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then we call tensor C is a fourth-order partially symmetric tensor.
For λ ∈ R, x ∈ Rm, y ∈ Rn, if 

C · yxy = λx,

Cxyx· = λy,

xTx = 1,

yT y = 1

(1.1)

holds, where (C · yxy)i =
∑

k∈[m], j,l∈[n]cijklyjxkyl and (Cxyx·)l =
∑

i,k∈[m],j∈[n]cijklxiyjxk,
then the scalar λ is called an M-eigenvalue of the tensor C, and x and y are called left
and right M-eigenvectors of C, respectively, which associated with the M-eigenvalue λ. The
M-spectral radius ρ(C) of C is defined as

ρ(C) = max{|λ| : λ ∈ σ(C)},

where σ(C) is the M-spectrum of C, which contains all M-eigenvalues of C.
In [11], Qi et al. pointed out a Z-eigenvalue of a partially symmetric tensor is an M-

eigenvalue. In recent years, Z-eigenvalue problem has received special attention, which has a
wide range of practical application in statistical date analysis and engineering [8,16]. On the
study of the bounds for Z-spectral radius of nonnegative tensors, Chang et al. [1] proposed
the upper bounds. Song et al. [12] improved the upper bounds based on the relationship
between the Gelfand formula and the spectral radius. For weakly symmetric and positive
tensors, He et al. [5] presented the Ledermann-like upper bound for the largest Z-eigenvalue.
For general tensors, Wang et al. [15] established Z-eigenvalue inclusion theorems, and the
upper bounds for the largest Z-eigenvalue of a weakly symmetric nonnegative tensor was
obtained.

At the same time, Qi et al. [11] also pointed out that an M-eigenvalue of a partially sym-
metric tensor is not necessarily a Z-eigenvalue. M-eigenvalue problem has a close connection
to the strong ellipticity condition, which is essential in the theory of elasticity, since it guar-
antees the existence of solutions of basic boundary-value problems of elastostatics [6, 7, 13].
Han et al. [4] proposed the strong ellipticity condition to the rank-one positive definiteness
of three second-order tensors, three fourth-order tensors, and a sixth-order tensor. Wang et
al. [14] presented a practical method to compute the largest M-eigenvalue of a fourth-order
partially symmetric tensor. Qi et al. [11] explored a necessary and sufficient condition of the
strong ellipticity by introducing M-eigenvalues for ellipticity tensors and revealed that the
strong ellipticity condition holds if and only if all the M-eigenvalues of the ellipticity tensor
are positive. In [2], Che et al. gave the following theorems for the fourth-order partially
symmetric tensors.

Theorem 1.1 ([2]). Suppose the tensor C is a fourth-order partially symmetric tensor. Then

σ(C) ⊆ Γ(C) =
∪

i∈[m]

Γi(C),

where Γi(C) = {z ∈ C : |z| ≤ Ri(C)}, and Ri(C) =
∑

k∈[m], j,l∈[n]|cijkl|.

Theorem 1.2 ([2]). Suppose the tensor C is a fourth-order partially symmetric tensor. Then

σ(C) ⊆ L(C) =
∪

i∈[m]

∩
k∈[m],k ̸=i

Li,k(C),

where Li,k(C) = {z ∈ C : (|z| − (Ri(C) − Rk
i (C)))|z| ≤ Rk

i (C)Rk(C)}, and Rk
i (C) =∑

j,l∈[n]|cijkl|.
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In this paper, inspired by the above references, we establish an inclusion theorem to
identify the distribution of M-eigenvalues and give M-eigenvalue localization sets for fourth-
order partially symmetric tensors by choosing different components of M-eigenvector. As
an application, it is proven that the new upper bounds are sharper than the existing upper
bounds in the literature. Finally, numerical examples are proposed to verify the theoretical
results.

The remainder of this paper is organized as follows. In Section 2, we establish a new M-
eigenvalue inclusion theorem and give relationships among these eigenvalue inclusion sets.
In Section 3, we apply the inclusion theorem to estimate a sharper upper bound of the
largest M-eigenvalue for nonnegative tensors.

2 A New M-Eigenvalue Inclusion Theorem

In this section, a new M-eigenvalue inclusion theorem is presented for fourth-order partially
symmetric tensors. Furthermore, we establish relationships among different M-eigenvalue
inclusion sets. Now, we introduce the following Lemma.

Lemma 2.1 ([9]). Let a, b, c ≥ 0 and d > 0. If a
b+c+d ≥ 1, then

a− (b+ c)

d
≥ a− b

c+ d
≥ a

b+ c+ d
.

Enlightened by the ideas of H-eigenvalue inclusion theorem [10] and Z-eigenvalue inclu-
sion theorems [15], we establish the following M-eigenvalue inclusion theorem.

Theorem 2.2. Suppose the tensor C is a fourth-order partially symmetric tensor. Then

σ(C) ⊆ H(C) = (
∪

i∈[m]

∩
k∈[m],k ̸=i

Ĥi,k(C))
∪

(
∪

i∈[m]

∩
k∈[m],k ̸=i

(Hi,k(C)
∩

Γi(C))),

where

Ĥi,k(C) = {z ∈ C : |z| < Ri(C)−Rk
i (C), |z| < Rk

k(C)},

Hi,k(C) = {z ∈ C : (|z| − (Ri(C)−Rk
i (C)))(|z| −Rk

k(C)) ≤ Rk
i (C)(Rk(C)−Rk

k(C))},

Rk
i (C) =

∑
j,l∈[n]

|cijkl|,

Γi(C) and Ri(C) are same as given in Theorem 1.1.

Proof. Let λ be an M-eigenvalue of the tensor C with corresponding left M-eigenvector
x ∈ Rm and right M-eigenvector y ∈ Rn. As x is a left M-eigenvector of the tensor C with
xTx = 1, we know that it has at least one nonzero component. Denote xt by a component
of x with the largest absolute value, that is

|xt| = max
p∈[m]

|xp| > 0.

In the following, we let s ∈ [m] and s ̸= t.
From (1.1), one has

λxt =(C · yxy)t
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=
∑

k∈[m], j,l∈[n]

ctjklyjxkyl

=
∑

k∈[m], k ̸=s, j,l∈[n]

ctjklyjxkyl +
∑

j,l∈[n]

ctjslyjxsyl,

which yields that

|λ||xt| ≤
∑

k∈[m], k ̸=s, j,l∈[n]

|ctjkl||xt|+
∑

j,l∈[n]

|ctjsl||xs|

Since ∑
k∈[m], k ̸=s, j,l∈[n]

|ctjkl| = Rt(C)−Rs
t (C),

∑
j,l∈[n]

|ctjsl| = Rs
t (C),

we have
(|λ| − (Rt(C)−Rs

t (C)))|xt| ≤ Rs
t (C)|xs|. (2.1)

As follows, we break up the proof into two cases.
Case 1. If |xs| = 0, then |λ| ≤ Rt(C)−Rs

t (C) by (2.1).

(i) If |λ| = Rt(C)−Rs
t (C), it is obvious that λ ∈ Ht,s(C)

∩
Γt(C).

(ii) If |λ| < Rt(C)−Rs
t (C) and |λ| ≥ Rs

s(C), together with (2.1), we have

(|λ| − (Rt(C)−Rs
t (C)))(|λ| −Rs

s(C)) ≤ 0 ≤ Rs
t (C)(Rs(C)−Rs

s(C)),

which means that λ ∈ Ht,s(C). It is easy to see that |λ| < Rt(C). Hence, λ ∈
Ht,s(C)

∩
Γt(C).

If |λ| < Rt(C)−Rs
t (C) and |λ| < Rs

s(C), we obtain λ ∈ Ĥt,s(C).

Case 2. If |xs| > 0, one has

λxs =(C · yxy)s
=

∑
k∈[m],j,l∈[n]

csjklyjxkyl

=
∑

k∈[m], k ̸=s, j,l∈[n]

csjklyjxkyl +
∑

j,l∈[n]

csjslyjxsyl,

which yields that

λ||xs| ≤
∑

k∈[m], k ̸=s, j,l∈[n]

|csjkl||xt|+
∑

j,l∈[n]

|csjsl||xs|.

Since ∑
k∈[m], k ̸=s, j,l∈[n]

|csjkl| = Rs(C)−Rs
s(C),

∑
j,l∈[n]

|csjsl| = Rs
s(C),

we have
(|λ| −Rs

s(C))|xs| ≤ (Rs(C)−Rs
s(C))|xt|. (2.2)

(i) If |λ| ≥ Rt(C)−Rs
t (C) or |λ| ≥ Rs

s(C), it follows from (2.1) and (2.2) that

(|λ| − (Rt(C)−Rs
t (C)))(|λ| −Rs

s(C)) ≤ Rs
t (C)(Rs(C)−Rs

s(C)).

On the other hand, from (2.1), we can obtain |λ| ≤ Rt(C). Thus, we have λ ∈
Ht,s(C)

∩
Γt(C).
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(ii) If |λ| < Rt(C)−Rs
t (C) and |λ| < Rs

s(C), we deduce λ ∈ Ĥt,s(C).

In summary, we have λ ∈
∩

s∈[m],s̸=t(Ht,s(C)
∩

Γt(C)) or λ ∈
∩

s∈[m],s̸=t Ĥt,s(C). As a

result, σ(C) ⊆ H(C) and the desired results follow. 2

From Theorem 1.1, Theorem 1.2 and Theorem 2.2, we show the following relation of
σ(C), L(C), H(C) and Γ(C).

Theorem 2.3. Suppose the tensor C is a fourth-order partially symmetric tensor. Then

σ(C) ⊆ H(C) ⊆ L(C) ⊆ Γ(C).

Proof. From Theorem 2.3 in [16], we obtain

σ(C) ⊆ L(C) ⊆ Γ(C).

Hence, we only need to prove H(C) ⊆ L(C). Indeed, let

λ ∈ H(C) = (
∪

i∈[m]

∩
k∈[m],k ̸=i

Ĥi,k(C))
∪

(
∪

i∈[m]

∩
k∈[m],k ̸=i

(Hi,k(C)
∩

Γi(C))),

then
λ ∈

∪
i∈[m]

∩
k∈[m],k ̸=i

Ĥi,k(C)

or
λ ∈

∪
i∈[m]

∩
k∈[m],k ̸=i

(Hi,k(C)
∩

Γi(C)).

We now break up the proof into two cases.
Case 1. If λ ∈

∪
i∈[m]

∩
k∈[m],k ̸=iĤi,k(C), then there exists an index i ∈ [m] such that,

for any k ∈ [m], k ̸= i,
|λ| < Ri(C)−Rk

i (C)

and
|λ| < Rk

k(C),

which yield that
(|λ| − (Ri(C)−Rk

i (C)))|λ| ≤ 0 ≤ Rk
i (C)Rk(C).

Therefore, λ ∈
∩

k∈[m],k ̸=iLi,k(C) ⊆ L(C).
Case 2. If λ ∈

∪
i∈[m]

∩
k∈[m],k ̸=i(Hi,k(C)

∩
Γi(C)), then there exists an index i ∈ [m]

such that, for any k ∈ [m], k ̸= i,

(|λ| − (Ri(C)−Rk
i (C)))(|λ| −Rk

k(C)) ≤ Rk
i (C)(Rk(C)−Rk

k(C)) (2.3)

and
|λ| ≤ Ri(C). (2.4)

(i) If Rk
i (C)(Rk(C)−Rk

k(C)) = 0, then

Rk
k(C) ≤ |λ| ≤ Ri(C)−Rk

i (C)

or
Ri(C)−Rk

i (C) ≤ |λ| ≤ Rk
k(C).
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(a) If Rk
k(C) ≤ |λ| ≤ Ri(C)−Rk

i (C), one has

(|λ| − (Ri(C)−Rk
i (C)))|λ| ≤ 0 ≤ Rk

i (C)Rk(C).

Therefore, λ ∈ Li,k(C).
(b) If Ri(C)−Rk

i (C) ≤ |λ| ≤ Rk
k(C), one has |λ| ≤ Rk(C). It follows from (2.4) that

|λ| − (Ri(C)−Rk
i (C)) ≤ Rk

i (C). (2.5)

Furthermore,

(|λ| − (Ri(C)−Rk
i (C)))|λ| ≤ Rk

i (C)Rk(C).

Therefore, λ ∈ Li,k(C).
(ii) If Rk

i (C)(Rk(C)−Rk
k(C)) > 0, then according to (2.3), we have

|λ| − (Ri(C)−Rk
i (C))

Rk
i (C)

|λ| −Rk
k(C)

Rk(C)−Rk
k(C)

≤ 1. (2.6)

From (2.5), we have

|λ| − (Ri(C)−Rk
i (C))

Rk
i (C)

≤ 1. (2.7)

(a) If
|λ|−Rk

k(C)
Rk(C)−Rk

k(C)
≤ 1, then |λ| ≤ Rk(C). Furthermore, from (2.7), one has

(|λ| − (Ri(C)−Rk
i (C)))|λ| ≤ Rk

i (C)Rk(C).

Thus, λ ∈ Li,k(C).
(b) If

|λ|−Rk
k(C)

Rk(C)−Rk
k(C)

> 1, then |λ| > Rk(C). Moreover,

|λ|
Rk(C)

=
|λ|

(Rk(C)−Rk
k(C)) +Rk

k(C)
≤ |λ| −Rk

k(C)
Rk(C)−Rk

k(C)
. (2.8)

If |λ| > Ri(C)−Rk
i (C), it follows from (2.6) and (2.8) that

|λ| − (Ri(C)−Rk
i (C))

Rk
i (C)

|λ|
Rk(C)

≤ |λ| − (Ri(C)−Rk
i (C))

Rk
i (C)

|λ| −Rk
k(C)

Rk(C)−Rk
k(C)

≤ 1,

which means that

(|λ| − (Ri(C)−Rk
i (C)))|λ| ≤ Rk

i (C)Rk(C).

Consequently, λ ∈ Li,k(C).
If |λ| ≤ Ri(C)−Rk

i (C), we have

(|λ| − (Ri(C)−Rk
i (C)))|λ| ≤ 0 ≤ Rk

i (C)Rk(C).

Thus, λ ∈ Li,k(C).
In summary, we obtain λ ∈

∩
k∈[m],k ̸=iLi,k(C) ⊆ L(C),

that is,

σ(C) ⊆ H(C) ⊆ L(C) ⊆ Γ(C).

2
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Example 2.4. Consider the following fourth-order partially symmetric tensor

cijkl =


c1111 = −1, c1112 = 2, c1131 = 3, c1121 = −1, c1211 = 2, c1221 = 1, c1122 = 1,

c2111 = −1, c2211 = 1, c2112 = 1, c2131 = −2, c2222 = 2,

c3111 = 3, c3232 = −1, c3131 = −2,

cijkl = 0, otherwise.

.

By computation, we obtain that the corresponding M-eigenvalue is -0.8805. From The-
orem 1.1, we obtain

Γ(C) =
∪

i∈[m]

Γi(C) = {λ ∈ C : |λ| ≤ 11}.

From Theorem 1.2, we obtain

L(C) =
∪

i∈[m]

∩
k∈[m],k ̸=i

Li,k(C)

=
{
λ ∈ C : |λ| ≤ 4 +

√
34

}
,

where

L1,2(C) =
{
λ ∈ C : |λ| ≤ 4 +

√
37
}
, L1,3(C) =

{
λ ∈ C : |λ| ≤ 4 +

√
34

}
,

L2,1(C) =

{
λ ∈ C : |λ| ≤ 7 +

√
181

2

}
, L2,3(C) =

{
λ ∈ C : |λ| ≤ 5 +

√
73

2

}
,

L3,1(C) =

{
λ ∈ C : |λ| ≤ 3 +

√
141

2

}
, L3,2(C) =

{
λ ∈ C : |λ| ≤ 2 + 3

√
2
}
.

From Theorem 2.2, we obtain

H(C) =

 ∪
i∈[m]

∩
k∈[m],k ̸=i

Ĥi,k(C)

∪ ∪
i∈[m]

∩
k∈[m],k ̸=i

(Hi,k(C)
∩

Γi(C))


=

{
λ ∈ C : |λ| ≤ 11 +

√
61

2

}
,

where

Ĥ1,2(C) = {λ ∈ C : |λ| < 2} , Ĥ1,3(C) = {λ ∈ C : |λ| < 3} ,

Ĥ2,1(C) = {λ ∈ C : |λ| < 4} , Ĥ2,3(C) = {λ ∈ C : |λ| < 3} ,

Ĥ3,1(C) = {λ ∈ C : |λ| < 3} , Ĥ3,2(C) = {λ ∈ C : |λ| < 2} ,

H1,2(C) =
{
λ ∈ C : 5− 2

√
6 ≤ λ ≤ 5 + 2

√
6
}
,

H1,3(C) =

{
λ ∈ C :

11−
√
61

2
≤ λ ≤ 11 +

√
61

2

}
,
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H2,1(C) =

{
λ ∈ C :

9−
√
73

2
≤ λ ≤ 9 +

√
73

2

}
,

H2,3(C) =
{
λ ∈ C : 4−

√
7 ≤ λ ≤ 4 +

√
7
}
,

H3,1(C) = {λ ∈ C : 0 ≤ λ ≤ 4 +
√
19}, H3,2(C) = {λ ∈ C : 2 ≤ λ ≤ 6},

Γ1(C) = {λ ∈ C : |λ| ≤ 11}, Γ2(C) = {λ ∈ C : |λ| ≤ 7}, Γ3(C) = {λ ∈ C : |λ| ≤ 6}.

Figure 1: The comparisons of Γ(C), L(C) and H(C)

Remark 2.5. Example 2.4 and Figure 1 show the inclusion sets of Γ(C), L(C) and H(C),
where Γ(C), L(C) and H(C) are represented by blue, yellow and green boundary, respectively,
and the exact M-eigenvalues are plotted by ∗.

3 A Sharper Upper Bound on the Largest M-Eigenvalue of Non-
negative Fourth-Order Partially Symmetric Tensors

In this section, as an application of the sets in Theorem 2.2, we give a sharper upper
bounds for M-spectral radius of nonnegative fourth-order partially symmetric tensors, which
generalize the results of [1,12]. Now, we are in a position to recall some fundamental results
of nonnegative tensors.

Lemma 3.1 ([1]). Let A be an m-order and n-dimensional nonnegative tensor. Then

ρ(A) ≤ max
i∈N

√
nRi(A).

Lemma 3.2 ([12]). Let A be an m-order and n-dimensional nonnegative tensor. Then

ρ(A) ≤ max
i∈N

Ri(A).

Lemma 3.3 ([3]). The M-spectral radius of any nonnegative partially symmetric tensor is
exactly its greatest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors
corresponding to the M-spectral radius.
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Lemma 3.4 ([16]). Suppose the tensor C is a nonnegative fourth-order partially symmetric
tensor. Then

ρ(C) ≤ max
i∈[m]

min
k∈[m], k ̸=i

1

2

[
Ri(C)−Rk

i (C) +
√

(Ri(C)−Rk
i (C))2 + 4Rk

i (C)Rk(C)
]
.

From Theorem 2.2, we can find a sharper bound for the largest M-eigenvalue of nonneg-
ative fourth-order partially symmetric tensors.

Theorem 3.5. Suppose the tensor C is a nonnegative fourth-order partially symmetric ten-
sor. Then

ρ(C) ≤ Ωmax = max{ρ1(C), ρ2(C)},

where
ρ1(C) = max

i∈[m]
min

k∈[m], k ̸=i
min{Ri(C)−Rk

i (C), Rk
k(C)},

ρ2(C) = max
i∈[m]

min
k∈[m], k ̸=i

min{Ri(C), ρ3(C)}

and

ρ3(C) =
1

2

[
Ri(C)−Rk

i (C) +Rk
k(C)

+
√
(Ri(C)−Rk

i (C) +Rk
k(C))2 + 4(Rk

i (C)Rk(C)−Ri(C)Rk
k(C))

]
.

Proof. Following Lemma 3.3, we obtain that ρ(C) is the largest M-eigenvalue of C. By
Theorem 2.2, one has

ρ(C) ∈
∪

i∈[m]

∩
k∈[m],k ̸=i

Ĥi,k(C)

or
ρ(C) ∈

∪
i∈[m]

∩
k∈[m],k ̸=i

(Hi,k(C)
∩

Γi(C)).

If ρ(C) ∈
∪

i∈[m]

∩
k∈[m],k ̸=iĤi,k(C), then there exists an index i ∈ [m] such that for

∀ k ∈ [m], k ̸= i,
ρ(C) < Ri(C)−Rk

i (C)

and
ρ(C) < Rk

k(C).

Then
ρ(C) ≤ min

k∈[m], k ̸=i
min{Ri(C)−Rk

i (C), Rk
k(C)}.

Moreover, we obtain

ρ(C) ≤ max
i∈[m]

min
k∈[m], k ̸=i

min{Ri(C)−Rk
i (C), Rk

k(C)}.

If ρ(C) ∈
∪

i∈[m]

∩
k∈[m],k ̸=i(Hi,k(C)

∩
Γi(C)), then there exists an index i ∈ [m] such

that for ∀ k ∈ [m], k ̸= i,
ρ(C) ≤ Ri(C) (3.1)

and
(ρ(C)− (Ri(C)−Rk

i (C)))(ρ(C)−Rk
k(C)) ≤ Rk

i (C)(Rk(C)−Rk
k(C)). (3.2)
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From (3.2), it yields that
ρ(C) ≤ ρ3(C), (3.3)

where

ρ3(C) =
1

2

[
Ri(C)−Rk

i (C) +Rk
k(C)

+
√
(Ri(C)−Rk

i (C) +Rk
k(C))2 + 4(Rk

i (C)Rk(C)−Ri(C)Rk
k(C))

]
.

From (3.1) and (3.3), we deduce

ρ(C) ≤ min
k∈[m], k ̸=i

min{Ri(C), ρ3(C)} ≤ max
i∈[m]

min
k∈[m], k ̸=i

min{Ri(C), ρ3(C)},

and the desired result follows. 2

In the following, we give two examples. According to the theorems in this paper, we can
obtain the following results.

Example 3.6 ([1]). Consider 4 order 2 dimensional tensor C = (cijkl) defined by

cijkl =

{
c1111 = 1

2 , c2222 = 3,

cijkl =
1
3 , otherwise.

It is easy to compute that ρ(C) = 3.1122. And by Lemmas 3.1, 3.2, 3.4, we have
ρ(C) ≤ 7.5432, ρ(C) ≤ 5.3333, ρ(C) ≤ 4.7889, respectively. Since Theorem 4.5, Theorem
4.6 and Theorem 4.7 of [15] are equivalent when n = 2, we have ρ(C) ≤ 5.1822 by these
theorems. On the other hand, by Theorem 3.5, we have ρ(C) ≤ 4.5776.

Example 3.7 ([11]). Consider 4 order 2 dimensional tensor C = (cijkl) defined by

cijkl =


c1111 = 1, c1112 = 2, c1121 = 2, c1212 = 3,

c1222 = 5, c1211 = 2, c1122 = 4, c1221 = 4,

c2111 = 2, c2112 = 4, c2121 = 3, c2122 = 5,

c2211 = 4, c2212 = 5, c2221 = 5, c2222 = 6.

According to the Theorem 7 of [11], it is easy to compute the corresponding M-eigenvalues,
which are given as

0.0710, 15.2091, 0.3437, 0.1242,

−1.2765, − 1.2765, 0.2765, 0.2765.

Then, ρ(C) = 15.2091. On the other hand, by Lemmas 3.1, 3.2, 3.4 and Theorem 3.5,
we have ρ(C) ≤ 48.0833, ρ(C) ≤ 34, ρ(C) ≤ 30.3626, ρ(C) ≤ 29.4765, respectively.

From the above examples, we can see the bound of Theorem 3.5 is sharper than the
results in the corresponding references.

Conclusion

In this paper, we give an M-eigenvalue inclusion set for fourth-order partially symmetric
tensors by choosing different components of an eigenvector. As an application of this result,
we discuss a new upper bound for the M-spectral radius and prove that the new upper bound
is sharper than the existing upper bounds in the references [1, 12, 15]. Finally, numerical
examples are proposed to verify the theoretical results.
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