η)2

4
< τ <

rs

∥∇T∇∥
,
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and it follows from [4] that ∥∇T∇∥ ≤ 8, thus we take τ := rs/8 − 0.01 in the experiment.
First, we test the sensitivity of the parameters r, s and η. We fix η = 0.5 and test the
performance of R-PDA with different r, s. We find that the situation r = 100, s = 1/12
performs better than others. Here we omit to list the results due to the limited space. Next,
we fix r = 100, s = 1/12 and observe the performance of R-PDA with different values of
α and η ∈ [−1, 1]. We test 4 and 13 instances for α and η, the concrete choices can be
found in Table 1, where σ is defined in (3.2). We report the preliminary results in Table 1
just including the iteration numbers for deblurring the image (Hatgirl) with the same SNR
values. From the results we can find that the numerical performance is sensitive with α and
the choice with α := σ and η = 0.7 usually performs better than others. Therefore, we take
α := σ and (r, s, η) = (100, 1/12, 0.7) for R-PDA in the experiments in this subsection.
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Figure 2: Evolutions of SNRs with respect to iterations for Cameraman (left in the first
row), Peppers (right in the first row), Hatgirl (left in the second row) and Barbara(right in
the second row).

To illustrate the efficiency of the proposed method, we further compare the numerical
performance of R-PDA with Algorithms 1-4 proposed in [15], i.e., the iteration (1.3) with
four different correction ways, we denote them by HY-Algo1, HY-Algo2, HY-Algo3 and HY-
Algo4, respectively. In our experiments, we take the optimal parameters as that in [15, Table
2] for HY-Algo1, HY-Algo2, HY-Algo3 and HY-Algo4. For the results, we plot the evolutions
of SNR values of different methods with respect to iterations in Figure 2 for both tested
images, which show that the R-PDA converges faster and can achieve better quality with
higher SNR values than that proposed in [15]. In addition, in order to indicate that the
sequence generated by each tested algorithm can converge to the ground-truth solution, we
also show the evolutions of the value of ∥yk − ȳ∥/∥ȳ∥ with respect to iteration number for
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Figure 3: Evolutions of the value of ∥yk − ȳ∥/∥ȳ∥ with respect to iterations for Cameraman
(left in the first row), Peppers (right in the first row), Hatgirl (left in the second row) and
Barbara(right in the second row).

each algorithm in Figure 3, where ȳ denotes the benchmark solution which is produced by
the the standard primal-dual method in [5] after 1000 iterations.

In order to further visualize the numerical comparison, we list the images restored by HY-
Algo1, HY-Algo2, HY-Algo3, HY-Algo4 and R-PDA in Figure 4 for Peppers and Barbara.
Here we omit to show the recovered images Cameraman and Hatgirl due to the limited
space.

5.2 Image inpainting problem

In this subsection, we apply the R-PDA to solve the TV image inpainting problem, and
compare it with the first-order primal-dual algorithm (denoted by CP) in [5, Algorithm 1],
the PDHG ((1.2) with η = 0) in [31] and HY-Algo1 in [15, Algorithm 1].

The image inpainting problem with TV regularization shares the form of (5.1) with
B ∈ ℜN×N represented a mask operator, which characterizes the missing information of the
original image. We test the images House (256×256) and Peppers (512×512). We present
the original and degraded images in Figure 5. For the degraded images, the operator B is
a character mask for House and a texture Peppers, where about 15% and 60% of pixels are
missed, respectively. Besides, we add the zero-mean Gaussian noise with standard deviation
0.02 for both images. For both tested methods, we take λ = 50 in the model (5.1). For
the parameters of the compared methods, as suggested in [15], we take (r, s) = (50, r/8)
for CP, (r, s) = (1/8, 100) for PDHG, and (r, s, η, γ) = (50/3, 1/3,−0.4, 1.3) for HY-Algo1.
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Figure 4: From left to right: Images Peppers (the first row) and Barbara (the second row)
restored by HY-Algo1, HY-Algo2, HY-Algo3, HY-Algo4 and R-PDA.

Figure 5: From left to right: Original House, degraded House, Original Peppers and degraded
Peppers.

Note that here 1/r and 1/s denote the step sizes τ and σ used in [5,15,31] for the compared
methods. For the R-PDA, we find that when we take (r, s, η) = (1, 20/3,−0.7) and the other
parameters choice similar to that in last subsection, the R-PDA performs better. Besides,
we use the same stopping criteria as that in (5.2) with Tol := 10−3 and the SNR value given
by (5.3) to measure the quality of the restored images. All the tested methods initial their
iterations with the degraded images.

We report the numerical results of these tested methods in Table 2. We find that R-
PDA outperforms the other three methods in terms of the number of iterations and CPU
computing time. Besides, R-PDA can achieve better quality than CP and PDHG, and also
is competitive with HY-Algo1. In addition, we show the restored images by the tested
algorithms in Figure 6 to further illustrate the efficiency of the proposed method.

6 Conclusions

In this paper, we proposed a modified primal-dual algorithm with refined step sizes, which is
computationally cheap because the step size used in correction step is just a constant. Under
the standard assumptions, the global convergence and the rate of convergence in ergodic and
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Table 2: Numerical results for image inpainting problem

Figure 6: From left to right: Images House (the first row) and Peppers (the second row)
restored by CP, PDHG, HY-Algo1 and R-PDA.

non-ergodic senses of the proposed method have proved. Some numerical results on image
deblurring and inpainting problems were also reported to illustrate the efficiency of the
proposed methods.
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