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low rank constraint are NP-hard. The regularization technique is always used to deal with

these problems, and one popular regularizer is the nuclear norm (see, e.g., Agarwal et al. [2],

Negahban et al. [20] and Yuan et al. [31]). Therefore, our concern is the nuclear norm

regularized multivariate linear regression (NMLR).

Recently, there are some screening rules for LASSO with the help of optimization tech-

niques, which identify inactive predictors under different tuning parameters. See, e.g., Fan

et al. [9], Ghaoui et al. [8], Tibshirani et al. [26], Wang et al. [28], Ndiaye et al. [19], Kuang

et al. [15], Xiang et al. [30], Lee et al. [16], Pan and Xu [22]. For example, Fan et al. [9]

proposed the sure independence screening (SIS), which reduces dimensionality of predictors

below sample size. Ghaoui et al. [8] constructed SAFE rules to eliminate inactive predictors,

which are based on the duality theorem in optimization. The SAFE rules never remove active

predictors. Tibshirani et al. [26] proposed strong rules for discarding inactive predictors un-

der the assumption of the unit slope bound. The strong rules screen out far more predictors

than SAFE rules in practice and can be more efficient by checking Karush-Kuhn-Tucker

(KKT) conditions for any predictor. Wang et al. [28] built the dual polytope projection

(DPP) and the enhanced version EDPP to discard inactive predictors. They showed that

EDPP had a better performance in screening out inactive predictors than SAFE rules and

strong rules. Ndiaye et al. [19] built up statics and dynamic gap safe screening rules, which

are based on the gap between feasible points of LASSO and its dual problem. As we all

know, the sparsity means many elements of the coefficient vector are zero, which implies lots

of the predictors are inactive. Therefore, under different tuning parameters, these screening

rules provide the estimation of the sparsity of the coefficient vector. By analyzing the above

results, we know that optimization techniques play important roles in identifying inactive

predictors for LASSO. This opens a hope that we may build up screening rules for NMLR

from the point of view of optimization. However, the low rank matrix does not mean the

sparsity of its elements, but the sparsity of its singular value vector. One nature question

is: how to establish the screening rules for NMLR?

This paper will deal with this problem and give an affirmative answer. In order to do so,

we present the dual problem of NMLR and find that the dual solution is the projection on a

compact and convex set. With the help of the strong duality theorem, we present that inac-

tive singular values of the solution of NMLR can be identified by its dual solution. However,

the dual solution may be complex to be computed for every tuning parameter. Based on

the nonexpansivity of the projection operator, we give an estimate set for the dual solution

of NMLR. Therefore, we get a singular value screening rule SSR, which identifies inactive

singular values and estimate the maximal rank of the solution of NMLR, under different

tuning parameters. According to the firm nonexpansivity of the projection operator, we

continue to get the enhance version SSR+, which behaves better than SSR surely. In addi-

tion, we propose an alternating direction method of multipliers (ADMM) to solve NMLR.

To illustrate the efficiency of our algorithm, we implement some numerical experiments on

simulation and real data sets. By comparing ADMM with existing solvers SLEP and CVX,

we verify that ADMM is an efficient way to solve NMLR.

The rest of this paper is organized as follows. In Section 2, we review some basic concepts

and results. Section 3 presents the model analysis of NMLR and its duality theory. In

Section 4, we propose two singular value screening rules based on properties of the projection

operator. In Section 5, we propose an alternating direction method of multipliers(ADMM)
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to solve NMLR. To verify the efficiency of ADMM, we also implement some numerical

experiments. Some conclusion remarks are given in Section 6.

Notations: Let M ∈ Rp×q be any matrix. Suppose M has a singular value decom-

position with nondecreasing singular values σ1(M) ≥ σ2(M) ≥ · · · ≥ σr(M) ≥ 0, where

r=min{p, q} and it is used throughout this paper. There are some norms related to M and

these definitions are used throughout the paper. The Frobenius norm ∥ · ∥F is defined as

∥M∥F =
√∑p

i=1

∑q
j=1 M

2
ij =

√
tr(MTM) =

√
σ1(M)2 + · · ·+ σr(M)2. The nuclear norm

∥ · ∥∗ is the sum of singular values, i.e., ∥M∥∗ =
∑r

i=1 σi(M). The spectral norm ∥ · ∥2 is

the largest singular value, i.e., ∥M∥2 = σ1(M). For any vector x ∈ Rn, the 2-norm ∥ · ∥2 is

defined as ∥x∥2 =
√∑n

i=1 x
2
i .

2 Preliminaries

In this section, we give some basic concepts and results in optimization. The following

definitions and results are from Rockafellar [24].

Definition 2.1. Let f : Rp×q → R. For any M ∈ Rp×q, the conjugate function f∗ : Rp×q →
R is defined as

f∗(M) = sup
N∈dom(f)

{⟨M,N⟩ − f(N)} .

If f(M) = ∥M∥∗, we can get

f∗(M) = sup
N∈Rp×q

{⟨M,N⟩ − ∥N∥∗} = δ∥·∥2≤1(M),

where δ∥·∥2≤1(M) is an indicator function defined as

δ∥·∥2≤1(M) =

{
0, ∥M∥2 ≤ 1

+∞, ∥M∥2 > 1.

If f(M) = 1
2∥M∥2F ,

f∗(M) = sup
N∈Rp×q

{
⟨M,N⟩ − 1

2
∥N∥2F

}
=

1

2
∥M∥2F .

Definition 2.2. For an arbitrary vector ω and a convex set Ω, the projection operator PΩ(·)
is defined as

PΩ(ω) = argmin
µ∈Ω

1

2
∥µ− ω∥22.

Here are some basic properties of projection operator.

Lemma 2.3. Let Ω be any compact and convex set, then the projection operator on Ω is

(1) nonexpansive, i.e.,

∥PΩ(ω2)− PΩ(ω1)∥ ≤ ∥ω2 − ω1∥, ∀ω1, ω2 ∈ Ω.
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(2) firmly nonexpansive, i.e.,

∥PΩ (ω1)− PΩ (ω2) ∥2 + ∥ (I − PΩ) (ω1)− (I − PΩ) (ω2) ∥2 ≤ ∥ω1 − ω2∥2, ∀ω1, ω2 ∈ Ω,

where I is the identity operator.

For singular values of matrixes, there are some basic inequalities (Roger [25]) that are

useful for our paper.

Lemma 2.4. Suppose P,Q ∈ Rp×q and r=min{p, q}. Two basic inequalities for singular

values are showed as follows.

σi+j−1 (P +Q) ≤ σi (P ) + σj (Q) , i, j ∈ {1, 2, . . . , r}, i+ j ≤ r + 1;

σi+j−1

(
PQT

)
≤ σi (P )σj (Q) , i, j ∈ {1, 2, . . . , r}, i+ j ≤ r + 1.

In particular,

σi (P +Q) ≤ σi (P ) + σ1 (Q), i ∈ {1, 2, . . . , r};

σ1

(
PQT

)
≤ σ1(P )σ1(Q) = ∥P∥2∥Q∥2.

3 Duality theory

In this section, we introduce the nuclear norm regularized multivariate linear regression

(NMLR) and show its duality theory from the optimization perspective.

The nuclear norm regularized multivariate linear regression (NMLR, Yuan et al. [31]) is

given as

min
B∈Rp×q

{
1

2
∥Y −XB∥2F + λ∥B∥∗

}
, (3.1)

where λ > 0 is the tuning parameter. In this model, X = (x1,x2, . . . ,xn)
T ∈ Rn×p is the

prediction matrix and Y = (y1,y2, . . . ,yn)
T ∈ Rn×q is the response matrix. The solution

of NMLR relies on the choice of the tuning parameter λ, so we denote it as B∗(λ).

Now, we consider the duality theory of NMLR. First, we rewrite NMLR as a constraint

problem, which is

min
B,A

{
λ∥B∥∗ +

1

2
∥A∥2F

}
s.t. Y −XB −A = 0.

(3.2)

Thus, we have the Lagrangian function of (3.2) as

L
(
B,A; C̃

)
= λ∥B∥∗ +

1

2
∥A∥2F +

〈
C̃, Y −XB −A

〉
.

where C̃ ∈ Rn×q is a Lagrangian multiplier. We have the Lagrangian dual problem of (3.2)

as

max
C̃

min
B,A

{
L
(
B,A; C̃

)}
.



SINGULAR VALUE SCREENING RULES 5

It is not hard to yield the closed form of min
B,A

L
(
B,A; C̃

)
as follows.

min
B,A

L
(
B,A; C̃

)
= min

B,A

{
λ∥B∥∗ +

1

2
∥A∥2F +

〈
C̃, Y −XB −A

〉}
= min

B

{
λ∥B∥∗ −

〈
XT C̃, B

〉}
+min

A

{
1

2
∥A∥2F −

〈
C̃, A

〉}
+
〈
C̃, Y

〉
= −δ∥·∥2≤λ

(
XT C̃

)
− 1

2
∥C̃∥2F +

〈
C̃, Y

〉
.

The last equality is a direct result of the conjugate function. Thus, the dual problem of

(3.2) is

max
C̃

{
−1

2
∥C̃ − Y ∥2F +

1

2
∥Y ∥2F

}
s.t. ∥XT C̃∥2 ≤ λ.

Taking C = C̃
λ , the last equation is equivalent to

−min
C

{
λ2

2

∥∥∥∥C − Y

λ

∥∥∥∥2
F

− 1

2
∥Y ∥2F

}
s.t. ∥XTC∥2 ≤ 1.

(3.3)

Denote the feasible area of (3.3) as

ΩD =
{
C
∣∣∣∥XTC∥2 ≤ 1

}
.

It is clear that ΩD is a compact and convex set, and the solution of (3.3) is

C∗(λ) = PΩD

(
Y

λ

)
, (3.4)

where PΩD
(·) denotes the projection operator on ΩD. Note that ΩD is not a polytope, which

is different from LASSO in vector case, see, Wang et al. [28]. From the optimality conditions

analysis, we have the Karush-Kuhn-Tucker (KKT) system of (3.2) and (3.3)
XTC ∈ ∂∥B∥∗,
A = λC,

Y −XB −A = 0.

(3.5)

If a pair (B∗(λ), A∗(λ), C∗(λ)) satisfies the KKT system, it is called the KKT point of (3.2)

and (3.3). Based on the convex optimization analysis, it holds the strong duality theorem.

Theorem 3.1 (Strong duality theorem). The linear constraint optimization problem (3.2)

satisfies Slater’s constraint qualification and there is a KKT point (C∗(λ), B∗(λ), A∗(λ))

such that the optimal values of (3.2) and (3.3) are equal, i.e.,

λ∥B∗(λ)∥∗ +
1

2
∥A∗(λ)∥2F = −

(
λ2

2

∥∥∥∥C∗(λ)− Y

λ

∥∥∥∥2
F

− 1

2
∥Y ∥2F

)
.

Here, (B∗(λ), A∗(λ)) is the solution of (3.2) and C∗(λ) is the solution of (3.3).
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Proof. Now we discuss the relationship between (3.2) and (3.3). The objective function of

(3.2) is

f :=

{
λ∥B∥∗ +

1

2
∥A∥2F

}
and the feasible area S :=

{
(B,A)

∣∣∣Y −XB −A = 0
}
. For convex optimization problems

with linear constraints, there is an important constraint qualification named Slater’s con-

straint qualification (Slater’s CQ). If a convex optimization problem satisfies Slater’s CQ,

it follows from Rockafellar [24] that the solutions of primal and dual problems are KKT

points.

Slater’s CQ: There exists θ ∈ ri(dom (f))
⋂
S, where f is the objective function and S

is the feasible area of optimization problem.

It is clear that there exist

B = 0, A = Y such that Y −XB −A = 0,

which means that (3.2) satisfies Slater’s CQ. Because ΩD is a compact and convex set and

C∗(λ) = PΩD
(Yλ ), it is sure that (3.3) have a solution. By solving (3.4) under C = C∗(λ),

we obtain the solution of (3.2). So, based on the Rockafellar [24], the strong duality theorem

holds on (3.2) and (3.3).

4 Singular value screening rules

In this section, we give two singular value screening rules for NMLR, which can identify

inactive singular values and estimate the maximal rank of the solution of NMLR.

For NMLR, we already know that B∗(λ) = 0 if λ is sufficiently large. The next proposi-

tion gives the lower bound of the tuning parameter λ which guarantees B∗(λ) = 0.

Proposition 4.1. B∗(λ) = 0 is the solution of NMLR if and only if λ ≥ λmax := ∥XTY ∥2.

Proof. We first prove the “only if” part. Based on (3.5), it is obvious that the solution of

(3.3) is C∗(λ) = Y
λ , if B

∗(λ) = 0. It means Y
λ ∈ ΩD and ∥XT Y

λ ∥2 ≤ 1. That is ∥XTY ∥2 ≤ λ.

Therefore, λ ≥ λmax = ∥XTY ∥2.
Now we prove the “if” part. If λ ≥ λmax, we can get C = Y

λ ∈ ΩD. Under the fact that

C∗(λ) = PΩD

(
Y
λ

)
, the solution of (3) is C∗(λ) = Y

λ . According to the A∗(λ) = λC∗(λ) in

(3.5), we have A∗(λ) = Y . By Theorem 3.1, we get

1

2
∥Y ∥2F + λ∥B∗(λ)∥∗ =

1

2
∥Y ∥2F .

This yields ∥B∗(λ)∥∗ = 0, which implies B∗(λ) = 0.

From Proposition 4.1, we focus on the case that λ ∈ (0, λmax) in the rest of this paper.

Before presenting the detailed process of our screening rules, we get a relationship of the

rank of B∗(λ) and XTY in some special cases, where we do not need to apply any screening

rule. That is, when all singular values of XTY are equal to a certain number, the rank of

B∗(λ) can be directly determined.



SINGULAR VALUE SCREENING RULES 7

Proposition 4.2. 1. If XTY = 0, then rank(B∗(λ)) = 0 holds for any λ > 0.

2. If there exists α > 0 such that σi(X
TY ) = α holds for any i ∈ {1, 2, . . . , r}, then

rank(B∗(λ)) = r when λ ∈ (0, λmax).

Proof. Case 1: XTY = 0. In this case, λmax = 0 and B∗(λ) = 0 for any λ > 0.

Case 2: All singular values ofXTY are equal to a nonzero number α, which means rank(XTY ) =

r. In this case, λmax = α and C∗(λmax) =
Y
α ∈ ΩD. For any 0 < λ < α,

C∗(λ) = PΩD

(
Y

λ

)
=

Y

α
.

Replacing it into (3.5), we know that

XTY = XT

(
XB∗(λ) + λ

Y

α

)
,

which leads to (
1− λ

α

)
XTY = XT (XB∗(λ)) .

Hence, rank(XTXB∗(λ))=rank(XTY ) = r. By using the fact that

rank(XTXB∗(λ)) ≤ rank(B∗(λ)) ≤ r,

we know that rank(B∗(λ)) = r. Therefore, the result is proved.

Proposition 4.2 illustrates that we do not need to identify inactive singular values of

B∗(λ) in some cases, where all singular values of XTY are equal to a certain number. In

the following parts, we discuss the case that XTY has at least two different singular values.

According to the XTC ∈ ∂∥B∥∗ in (3.5) and Theorem 3.1, we easily obtain a sufficient

condition for identifying inactive singular values of B∗(λ).

Theorem 4.3. Let i ∈ {1, 2, . . . , r} and λ ∈ (0, λmax). If σi(X
TC∗(λ)) < 1, then

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r},

where B∗(λ), C∗(λ) are solutions of (3.1) and (3.3), respectively.

Proof. Suppose the singular value decomposition of B∗(λ) is

B∗(λ) = UΣV T ,

where

Σij =

{
0, i ̸= j

σi(B
∗(λ)), i = j

, i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , q}

with σ1(B
∗(λ)) ≥ σ2(B

∗(λ)) ≥ · · · ≥ σr(B
∗(λ)) ≥ 0 being the singular values of B∗(λ) and

r = min{p, q}. Then, the subdifferential of ∥B∗(λ)∥∗ (Watson [29]) is

∂∥B∗(λ)∥∗ =

UWV T
∣∣W ∈ Rp×q,Wij ∈


{0}, i ̸= j

{1}, i = j, σi(B
∗(λ)) > 0

[0, 1], i = j, σi(B
∗(λ)) = 0

.


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For (3.5), we know that

XTC∗(λ) ∈ ∂∥B∗(λ)∥∗.

Therefore, if

σi(X
TC∗(λ)) < 1,

then σi(B
∗(λ)) = 0, which means σj(B

∗(λ)) = 0 holds for any j ∈ {i, . . . , r}.

For any fixed tuning parameter, Theorem 4.3 implies that sample data and the solution

of (3.3) can identify inactive singular values of the solution of NMLR. It is worth noting

that the number of inactive singular values decides the rank of a matrix. Based on this, the

rank of the solution of NMLR can be yielded.

However, the solution of (3.3) may be complex to be computed. It is fortunate that this

solution is a projection on a compact and convex set. Hence, properties of the projection

operator can help us to estimate the dual solution and establish screening rules for NMLR.

4.1 SSR

In this section, we estimate the dual solution of NMLR with the help of the nonexpansivity

of the projection operator in Lemma 2.3. Then, we propose a singular value screening rule

based on the estimate area of the dual solution and Theorem 4.3.

Theorem 4.4 (SSR). Let λ0 ∈ (0, λmax). Assume the solution C∗ (λ0) of (3.3) is known.

For any i ∈ {1, . . . , r}, if λ < λ0 and

λ >
λ0∥X∥2∥Y ∥F

λ0 − λ0σi (XTC∗ (λ0)) + ∥X∥2∥Y ∥F
, (4.1)

we have

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r},

which leads to the solution of NMLR satisfies rank(B∗(λ)) ≤ i− 1.

Proof. According to (3.4) and the nonexpansivity of PΩD
(·) in Lemma 2.3, we know that

∥C∗ (λ)− C∗ (λ0) ∥F ≤
(

1
λ − 1

λ0

)
∥Y ∥F .

Setting ρ1 :=
(

1
λ − 1

λ0

)
∥Y ∥F , we define the set Ω1 :=

{
C
∣∣∣ ∥C − C∗ (λ0) ∥F ≤ ρ1

}
.

In order to prove the desired result, it is enough to consider sup
C∈Ω1

{
σi

(
XTC

)}
by

Theorem 4.3. In fact, if sup
C∈Ω1

{
σi

(
XTC

)}
< 1, σi (C

∗(λ)) < 1 must hold, which leads to

σj (B
∗(λ)) = 0, ∀j ∈ {i, . . . , r}.

Based on the definition of Ω1, we know that

sup
C∈Ω1

{
σi

(
XTC

)}
= sup

∥D∥F≤ρ1

{
σi

(
XT (C∗ (λ0) +D)

)}
= sup

∥D∥F≤ρ1

{
σi

(
XTC∗ (λ0) +XTD

)}
.
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According to Lemma 2.4, we can get

σi

(
XTC∗ (λ0) +XTD

)
≤ σi

(
XTC∗ (λ0)

)
+ σ1

(
XTD

)
and

σ1

(
XTD

)
≤ σ1(X) + σ1(D) = ∥X∥2∥D∥2.

Hence,

sup
C∈Ω1

{
σi

(
XTC

)}
= sup

∥D∥F≤ρ1

{
σi

(
XTC∗ (λ0) +XTD

)}
≤ sup

∥D∥F≤ρ1

{
σi

(
XTC∗ (λ0)

)
+ σ1

(
XTD

)}
≤ sup

∥D∥F≤ρ1

{
σi

(
XTC∗ (λ0)

)
+ ∥X∥2∥D∥2

}
≤ σi

(
XTC∗ (λ0)

)
+ ρ1∥X∥2.

The last equality is obtained by the fact that ∥D∥2 ≤ ∥D∥F ≤ ρ1. Suppose σi

(
XTC∗ (λ0)

)
+

ρ1∥X∥2 < 1, that is

σi

(
XTC∗ (λ0)

)
≤ 1−

(
1

λ
− 1

λ0

)
∥X∥2∥Y ∥F . (4.2)

We have sup
C∈Ω

{
σi

(
XTC

)}
< 1 and σi

(
XTC∗ (λ)

)
< 1. Therefore, σi (B

∗(λ)) = 0, which

implies that σj (B
∗(λ)) = 0 for any j ∈ {i, . . . , r}.

To obtain the closed-form of λ , we multiply λ by both sides of (4.2) and get that

λσi

(
XTC∗ (λ0)

)
≤ λ− ∥X∥2∥Y ∥F + λ

λ0
∥X∥2∥Y ∥F .

By transforming all terms about λ to the right side of the last inequality, we get that

∥X∥2∥Y ∥F ≤ λ− λσi

(
XTC∗ (λ0)

)
+

λ

λ0
∥X∥2∥Y ∥F

=

(
1− σi

(
XTC∗ (λ0)

)
+

1

λ0
∥X∥2∥Y ∥F

)
λ,

which is equivalent to

λ >
λ0∥X∥2∥Y ∥F

λ0 − λ0σi (XTC∗ (λ0)) + ∥X∥2∥Y ∥F
.

Therefore, the desired result follows.

If λ0 is set and the solution C∗(λ0) of (3.3) is easy to be solved, Theorem 4.4 claims that

we can identify inactive singular values and estimate the maximal rank of the solution of

NMLR under different tuning parameters. In general, C∗(λ0) may not be computed easily

for a given λ0. Fortunately, for λ0 = λmax = ∥XTY ∥2, the solution C∗(λ0) equals to Y
λ0

from the proof of Proposition 4.1.
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Corollary 4.5. Suppose XTY has at least two different singular values. We define the

sequence of tuning parameters {λ(1)
i }ri=1 as

λ
(1)
i =

∥XTY ∥2∥X∥2∥Y ∥F
∥XTY ∥2 − σi (XTY ) + ∥X∥2∥Y ∥F

.

Let i ∈ {2, . . . , r}. If λ ∈ (λ
(1)
i , λ

(1)
i−1], then

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r},

which leads to the solution of NMLR satisfies rank(B∗(λ)) ≤ i− 1.

Proof. According to the definition in this corollary, we know that λ1 = λmax. The choice of

λ in Theorem 4.4 should be satisfied that λ < λmax, so we just discuss about the case that

i ≥ 2.

Let λ0 = λmax = ∥XTY ∥2. Replacing C∗(λ0) =
Y
λ0

into (4.1), we know that

λ >
λ0∥X∥2∥Y ∥F

λ0 − λ0σi

(
XT Y

λ0

)
+ ∥X∥2∥Y ∥F

=
∥XTY ∥2∥X∥2∥Y ∥F

∥XTY ∥2 − σi (XTY ) + ∥X∥2∥Y ∥F
= λ

(1)
i .

Because σi

(
XTY

)
≤ σi−1

(
XTY

)
≤ ∥XTY ∥2, λ(1)

i−1 ≥ λ
(1)
i holds for any i ∈ {2, . . . , r}.

From Theorem 4.4, if λ > λ
(1)
i ,

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r}.

Similarly, if λ > λ
(1)
i−1,

σj(B
∗(λ)) = 0 holds for any j ∈ {i− 1, . . . , r}.

Combining these two results, we have

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r},

when λ ∈ (λi, λi−1]. Thus, the conclusion is proved.

Corollary 4.5 is a special case of Theorem 4.4 when λ0 = λmax. This result shows that

the inactive singular values of the solution of NMLR can be identified by the sample data.

From the proof of Theorem 4.4, we know

C∗ (λ) ∈ Ω1 =
{
C
∣∣∣∥C − C∗ (λ0) ∥F ≤ ρ1

}
.

The more accurate of Ω1, the more accurate of the singular value screening rule. Therefore,

the aim of the next part is to reach a more accurate estimate of C∗ (λ), which directly results

in improvement consequences of SSR. A nature idea is to improve the result by using the

other properties of the projection operator.
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4.2 SSR+

In this section, we get another screening rule SSR+ based on the firm nonexpansivity of the

projection operator. In order to obtain the results, we first give a lemma.

Lemma 4.6. Let λ0 ∈ (0, λmax). Suppose the solution C∗ (λ0) of (3.3) is known. Let

0 < λ < λ0. The dual solution C∗ (λ) can be estimated as

C∗ (λ) ∈ Ω2 ⊆ Ω,

where Ω2 :=
{
C
∣∣∣ ∥∥∥C − C∗ (λ0)− 1

2

(
1
λ − 1

λ0

)
Y
∥∥∥
F
≤ 1

2

(
1
λ − 1

λ0

)
∥Y ∥F

}
.

Proof. According to the firm nonexpansivity in Lemma 2.3, we have

∥C∗ (λ)− C∗ (λ0)∥2F +

∥∥∥∥Yλ − C∗ (λ)− Y

λ0
+ C∗ (λ0)

∥∥∥∥2
F

≤
∥∥∥∥Yλ − Y

λ0

∥∥∥∥2
F

. (4.3)

Extending
∥∥∥Y

λ − C∗ (λ)− Y
λ0

+ C∗ (λ0)
∥∥∥2
F
, (4.3) is equivalent to

∥C∗ (λ)− C∗ (λ0)∥2F +

∥∥∥∥Yλ − Y

λ0

∥∥∥∥2
F

− 2

〈
C∗ (λ)− C∗ (λ0) ,

Y

λ
− Y

λ0

〉
+ ∥C∗ (λ)− C∗ (λ0)∥2F

≤
∥∥∥∥Yλ − Y

λ0

∥∥∥∥2
F

.

This can be reformulated as ∥C∗ (λ) − C∗ (λ0) ∥2F ≤
〈
C∗ (λ)− C∗ (λ0) ,

Y
λ − Y

λ0

〉
, which is

equivalent to∥∥∥∥C∗ (λ)− C∗ (λ0)−
1

2

(
1

λ
− 1

λ0

)
Y

∥∥∥∥2
F

≤ 1

4

(
1

λ
− 1

λ0

)2

∥Y ∥2F .

From the definition of Ω2, we know that C∗ (λ) ∈ Ω2.

For any C ∈ Ω2, we know that

∥C − C∗ (λ0) ∥2F ≤
〈
C − C∗ (λ0) ,

Y

λ
− Y

λ0

〉
≤ ∥C − C∗ (λ0) ∥F ·

∥∥∥∥Yλ − Y

λ0

∥∥∥∥
= ∥C − C∗ (λ0) ∥F

(
1

λ
− 1

λ0

)
∥Y ∥F .

The second inequality holds because of the Cauchy inequality. So, we have

∥C − C∗ (λ0) ∥F ≤
(

1
λ − 1

λ0

)
∥Y ∥F ,

which means C ∈ Ω1 and Ω2 ⊆ Ω.

By using the similar idea in Theorem 4.4, we get the following result.
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Theorem 4.7 (SSR+). Let λ0 ∈ (0, λmax). Assume the solution C∗ (λ0) of (3) is known.

For any i ∈ {1, 2, . . . , r}, if λ < λ0 and

λ > λ0∥X∥2∥Y ∥F

2λ0−2λ0σi

(
XT

(
C∗(λ0)+

1
2

(
1
λ− 1

λ0

)
Y
))

+∥X∥2∥Y ∥F

,

we have

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r},

which leads to the solution of NMLR satisfies rank(B∗(λ)) ≤ i− 1.

Proof. Because the proof of this theorem is same with that of Theorem 4.4. We only show

some key difference of the proof of this theorem. Denote ρ2 = 1
2

(
1
λ − 1

λ0

)
∥Y ∥F . We have

sup
C∈Ω2

{
σi

(
XTC

)}
= sup

∥D∥F≤ρ2

{
σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0

)
Y +D)

)}
= sup

∥D∥F≤ρ2

{
σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y +D

)
+XTD

)}
≤ sup

∥D∥F≤ρ2

{
σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y +D

))
+ σ1

(
XTD

)}
≤ sup

∥D∥F≤ρ2

{
σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y

))
+ ∥X∥2∥D∥2

}
≤σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y

))
+ ρ2∥X∥2.

The results of this theorem hold, if

σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y +D

))
+ ρ2∥X∥2 < 1,

which means

σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y +D

))
+

1

2

(
1

λ
− 1

λ0

)
∥X∥2∥Y ∥F < 1. (4.4)

To obtain the closed-form of λ , we multiply 2λ by both sides of (4.4) and get

2λσi

(
XT

(
C∗(λ0) +

1
2 (

1
λ − 1

λ0
)Y
))

+ ∥X∥2∥Y ∥F − λ
λ0
∥X∥2∥Y ∥F ≤ 2λ,

which means

∥X∥2∥Y ∥F ≤ 2λ− 2λσi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y

))
+

λ

λ0
∥X∥2∥Y ∥F

=

(
2− 2σi

(
XT

(
C∗(λ0) +

1

2
(
1

λ
− 1

λ0
)Y

))
+

1

λ0
∥X∥2∥Y ∥F

)
λ.

Therefore,

λ >
λ0∥X∥2∥Y ∥F

2λ0 − 2λ0σi

(
XT

(
C∗(λ0) +

1
2 (

1
λ − 1

λ0
)Y
))

+ ∥X∥2∥Y ∥F
.
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Theorem 4.7 needs that C∗(λ0) is known, but it is not easy to be computed for any λ0.

Next, we have a special result for λ0 = λmax.

Corollary 4.8. Suppose XTY has at least two different singular values. We define the

sequence of tuning parameters {λ(2)
i }ri=1 as

λ
(2)
i =

∥XTY ∥2
(
∥X∥2∥Y ∥F + σi

(
XTY

))
2∥XTY ∥2 − σi (XTY ) + ∥X∥2∥Y ∥F

.

Let i ∈ {2, . . . , r}. If λ ∈ (λ
(2)
i , λ

(2)
i−1], then

σj(B
∗(λ)) = 0 holds for any j ∈ {i, . . . , r},

which leads to the solution of NMLR satisfies rank(B∗(λ)) ≤ i− 1.

5 Numerical studies

In this section, we introduce the popular alternating direction multiplier method (ADMM)

to solve NMLR and evaluate this method on some data sets. To illustrate the efficiency of

ADMM, we compare it with SLEP (Ji and Ye [14]) and CVX (Michael and Stephen [18]),

which can be used to solve NMLR.

According to Theorem 3.1, the solution of NMLR can be obtained by solving (3.3). So,

we give the detailed process of ADMM for solving (3.3). We first transform (3.3) as a

constrained problem

min
C,E

{
1

2
∥C − Y ∥2F − 1

2
∥Y ∥2F + δ∥·∥2≤λ (E)

}
s.t. XTC − E = 0.

(5.1)

Therefore, the augmented Lagrangian function is

Lσ (C,E;Z) =
1

2
∥C − Y ∥2F − 1

2
∥Y ∥2F + δ∥·∥2≤λ (E)

+
〈
Z,XTC − E

〉
+

σ

2
∥XTC − E∥2F .

We present the ADMM for (3.3) as follows.

Algorithm: ADMM for solving (3.3)

Step 0: Set C0, E0 and Z0, let τ ∈
(
0, 1+

√
5

2

)
and σ > 0;

Step 1: Compute Ck+1 = argmin
C

{
Lσ

(
C,Ek;Zk

)}
;

Step 2: Compute Ek+1 = argmin
E

{
Lσ

(
Ck+1, E;Zk

)}
;

Step 3: Compute Zk+1 = Zk + τσ
(
XTCk+1 − Ek+1

)
.

Step 4: If a termination criterion is not met, go to Step 1-3.
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It is easy to get the closed-form solutions of subproblems.

Ck+1 = argmin
C

{
Lσ

(
C,Ek;Zk

)}
= argmin

C

{
1

2
∥C − Y ∥2F +

〈
XTZk, C

〉}
+

σ

2
∥XTC − Ek∥2F

=
(
I + σXXT

)−1 (
σXEk + Y −XZk

)
.

Ek+1 = argmin
E

{
Lσ

(
Ck+1, E;Zk

)}
= argmin

E

{
δ∥·∥2≤λ (E) +

σ

2

∥∥∥∥E −XTCk+1 − Zk

σ

∥∥∥∥2
F

}

= Π∥·∥2≤λ

(
XTCk+1 +

Zk

σ

)
.

Here, we set the accuracy of this algorithm as e = 10−4 and use the KKT condition of

(3.3) as the terminal criterion. That is, if

∥(Xk)TCk−Ek∥F

1+∥X∥F
< e and ∥Ck−Y−XZk∥F

1+∥Y ∥F
< e,

this algorithm will be stopped. Then, the algorithm returns (Ck, Ek) as the solution of

(3.3), and Zk as the solution of NMLR.

The convergence of two-blocks ADMM is well-known. For the special case (3.3), we

describe its convergence result as follows (Chen et al. [5]).

Theorem 5.1. Assume the solution set of (3.3) is nonempty. Let
{
(Ck, Ek, Zk)

}
be gener-

ated from ADMM for τ ∈ (0, 1+
√
5

2 ). Then the sequence
{
(Ck, Ek)

}
converges to the solution

of (3.3) and
{
Zk
}
converges to the solution of NMLR.

5.1 Simulation data

Firstly, we simulate X ∈ Rn×p whose elements distribute the standard norm distribution.

Secondly, we simulate the true coefficient matrix B as B = B1B
T
2 , where B1 ∈ Rp×r,

B1 ∈ Rq×r and all elements of B1 and B2 are generated from the standard norm distribution.

Hence, the rank of B is r. The error matrix W is simulated as norm distribution with mean

0 and standard variance 0.1. According to Y = XB +W , the response matrix is obtained.

To evaluate the performance of ADMM, SLEP and CVX, we compare the computational

time and test error of these three methods. To get the test error, we simulate Xtest ∈ R
n
2 ×p

and Ytest = XtestB ∈ R
n
2 ×q. Then, the test error is defined as

test error= ∥XtestB̂−Ytest∥F√
n
2 ×q

,

where B̂ is the solution of ADMM, SLEP or CVX. In the following tables and figures, the

all reported data are the average results of 50 repetitions.

According to the results in Table 1 and Table 2, we can get the following conclusion: (i)

The computational time of ADMM is slightly smaller than that of SLEP and greatly smaller

than that of CVX. The computational time of CVX are larger than that of ADMM and SLEP

by orders of magnitude. (ii) The test error of ADMM is smaller than that of SLEP, while the
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r
time (s) test error

ADMM SLEP CVX ADMM SLEP CVX

0.1q 9.000e-3 1.860e-2 1.860e+1 1.647e-1 2.030e-1 2.077e-1

0.2q 9.300e-3 1.800e-2 1.634e+1 1.616e-1 1.827e-1 1.842e-1

0.3q 8.900e-3 1.780e-2 1.509e+1 1.645e-1 1.848e-1 1.770e-1

0.4q 1.090e-2 1.410e-2 1.635e+1 1.656e-1 2.556e-1 1.940e-1

0.5q 1.020e-2 1.482e-2 1.635e+1 1.685e-1 2.891e-1 1.994e-1

0.6q 1.000e-2 1.780e-2 1.635e+1 2.015e-1 2.294e-1 1.735e-1

0.7q 9.300e-3 1.800e-2 1.760e+1 1.810e-1 2.128e-1 1.760e-1

0.8q 1.030e-2 1.710e-2 1.512e+1 1.885e-1 2.653e-1 2.032e-1

0.9q 9.800e-3 1.810e-2 1.637e+1 2.087e-1 2.826e-1 1.832e-1

q 1.111e-2 1.510e-2 1.509e+1 1.864e-1 2.499e-1 1.846e-1

Table 1: Comparison between ADMM, SLEP and CVX. In this table, we set n = 100,

p = 80 and q = 10. r means the true rank of the solution of NMLR.

r
time (s) test error

ADMM SLEP CVX ADMM SLEP CVX

0.1q 4.310e-2 1.184e-1 4.178e+1 1.158e-2 1.150e-1 1.462e-2

0.2q 5.210e-2 1.368e-1 4.154e+1 1.434e-2 1.843e-1 1.545e-2

0.3q 4.140e-2 1.150e-1 3.796e+1 1.632e-2 2.651e-1 1.692e-1

0.4q 3.560e-2 7.700e-2 4.420e+1 1.904e-2 6.958e-1 1.763e-2

0.5q 3.750e-2 1.232e-1 3.677e+1 2.545e-2 2.826e-1 1.891e-2

0.6q 3.280e-2 1.172e-1 3.605e+1 2.091e-2 2.236e-1 1.702e-2

0.7q 4.450e-2 1.242e-1 4.132e+1 2.881e-2 3.092e-1 2.241e-2

0.8q 4.210e-2 1.335e-1 3.929e+1 2.960e-2 5.179e-1 2.148e-2

0.9q 3.540e-2 1.408e-1 3.918e+1 2.207e-2 5.692e-1 2.234e-2

q 3.180e-2 1.221e-1 4.022e+1 2.537e-2 3.853e-1 2.472e-2

Table 2: Comparison between ADMM, SLEP and CVX. In this table, we set n = 100,

p = 80 and q = 50. r means the true rank of the solution of NMLR.
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test error of ADMM may be slightly larger than that of CVX. Therefore, we can conclude

that ADMM performances better than SLEP and CVX. Because the computational time of

CVX is greatly larger than that of the others, we do not compare it with other methods in

the following parts. In Table 3, we increase the values of n, p and q. From the results in

this table, we know that the performance of ADMM is better than that of SLEP.

In Zhou and Li [32], they simulate some data based on the signal shapes at http:

//www.dabi.temple.edu/shape/MPEG7/index.html. Following their simulation way, we

set true signal shapes as B, which are reshaped as 64 times 64 matrixes. Then, we simulate

X and Y as the aforementioned way. Through some experiments, we know that the larger of

n, the better performance of ADMM and SLEP. Actually, these algorithms performs almost

same when n ≥ 100. To challenge the performance of ADMM and SLEP on solving NMLR,

we set the sample size n = 64 and report the recovery of the true signal shapes under these

two algorithms.

In Figure 1, because the black parts of every signal shape picture are nearly same with

the true one, the main signal shapes are almost recovered with ADMM and SLEP. On the

contrary, ADMM performs better than SLEP on recovering the background of these signal

shape pictures. Meanwhile, the computational time of ADMM is slightly smaller than that

of SLEP, from the explain of this figure. Therefore, we conclude that ADMM performs

better than SLEP on recovering these signal shapes.

5.2 Real data

Now, we compare ADMM, SLEP and CVX on some real data sets. One can see the de-

tailed information on http://www.cad.zju.edu.cn/home/dengcai/Data/data.html. To be un-

derstandable, we briefly introduce these real data sets.

(i) Yale: X ∈ R165×1024, Y ∈ R165×15.

(ii) ORL: X ∈ R400×1024, Y ∈ R400×40.

(iii) COIL20: X ∈ R1440×1024, Y ∈ R1440×20.

(iv) Isolet1-5: X ∈ R1560×617, Y ∈ R1560×26.

For these real data sets, the true coefficient matrix is unknown. So we evaluate the perfor-

mance of ADMM and SLEP on the mean square error, which is defined as RMSE= ∥Y−XB̂∥F√
n∗q ,

where B̂ is the solution of the algorithm, n and q are sizes of Y .

In Table 4, we report the performance of ADMM and SLEP on some real data sets. To

be intuitively understood these results, we persent a figure about the computational time

and RMSE of these algorithms. From these results, we know that ADMM performs better

than SLEP on almost all real data sets. For COIL20, the computational time of ADMM is

slightly larger than that of SLEP, while the RMSE of ADMM is smaller than that of SLEP.

6 Conclusion

Based on duality theory and properties of the projection operator, we give two screening rules

for the nuclear norm regularized multivariate linear regression (NMLR) in high-dimensional
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n, p, q r
time (s) test error

ADMM SLEP ADMM SLEP

100,80,100

0.1q 6.610e-2 1.996e-1 1.367e-2 1.729e-1

0.2q 6.920e-2 2.020e-1 1.846e-2 2.473e-1

0.3q 7.450e-2 2.035e-1 1.803e-2 2.304e-1

0.4q 7.170e-2 2.074e-1 1.810e-2 2.949e-1

0.5q 7.480e-2 2.091e-1 1.925e-2 3.829e-1

0.6q 7.560e-2 2.123e-1 1.854e-2 4.185e-1

0.7q 7.330e-2 2.107e-1 1.957e-2 3.897e-1

0.8q 7.690e-2 2.228e-1 2.079e-2 4.456e-1

200,80,100

0.1q 1.499e-1 1.541e-1 7.696e-2 7.740e-2

0.2q 1.469e-1 1.478e-1 7.894e-2 7.966e-2

0.3q 1.746e-1 1.424e-1 7.922e-2 8.012e-2

0.4q 1.591e-1 1.604e-1 8.187e-2 8.300e-2

0.5q 1.450e-1 1.633e-1 8.338e-2 8.550e-2

0.6q 1.349e-1 1.693e-1 8.275e-2 8.567e-2

0.7q 1.292e-1 1.508e-1 8.248e-2 9.456e-2

0.8q 1.001e-1 1.864e-1 8.106e-2 8.374e-2

200,80,150

0.1q 1.015e-1 3.310e-1 8.066e-3 7.815e-3

0.2q 1.058e-1 2.288e-1 8.610e-3 1.308e-2

0.3q 1.019e-1 3.030e-1 9.101e-3 8.703e-3

0.4q 1.023e-1 2.634e-1 9.346e-3 1.476e-2

0.5q 1.013e-1 2.284e-1 1.010e-2 2.048e-2

0.6q 1.017e-1 2.252e-1 1.103e-2 3.849e-2

0.7q 1.058e-1 2.187e-1 1.085e-2 4.898e-2

0.8q 1.075e-1 2.348e-1 1.099e-2 6.131e-2

200,100,200

0.1q 1.258e-1 4.195e-1 9.857e-2 9.936e-2

0.2q 1.225e-2 4.869e-1 1.003e-1 1.008e-1

0.3q 1.291e-1 4.937e-1 9.853e-2 9.870e-2

0.4q 1.246e-1 3.763e-1 9.859e-2 1.180e-1

0.5q 1.277e-1 5.105e-1 9.967e-2 1.014e-1

0.6q 1.295e-1 5.012e-1 1.031e-1 1.044e-1

0.7q 1.295e-1 4.467e-1 1.012e-1 1.116e-1

0.8q 1.274e-1 5.195e-1 1.027e-1 1.043e-1

Table 3: Comparison between ADMM and SLEP.
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Figure 1: The comparison of ADMM and SLEP on some signal shapes. The computational

time of ADMM on recovery these signa shapes are 0.026s, 0.037s, 0.033s, 0.027s, 0.027s and

0.032s, respectively. The computational time of SLEP on recovery these signa shapes are

0.069s, 0.080s, 0.080s, 0.067s, 0.087s and 0.081s, respectively.
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data sets
time (s) RMSE

ADMM SLEP ADMM SLEP

Yale 2.810e-1 3.820e-1 9.550e-2 1.106e-1

ORL 5.730e-1 2.037e+1 6.370e-2 1.175e-1

COIL20 2.333e+1 2.141e+1 2.630e-2 1.096e-1

Isolet1 1.428e+1 1.986e+1 8.740e-2 1.096e-1

Isolet2 1.502e+1 2.009e+1 8.810e-2 1.110e-1

Isolet3 1.445e+1 2.004e+1 9.380e-2 1.158e-1

Isolet4 1.373e+1 2.014e+1 9.511e-2 1.165e-1

Isolet5 1.874e+1 1.966e+1 9.370e-2 1.168e-1

Table 4: Comparison of ADMM and SLEP on real data sets.

R N T R R N T R
0

0.5

1

1.5

2

2.5

ADMM--time
SLEP--time
ADMM--RMSE
SLEP--RMSE

Yale ORL COIL20 Isolet1 Isolet2 Isolet3 Isolet4 Isolet5

Figure 2: The comparison of ADMM and SLEP on real data sets.
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setting. For any tuning parameter, these rules identify the inactive singular values and

estimate the maximal rank of the solution of NMLR. Furthermore, we propose ADMM to

solve NMLR and evaluate the performance of this method on some numerical experiments.
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