
2021



116 T. V. NGHI, N. N. TAM AND V. TUAN-ANH

In the case where G is the identity map, G ≡ IRn, GPVI(F, IRn,K) reduces to polyno-

mial variational inequality (PVI) which is denoted by PVI(F,K),

Find x ∈ K and ⟨F (x), y − x⟩ ≥ 0 ∀y ∈ K,

(see, for instance, [2, 5, 6]). If F is a affine mapping, then PVI(F,K) reduces to the

generalized affine variational inequality (GAVI). The GAVI and quadratic programming

problems have been studied in detail in [5, 9, 10, 11, 12, 21, 22]. For the case where K

is a cone, GPVI(F,G,K) is the following generalized polynomial complementarity problem

(GPCP) (see [7, 19]), which denoted by GPCP(F,G,K),

Find x ∈ Rn such that G(x) ∈ K, F (x) ∈ K∗ and ⟨F (x), G(x)⟩ = 0,

where K∗ is the dual cone of K and GPVI(F, idRn ,K) is a polynomial complementarity

problem (see [1] and references therein).

Note that generalized polynomial variational inequality (GPVI) is a special case of the

following generalized variational inequality (GVI): Find a vector x ∈ Rn such that

G(x) ∈ K and ⟨F (x), y −G(x)⟩ ≥ 0 ∀y ∈ K,

where F,G : Rn → Rn are two given continuous maps and K is a nonempty closed convex

subset of Rn. This problem was firstly proposed by Noor [14]. The GVI has received

considerable attention in recent three decades. Noor [15] also showed that the minimum

of a differentiable hg-convex function on the hg-convex set K in Rn can be characterized

by the GVI. Moreover, the problem GVI(F,G,K) is equivalent to a class of the fixed point

problems: Finding x̄ such that x̄ = F (x̄), where F (z) = z − G(z) + PK(G(z) − F (z)) and

PK is the projection of Rn onto K.

One of the central problems in the GVI theory is the existence of a solution. Research on

the existence of a solution to the GVI has played a very important role in theory, algorithms,

and practical applications of the problem. Since Noor [14] introduced the GVI problem,

many authors have developed many numerical methods for the GVI problems. Under the

assumption that functions F and G are locally Lipschitz continuous and G is injective, Pang

and Yao [16] provided a sufficient condition for the existence of solution to GVI(F,G,K).

Recently, Wang et al. [23] proposed a sufficient condition for the uniqueness of solutions

of GPVI(F,G,K) by making use of properties of the involved polynomials. Some sufficient

conditions for existence of GPCP(F,G,K) have been proposed in [7, 19]. However, some

previous assumptions for the existence of GVI(F,G,K) in the above papers are rather strong

when they are applied to GPVI(F,G,K); for instance, the map G must be assumed either

injective [16] or surjective [15]. For the special cases where K is a compact set, establishing

a Hartman-Stampacchia type theorem is very necessary to study algorithms.

In this paper, we propose a new regular condition for the GPVI. This concept is dif-

ferent from existing ones. By using the proposed regular condition, we establish sufficient

conditions for the existence of the GPVI with G being an arbitrary polynomial map. The

obtained results develop and complete some aspects of the corresponding ones in [2, 7, 16].

Our main tools are the theory related to exceptional family of elements, structure of ten-

sors, and recession cone. We expect that the regular condition presented in the paper will

be useful in the study of the GPVI.
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The outline of the paper is as follows. Section 2 gives some preliminaries. In Subsection

3.1, we propose a new regular condition for the GPVI. By using this regular condition, we

present sufficient conditions for the solution existence of the GPVI in Subsection 3.2. In

Subsection 3.3, we investigate the existence for the special case where K is a compact set

and applications.

2 Preliminaries

Throughout this paper, for any positive integer n, Rn denotes a real Euclidean space

equipped with the scalar product ⟨· , ·⟩ and the induced norm ∥ · ∥. A tensor is a natural

extension of a matrix (see [17]). For any given positive integers m and n with m,n ≥ 2, we

call A = (ai1i2...im), where ai1i2...im ∈ R for ij ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}, an m-th

order n-dimensional real square tensor; and denote the space of m-th order n-dimensional

real square tensors by R[m,n].

For any A = (ai1i2...im) ∈ R[m,n] and x = (x1, x2, . . . , xn)
T ∈ Rn, Axm−1 is an n-

dimensional vector whose ith component is given by

(Axm−1)i =

n∑
i2,i3,...,im=1

aii2i3...imxi2xi3 . . . xim

for every i ∈ {1, 2, . . . , n} and Axm is a homogeneous polynomial of degree m, defined by

Axm := xT (Axm−1) =

n∑
i1,i2,...,im=1

ai1i2...imxi1xi2 . . . xim .

Denote by P [r,n] the set of polynomial maps H : Rn → Rn such that there exists

C(i) ∈ R[i,n] for every i ∈ {2, . . . , r} and c ∈ Rn satisfying

H(x) :=

r∑
i=2

C(i)xi−1 + c.

For each A(r) ∈ R[r,n], denote by

Λ(A(r)) := {λ ∈ R : ∃x ∈ Rn such that ∥x∥ = 1,A(r)x(r−1) = λx}

the set of Z-eigenvalues of A(r) (see [17, p. 5]).

Let

F (x) :=

m∑
r=2

A(r)xr−1 + a (2.1)

and

G(x) :=

l∑
p=2

B(p)xp−1 + b, (2.2)

where A(r) ∈ R[r,n], B(p) ∈ R[p,n] for every r ∈ {2, . . . ,m}, p ∈ {2, . . . , l} and a, b ∈ Rn.

Denote

F∞(x) := A(m)xm−1
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and

G∞(x) := B(l)xl−1.

Let

A := (A(m), . . . ,A(2), a) ∈ T[m,n] := R[m,n] × . . .× R[2,n] × Rn;

B := (B(l), . . . ,B(2), b) ∈ T[l,n] := R[l,n] × . . .× R[2,n] × Rn.

The set of solutions of generalized variational inequality (GPVI) defined by (F,G,K)

is denoted by SOL(F,G,K). We also denote by SOL(A(m),B(l),K∞) the solution set

SOL(F∞, G∞,K∞) of generalized variational inequality (GPVI) defined by (F∞, G∞,K∞).

Tensor A(r) is called positive definite on a set C if A(r)xr > 0 for every x ∈ C \ {0}. We

say that A(r) is positive semi-definite on a set C if A(r)xr ≥ 0 for every x ∈ C.

Let C ⊂ Rn be a cone, denote

C∗ := {y ∈ Rn : hT y ≥ 0 ∀h ∈ C}.

Let S ⊂ Rn be a nonempty closed convex set. The recession cone of S is defined [18, p.

61] by

S∞ := {v ∈ Rn : x+ tv ∈ S ∀x ∈ S ∀t ≥ 0}.

It follows from the above definition that S + S∞ ⊂ S. Clearly, S ⊂ S + S∞ since 0 ∈ S∞.

Thus, S = S + S∞. According to [18, Theorem 8.3],

S∞ := {v ∈ Rn : ∃x ∈ S such that x+ tv ∈ S ∀t ≥ 0}.

Let F , G be two continuous functions. A set of points {xk} ⊂ Rn is called an exceptional

family of elements (see [23, 25]) for the pair (F,G) with respect to x̄ ∈ Rn if ∥xk∥ → ∞ as

k → ∞; and for each xk, there exists a scalar αk > 0 such that zk := αk(xk−x̄)+G(xk) ∈ K

and

−αk(xk − x̄)− F (xk) ∈ NK(zk),

where NK(zk) is the normal cone of K at zk.

The following is useful in our proofs.

Proposition 2.1 (see [23, 25]). For two continuous mappings F,G : Rn → Rn and a

nonempty, closed and convex set K ⊂ Rn, there exists either a solution of GVI(F,G,K) or

an exceptional family of elements with respect to any given x̄ ∈ Rn for the pair (F,G).

We call F is copositive with respect to G on K if

⟨F (x), G(x)⟩ ≥ 0

for every x ∈ Rn satisfying G(x) ∈ K.

We say that F is strictly monotone with respect to G on K if

⟨F (x)− F (y), G(x)−G(y)⟩ > 0

for every x, y ∈ Rn satisfying x ̸= y and G(x), G(y) ∈ K.

A well-known result on the existence and uniqueness of solutions for the GVI is proposed

by Pang and Yao [16, Proposition 3.9] as follows.
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Proposition 2.2. Let K be a nonempty, closed and convex subset of Rn, and let F and G

be two continuous functions from Rn into itself with G being injective. Suppose that:

(i) there exists a vector u ∈ G−1(K) and positive scalars α and l such that

∥G(x)−G(u) ≤ ∥x− u∥

holds for all x ∈ G−1(K) with ∥x∥ ≥ α;

(ii) F is strongly monotone with respect to G on K , i.e., there is a scalar c > 0 such that

⟨F (x)− F (y), G(x)−G(y)⟩ ≥ c∥x− y∥2

holds for all G(x), G(y) ∈ K with x ̸= y.

Then, GVI(F,G,K) has a unique solution.

3 Main existence results

In this section, we present sufficient conditions for existence of GPVI(F,G,K). A new

regular condition is proposed in Subsection 3.1. The existence results are presented in

Subsections 3.2 and 3.3.

3.1 A regular condition

For each positive integer pair (p, q), denote

δp,q =

{
1 if p ≥ q,

0 if p < q.

The following new concept plays a key role in proving the main results.

Definition 3.1. One says that GPVI(F,G,K) is regular if

SOL(F∞ + δl,mρ I, G∞ + δm,lρ I, K
∞) = {0} ∀ρ ≥ 0, (3.1)

where I := idRn .

By the definition of the GPVI, we obtain that GPVI(F,G,K) is regular if and only if

there exists no (x, ρ) ∈ (K∞ \ {0})× R+ such that

B(l)xl−1 + δm,lρx ∈ K∞,

A(m)xm−1 + δl,mρx ∈ (K∞)∗,
⟨
A(m)xm−1 + δl,mρx,B(l)xl−1 + δm,lρx

⟩
= 0. (3.2)

Remark 3.2. To characterize the existence of solutions for the problem GPCP(F,G,C),

with C being a cone in Rn, Ling et al. [7] presented the following concepts: The pair

(A(m),B(l)) is called ERC-tensor pair if there exists no (x, v, t) ∈ (C \ {0})×R+ ×R+ such

that

A(m)xm−1 + vx ∈ C∗, B(l)xl−1 + tx ∈ C,
⟨
A(m)xm−1 + vx,B(l)xl−1 + tx

⟩
= 0. (3.3)
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Then, (3.3) is equivalent to

SOL(F∞ + vI,G∞ + tI, C) = {0} ∀(v, t) ∈ R+ × R+. (3.4)

Clearly, when C = K∞, the regular condition (3.2) is weaker than (3.3). The following

example illustrates the above relation.

Example 3.3. Consider the problem GPVI(F,G,K) with n = 2, m = l = 2, and K :=

{(z, 0) ∈ R2 : z ≥ 0}. For each x ∈ R, let G(x) = (x2 − 2,−2x1 − 2x2 + 7) and F (x) =

(x2 − 1,−3x1 + 5x2 + 1). We obtain that K∞ = K and (K∞)∗ = {(u1, u2) : u1 ≥ 0}. For

each pair (v, t) ∈ R2
+, we have

G∞(x) + tx = (x2 + tx1,−2x1 − 2x2 + tx2),

F∞(x) + vx = (x2 + vx1,−3x1 + 5x2 + vx2).

Choose (v̄, t̄) = (1, 0) and let any x̄ = (x̄1, x̄2) ∈ R2. Then, x̄ ∈ SOL(F∞+ v̄I, G∞+ t̄I,K∞)

if and only if

x̄2 ≥ 0, −2x̄1 − 2x̄2 = 0, x̄2 + x̄1 ≥ 0, x̄2(x̄2 + x̄1) = 0.

We obtain that x̄2 ≥ 0 and x̄1 + x̄2 = 0. Hence, SOL(F∞ + v̄I, G∞ + t̄I,K∞) ̸= {0}. This
follows that (3.3) is not satisfied.

For any ρ ≥ 0, let ȳ = (ȳ1, ȳ2) ∈ R2. Then, ȳ ∈ SOL(F∞ + ρI,G∞ + ρI,K∞) if and

only if

ȳ2 + ρȳ1 ≥ 0, −2ȳ1 − 2ȳ2 + ρȳ2 = 0, (ȳ2 + ρȳ1)
2 = 0.

It implies that ȳ = 0. Hence, SOL(F∞ + ρI,G∞ + ρI,K∞) = {0} for every ρ ≥ 0 and the

condition (3.2) is satisfied.

The following concepts are used in the main theorem. The pair (A(m),B(l)) is said to be

a RC
0 -tensor pair (see [7, 24]) if there exists no x ∈ C \ {0} such that

B(l)xl−1 ∈ C, A(m)xm−1 ∈ C∗,
⟨
A(m)xm−1,B(l)xl−1

⟩
= 0. (3.5)

Then, (3.5) is equivalent to

SOL(F∞, G∞, C) = {0}. (3.6)

If SOL(A(m), I,Rn) = {0}, then A(m) is called R0-tensor, which has been used to study the

existence and stability for tensor variational inequality and tensor complementary problem

(see [1, 2]).

3.2 Existence under the regular condition

The main result is presented in the following theorem.

Theorem 3.4. Let K ⊂ Rn be a nonempty closed convex set and GPVI(F,G,K) be regular.

If one of the following conditions is satisfied:

(i) m = l;

(ii) m > l and A(m) is positive definite;
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(iii) m < l and B(l) is positive definite,

then SOL(F,G,K) is a nonempty and compact set.

Proof. Suppose, on the contrary, that GPVI(F,G,K) has no solution. Then, it follows from

Proposition 2.1 that there exists an exceptional family of elements for the pair (F,G) with

respect to 0 ∈ Rn, i.e., there exist {xk} ⊂ Rn satisfying ∥xk∥ → ∞ as k → ∞ and σk > 0

such that zk := σkxk +G(xk) ∈ K and

−σkxk − F (xk) ∈ NK(σkxk +G(xk)).

By the definition of the normal cone, we obtain that

⟨σkxk + F (xk), y − σkxk −G(xk)⟩ ≥ 0 ∀y ∈ K, (3.7)

that is,

⟨σkxk, y − F (xk)−G(xk)⟩+ ⟨F (xk), y −G(xk)⟩ − (σk)2∥xk∥2 ≥ 0 (3.8)

for every y ∈ K. By the fact that ∥xk∥ → ∞ as k → ∞, we may assume that ∥xk∥ > 0 for

all k → ∞.

Case 1: m ≥ l. Dividing both sides of the inequality (3.8) by ∥xk∥m+l−2, we obtain that

σk

∥xk∥l−2

⟨
xk

∥xk∥
,
y − F (xk)−G(xk)

∥xk∥m−1

⟩

+

⟨
F (xk)

∥xk∥m−1
,
y −G(xk)

∥xk∥l−1

⟩
− (σk)2

∥xk∥m+l−4
≥ 0. (3.9)

Without loss of generality, we may assume that xk

∥xk∥ → h̄ for some h̄ ∈ Rn with ∥h̄∥ = 1.

Denote:

ρk :=
σk

∥xk∥l−2
,

uk :=

⟨
xk

∥xk∥
,
y − F (xk)−G(xk)

∥xk∥m−1

⟩
,

and

vk :=

⟨
F (xk)

∥xk∥m−1
,
y −G(xk)

∥xk∥l−1

⟩
.

From (3.9), we have

ρkuk + vk − (ρk)2

∥xk∥m−l
≥ 0. (3.10)

We now show that {ρk} is bounded. Indeed, suppose, on the contrary, that ρk → +∞
as k → +∞. Consider the following two cases:

Case 1.1: m = l. Then, we obtain that

lim
k→∞

uk = lim
k→∞

⟨
xk

∥xk∥
,
y −

∑m
r=2 A(r)(xk)r−1 − a−

∑l
p=2 B(p)(xk)p−1 − b

∥xk∥m−1

⟩
= −

⟨
h̄,

(
A(m) + B(l)

)
h̄m−1

⟩
= −

(
A(m) + B(l)

)
h̄m
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and

lim
k→∞

vk = lim
k→∞

⟨∑m
r=2 A(r)(xk)r−1 + a

∥xk∥m−1
,
y −

∑l
p=2 B(p)(xk)p−1 − b

∥xk∥l−1

⟩
= −

⟨
A(m)h̄m−1,B(l)h̄m−1

⟩
.

Dividing both sides of the equality (3.10) by (ρk)2 and letting k → ∞ yields −1 ≥ 0, a

contradiction.

Case 1.2: m > l. From (3.10) it follows that

ρkuk + vk ≥ 0. (3.11)

Then,

lim
k→∞

uk = lim
k→∞

⟨
xk

∥xk∥
,
y −

∑m
r=2 A(r)(xk)r−1 − a−

∑l
p=2 B(p)(xk)p−1 − b

∥xk∥m−1

⟩
= −

⟨
h̄,A(m)h̄m−1

⟩
= −A(m)h̄m

and

lim
k→∞

vk = −
⟨
A(m)h̄m−1,B(l)h̄l−1

⟩
.

By the assumption that A(m) is positive definite, we have A(m)h̄m > 0. Then, we obtain

ρkuk + vk → −∞

as k → +∞, contrary to the inequality (3.11).

Therefore, {ρk} is bounded. Without loss of generality, we may assume that ρk → ρ̄

for some ρ̄ ∈ R+. Applying [18, Theorem 8.2] to zk = ρk∥xk∥l−2xk + G(xk) ∈ K and
1

∥xk∥l−1 → 0, we have

1

∥xk∥l−1
zk = ρk

xk

∥xk∥
+

G(xk)

∥xk∥l−1
→ ρ̄h̄+ B(l)h̄l−1 ∈ K∞.

Fix w ∈ K. For every h ∈ K∞, we have z := w + h∥xk∥l−1 ∈ K. From (3.7) it follows that

⟨ρk∥xk∥l−2xk + F (xk), z − ρk∥xk∥l−2xk −G(xk)⟩ ≥ 0,

that is,

⟨ρk∥xk∥l−2xk + F (xk), w + h∥xk∥l−1 − ρk∥xk∥l−2xk −G(xk)⟩ ≥ 0.

Dividing both sides of last inequality by ∥xk∥m+l−2 and letting k → +∞ yields:⟨
A(m)h̄m−1, h− B(l)h̄l−1 − ρ̄h̄

⟩
≥ 0 if m > l

and ⟨
A(m)h̄m−1 + ρ̄h̄, h− B(l)h̄l−1 − ρ̄h̄

⟩
≥ 0 if m = l.
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These lead to 0 ̸= h̄ ∈ SOL(F∞ + δl,mρ̄ I, G∞ + δm,lρ̄ I, K
∞), contrary to the assumption

that GPVI(F,G,K) is regular.

Case 2: m < l. Dividing both sides of the inequality (3.8) by ∥xk∥m+l−2, we obtain that

σk

∥xk∥m−2

⟨
xk

∥xk∥
,
y − F (xk)−G(xk)

∥xk∥l−1

⟩
+

⟨
F (xk)

∥xk∥m−1
,
y −G(xk)

∥xk∥l−1

⟩
− (σk)2

∥xk∥m+l−4
≥ 0.

It implies that

σk

∥xk∥m−2

⟨
xk

∥xk∥
,
y − F (xk)−G(xk)

∥xk∥l−1

⟩
+

⟨
F (xk)

∥xk∥m−1
,
y −G(xk)

∥xk∥l−1

⟩
≥ 0. (3.12)

Denote:

rk :=
σk

∥xk∥m−2
,

wk :=

⟨
xk

∥xk∥
,
y − F (xk)−G(xk)

∥xk∥l−1

⟩
,

and

vk :=

⟨
F (xk)

∥xk∥m−1
,
y −G(xk)

∥xk∥l−1

⟩
.

From (3.12) it follws that

rkwk + vk ≥ 0. (3.13)

We have

lim
k→∞

wk = lim
k→∞

⟨
xk

∥xk∥
,
y −

∑m
r=2 A(r)(xk)r−1 − a−

∑l
p=2 B(p)(xk)p−1 − b

∥xk∥l−1

⟩
= −

⟨
h̄,B(l)h̄l−1

⟩
= −B(l)h̄l

and limk→∞ vk = −
⟨
A(m)h̄m−1,B(l)h̄l−1

⟩
. From the assumption that B(l) is positive definite

it follows that B(l)h̄l > 0. If {rk} is unbounded, then rkwk + vk → −∞ as k → +∞,

contrary to the inequality (3.13). Hence, {rk} is bounded. Without loss of generality, we

may assume that rk → r̄ for some r̄ ∈ R+. For every h ∈ K∞, for some w ∈ K, we have

z̃ := w + h∥xk∥l−1 ∈ K. Substitute z = z̃ into the inequality (3.7) yields

⟨rk∥xk∥m−2xk + F (xk), w + h∥xk∥l−1 − rk∥xk∥m−2xk −G(xk)⟩ ≥ 0.

Dividing both sides of last inequality by ∥xk∥m+l−2 and letting k → +∞ gives⟨
A(m)h̄m−1 + r̄h̄, h− B(l)h̄l−1

⟩
≥ 0.

That is, 0 ̸= h̄ ∈ SOL(F∞ + δl,mr̄ I, G∞ + δm,lr̄ I, K∞), contrary to the assumption that

GPVI(F,G,K) is regular.

By the above cases, we obtain that GPVI(F,G,K) has a solution.

Next, we show the boundedness of the solution set of SOL(F,G,K). Suppose, on the con-

trary, that SOL(F,G,K) is unbounded. Then, there exists a sequence {yk} ⊂ SOL(F,G,K)

such that ∥yk∥ → +∞ as k → +∞. Without loss of generality we may assume that
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∥yk∥ → ∞ as k → ∞, ∥yk∥ ̸= 0 for all k, and ∥yk∥−1yk → v̄ with ∥v̄∥ = 1. For each k, we

have G(yk) ∈ K and

⟨F (yk), y −G(yk)⟩ ≥ 0 ∀y ∈ K. (3.14)

Applying [18, Theorem 8.2] to G(yk) ∈ K and 1
∥yk∥l−1 → 0, we have

1

∥yk∥l−1
G(yk) =

1

∥yk∥l−1

( l∑
p=2

B(p)(yk)p−1 + b

)
→ B(l)v̄l−1 ∈ K∞

as k → ∞. Fix w ∈ K. For every v ∈ K∞, we have

z := w + v∥yk∥l−1 ∈ K.

From (3.14) it follows that⟨ m∑
r=2

A(r)(yk)r−1 + a, z −
l∑

p=2

B(p)(yk)p−1 − b

⟩
≥ 0,

that is, ⟨ m∑
r=2

A(r)(yk)r−1 + a,w + v∥yk∥l−1 −
l∑

p=2

B(p)(yk)p−1 − b

⟩
≥ 0.

Dividing both sides of the last equality by ∥yk∥m+l−2 and letting k → ∞ yields⟨
A(m)v̄m−1, v − B(l)v̄l−1

⟩
≥ 0.

Then, 0 ̸= v̄ ∈ SOL(A(m),B(l),K∞), contrary to the assumption that GPVI(F,G,K) is

regular. Therefore, SOL(F,G,K) is bounded.

Let any a sequence {zk} ⊂ SOL(F,G,K) such that zk → z̄ as k → +∞ for some z̄ ∈ Rn.

Then, for some y ∈ K, we have

G(zk) ∈ K and ⟨F (zk), y −G(zk)⟩ ≥ 0 ∀k. (3.15)

Since F and G are continuous and K is closed, passing the expressions in (3.15) to limits as

k → ∞, we obtain that

G(z̄) ∈ K and ⟨F (z̄), y −G(z̄)⟩ ≥ 0.

This follows that SOL(F,G,K) is closed. Therefore, SOL(F,G,K) is a compact set. The

proof is complete.

The following example illustrates an application of Theorem 3.4.

Example 3.5. We consider the problem GPVI(F,G,K) with n = 2, m = l = 4,

K := {(x1, x2) ∈ R2 : x2
2 − x1 ≤ 0},

F (x) = (2x3
1 − 5x1x2 − 4x2 + 1,−3x3

2 + x1x2 − x1 − 2),

and

G(x) = (x3
1 + x2

2 − x1, x
3
2 + x1x2 + 1) ∀x = (x1, x2) ∈ R2.
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Then, K is nonempty since (0, 0) ∈ K. From the fact that the function γ defined by

γ(x1, x2) := x2
2 − x1 is a convex quadratic function it follows that K is a closed and convex

set. According to [3, Lemma 1.1], we have K∞ = {(x1, 0) : x1 ∈ R+}. Then, for each ρ ≥ 0,

we obtain that

F∞(x) + ρx = (2x3
1 + ρx1,−3x3

2 + ρx2),

and

G∞(x) + ρx = (x3
1 + ρx1, x

3
2 + ρx2).

Suppose that x̄ = (x̄1, x̄2) ∈ SOL(F∞ + ρI,G∞ + ρ I,K∞), that is,

G∞(x̄) + ρx̄ ∈ K∞, (3.16)

F∞(x̄) + ρx̄ ∈ (K∞)∗, (3.17)

⟨F∞(x̄) + ρx̄,G∞(x̄) + ρx̄⟩ = 0. (3.18)

From (3.16), we have x̄1 ≥ 0 and x̄2 = 0. Then, for every v = (v1, 0) ∈ K∞ with v1 ≥ 0,

one has

⟨F∞(x̄) + ρx̄, v⟩ = v1(2x̄
3
1 + ρx̄1) ≥ 0.

Hence, (3.17) is satisfied. By (3.18), we have

x̄2
1(2x̄

2
1 + ρ)(x̄2

1 + ρ) = 0.

This follows x̄1 = 0. Thus x̄ = (0, 0) and the regular condition is satisfied. Therefore, the

presented problem has a solution by using Theorem 3.4.

In the following corollary, we characterize the uniqueness of solutions of GPVI(F,G,K)

under the assumptions, which is different from [23, Theorem 2].

Corollary 3.6. Suppose that the assumptions in Theorem 3.4 are satisfied. Then,

GPVI(F,G,K) has a unique solution provided that F is strictly monotone with respect to G

on K.

Proof. The emptiness of SOL(F,G,K) ̸= ∅ follows from by Theorem 3.4. We now prove that

GPVI(F,G,K) has a unique solution. Indeed, suppose, on the contrary, that GPVI(F,G,K)

has two different solutions x̄ and x̂. Then,

⟨F (x̄), G(x̂)−G(x̄)⟩ ≥ 0 and ⟨F (x̂), G(x̄)−G(x̂)⟩ ≥ 0.

It follows

⟨F (x̂)− F (x̄), G(x̂)−G(x̄)⟩ ≤ 0.

This contradicts the assumption that F is strictly monotone with respect to G on K. There-

fore, the problem GPVI(F,G,K) has a unique solution.

Remark 3.7. The assumptions that G is injective and F is strongly monotone with respect

to G on K in Proposition 2.2 are omitted from Corollary 3.6. The following example

illustrates an application of Corollary 3.6 and it also shows that [16, Proposition 3.9] cannot

apply for this problem.
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Example 3.8. Consider GPVI(F,G,K) with n = 2, m = l = 4, K := {(x1, 0) ∈ R2 :

x1 ∈ R+}, for all x = (x1, x2) ∈ R2, F (x) = (x3
1,−2x3

2 − x1x2 + 2x2 + 1), and G(x) =

(x3
1, x

3
2 − 3x2 − 18). Then, K∞ = K and (K∞)∗ = K∗ = {(x1, x2) : x1 ≥ 0}.

SinceK is a cone, this problem reduces to the problem GPCP(F,G,K) as follows: finding

x ∈ R2 such that

G(x) ∈ K, F (x) ∈ K∗, ⟨F (x), G(x)⟩ = 0.

We can check that x̄ = (x̄1, x̄2) = (0, 3) is a solution of the above problem.

For every x = (x1, x2), y = (y1, y2) ∈ Rn satisfying x ̸= y and G(x), G(y) ∈ K. Since the

equation x3
2 − 3x2 − 18 = (x − 3)(x2

2 + 3x2 + 6) = 0 has a unique solution x = 3. Hence,

x2 = y2 = 3 and x1 ̸= y1. Suppose that GPVI(F,G,K) have two different solutions x̄ and

x̂. Then,

x̂1 ̸= x̄1, ŷ1 = ȳ1 = 3, ⟨F (x̄), G(x̂)−G(x̄)⟩ ≥ 0, and ⟨F (x̂), G(x̄)−G(x̂)⟩ ≥ 0.

It follows

⟨F (x̂)− F (x̄), G(x̂)−G(x̄)⟩ ≤ 0.

This contradicts the fact that ⟨F (x̄), G(x̂)−G(x̄)⟩ = (x̂3
1− x̄3

1)
2 > 0. Therefore, F is strictly

monotone with respect to G on K and this problem has a unique solution.

We have

F∞(x) + ρx = (x3
1 + ρx1,−2x3

2 + ρx2)

and

G∞(x) + ρx = (x3
1 + ρx1, x

3
2 + ρx2).

Let any z̄ = (z̄1, z̄2) ∈ SOL(F∞ + ρI,G∞ + ρ I,K∞), that is,

G∞(z̄) + ρz̄ ∈ K∞, (3.19)

F∞(z̄) + ρz̄ ∈ (K∞)∗, (3.20)

⟨F∞(z̄) + ρz̄,G∞(z̄) + ρz̄⟩ = 0. (3.21)

By (3.19), we have z̄2 = 0 and z̄1 ≥ 0. For every v = (v1, 0) ∈ K∞ with v1 ≥ 0, we obtain

⟨F∞(z̄) + ρz̄, v⟩ = v1(z̄
3
1 + ρz̄1) ≥ 0.

and (3.20) is satisfied. From (3.21), we have

(z̄31 + ρz̄1)
2 = 0.

It implies z̄1 = 0. Hence, z̄ = (0, 0) and the presented problem is regular. Applying Corollary

3.6, this problem has a unique solution.

However, from the fact that G(0, 0) = G(0,
√
3) = G(0,−

√
3) = (0,−18) it follows that

G is not injective; hence, [16, Proposition 3.9] cannot apply for this problem.

The following corollary characterizes the existence for GPCP(F,G,K).

Corollary 3.9. Let GPCP(F,G,K) be regular. Suppose that the assumptions in Theorem

3.4 are satisfied. Then, GPCP(F,G,K) has a solution.

Proof. This corollary follows immediately from Theorem 3.4.

Remark 3.10. The regular condition used in Corollary 3.9 is weaker than one used in [7,

Theorem 3.1] (see Remark 3.2).
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3.3 Existence for the case where K is bounded and applications

For the case where K is compact, the existence for the problem GPVI(F,G,K) is proposed

as follows.

Theorem 3.11. If K is a nonempty compact convex set and if Λ(B(l)) ⊂ R+ \ {0} then

GPVI(F,G,K) has a solution.

Proof. Suppose, on the contrary, that GPVI(F,G,K) has no solution. By using similar

arguments as in the proof of Theorem 3.4, there exist {xk} ⊂ Rn satisfying ∥xk∥ → ∞ as

k → ∞ and σk > 0 such that zk := σkxk +G(xk) ∈ K. Without loss of generality, we may

assume that xk

∥xk∥ → h̄ for some h̄ ∈ Rn. Denote

ρk :=
σk

∥xk∥l−2
.

We consider the following two cases:

Case 1: {ρk} is unbounded, that is, ρk → +∞ as k → +∞. Then, applying [18, Theorem

8.2] to zk = σkxk +G(xk) = ρk∥xk∥l−2xk +G(xk) ∈ K and 1
ρk∥xk∥l−1 → 0, we have

1

ρk∥xk∥l−1
zk =

xk

∥xk∥
+

1

ρk
.
G(xk)

∥xk∥l−1
→ h̄ ∈ K∞ = {0}.

This contradicts the fact that ∥h̄∥ = 1.

Case 2: {ρk} is bounded. Without loss of generality, assume that ρk → ρ̄ for some

ρ̄ ∈ Rn and ρ̄ ≥ 0. Applying [18, Theorem 8.2] to zk = ρk∥xk∥l−2xk + G(xk) ∈ K and
1

∥xk∥l−1 → 0, we have

1

∥xk∥l−1
zk = ρk

xk

∥xk∥
+

G(xk)

∥xk∥l−1
→ ρ̄h̄+ B(l)h̄l−1 ∈ K∞ = {0}.

This follows that

B(l)h̄l−1 = −ρ̄h̄,

that is, −ρ̄ ≤ 0 is a eigenvalue of B(l). This contradicts the assumption (i). Therefore,

GPVI(F,G,K) has a solution.

Remark 3.12. Applying Theorem 3.11 for G = I with Λ(G) = {1}, we get well-known

Hartman-Stampacchia’s theorem for PVI (see [4]).

By using the result obtained in Theorem 3.11, we get the following important results.

Theorem 3.13. Let K ⊂ Rn be a nonempty closed convex set, 0 ∈ K, and Λ(B(l)) ⊂
R+\{0}. Assume that F∞ is copositive with respect to G∞ on K∞. The following statements

are valid:

(i) If (A(m),B(l)) is a RK∞

0 -tensor pair then SOL(F + F̃ , G+ G̃,K) is a nonempty compact

set for every (F̃ , G̃) ∈ P [m−1,n] × P [l−1,n];

(ii) SOL(F + c,G,K) is a nonempty and compact set for every c ∈ int{G∞(SOL(A(m),

B(l),K∞))}∗.
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Proof. Suppose that K ⊂ Rn is a nonempty closed convex set, Λ(B(l)) ⊂ R+ \ {0}, 0 ∈ K,

and F∞ is copositive with respect to G∞ on K∞.

(i) Suppose that (A(m),B(l)) is a RK∞

0 -tensor pair. For each i = 1, 2, . . ., denote

Ki = {z ∈ Rn : z ∈ K, ∥z∥ ≤ i}.

Then, we may assume that Ki is nonempty compact set. For some (F̃ , G̃) ∈ P [m−1,n] ×
P [l−1,n], by using Theorem 3.11, we have

SOL(F + F̃ , G+ G̃,Ki) ̸= ∅

for every i. Let any xi ∈ SOL(F + F̃ , G+ G̃,Ki). We prove that {xi} is bounded. Indeed,

suppose, on the contrary, that {xi} is unbounded. Then, we may assume that xi > 0 for

every i and xi/∥xi∥ → v̄ for some v̄ ∈ Rn. By the fact that xi ∈ SOL(F + F̃ , G + G̃,Ki),

we have G(xi) + G̃(xi) ∈ Ki and

⟨F (xi) + F̃ (xi), z −G(xi)− G̃(xi)⟩ ≥ 0 (3.22)

for every z ∈ Ki. Since G(xi)+ G̃(xi) ∈ K and 1
∥xi∥l−1 → 0, applying [18, Theorem 8.2], we

have

1

∥xi∥l−1

( l∑
p=2

B(p)(xi)p−1 + b+ G̃(xi)

)
→ B(l)v̄l−1 ∈ K∞

as i → ∞. Multiplying both sides of the inequality (3.22) by ∥xi∥−(m+l−2) and taking

i → ∞ yields ⟨
A(m)v̄m−1,B(l)v̄l−1

⟩
≤ 0. (3.23)

Since F∞ is copositive with respect to G∞ on K∞, we have⟨
A(m)v̄m−1,B(l)v̄l−1

⟩
≥ 0.

By this and (3.23), we have ⟨
A(m)v̄m−1,B(l)v̄l−1

⟩
= 0. (3.24)

For any v ∈ K∞ \ {0}, one has yi := 0 + ∥G(xi)+G̃(xi)∥
∥v∥ v ∈ K and

∥yi∥ = ∥G(xi) + G̃(xi)∥ ≤ i.

Hence, yi ∈ Ki. By (3.22) one has

⟨F (xi) + F̃ (xi), yi −G(xi)− G̃(xi)⟩

=

⟨
F (xi) + F̃ (xi),

∥G(xi) + G̃(xi)∥
∥v∥

v −G(xi)− G̃(xi)

⟩
≥ 0.

Multiplying both sides of the last inequality by ∥xi∥−(m+l−2) and letting i → ∞ yields⟨
A(m)v̄m−1,

∥B(l)v̄l−1∥
∥v∥

v

⟩
≥

⟨
A(m)v̄m−1,B(l)v̄l−1

⟩
= 0.
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Hence,
⟨
A(m)v̄m−1, v

⟩
≥ 0, that is, A(m)v̄m−1 ∈ (K∞)∗. By this and (3.24), we deduce that

B(l)v̄l−1 ∈ K∞, A(m)v̄m−1 ∈ (K∞)∗ and
⟨
A(m)v̄m−1,B(l)v̄l−1

⟩
= 0,

that is,

0 ̸= v̄ ∈ SOL(A(m),B(l),K∞), (3.25)

contrary to the assumption that (A(m),B(l)) is a R∞
0 -tensor pair. Therefore, {xi} is bounded.

We may assume, without loss of generality, that xi → x̄ for some x̄ ∈ Rn. Since G(xi) +

G̃(xi) ∈ K and since K is closed, we have G(x̄) + G̃(x̄) ∈ K. Passing (3.22) to limits as

i → ∞, we obtain

⟨F (x̄) + F̃ (x̄), z −G(x̄)− G̃(x̄)⟩ ≥ 0. (3.26)

Hence, x̄ ∈ SOL(F + F̃ , G+ G̃,K).

Suppose that SOL(F + F̃ , G+ G̃,K) is unbounded. Then, there exists {yi} ⊂ SOL(F +

F̃ , G+ G̃,K) such that ∥zi∥ → ∞ and zi/∥zi∥ → ȳ for some z̄ ∈ Rn. Repeating the above

arguments, we obtain that 0 ̸= z̄ ∈ SOL(A(m),B(l),K∞), contrary to the assumption that

(A(m),B(l)) is a RK∞

0 -tensor pair. Therefore, SOL(F + F̃ , G+ G̃,K) is a nonempty compact

set.

(ii) For each c ∈ int{G∞(SOL(A(m),B(l),K∞))}∗. By the similar arguments in part (i)

with F̃ ≡ c and G̃ ≡ 0, we obtain (3.22)–(3.24). Repeating the arguments in part (i), one

gets v̄ ∈ SOL(A(m),B(l),K∞). From (3.22), taking z = 0, we have

⟨F (xi) + c,−G(xi)⟩ ≥ 0,

that is,

⟨c,G(xi)⟩ ≤ −
⟨
F (xi), G(xi)

⟩
≤ 0.

Dividing both sides of the last inequality by ∥xi∥l−1 and letting i → ∞ yields⟨
c,B(l)v̄l−1

⟩
≤ 0.

This contradicts the assumption that c ∈ int{G∞(SOL(A(m),B(l),K∞))}∗. Therefore,

SOL(F + c, g,K) is nonempty. The boundedness of SOL(F + c, g,K) follows from a similar

analysis as in part (i).

For the special case where G = I, from Theorem 3.13, we obtain the follows corollary.

Corollary 3.14. Let K ⊂ Rn be a nonempty closed convex set, 0 ∈ K, F∞ is copositive on

K∞. The following statements are valid:

(i) If A(m) is a R0-tensor on K∞ then the solution set of PVI(F + F̃ ,K) is nonempty and

compact for every F̃ ∈ P [m−1,n];

(ii) The solution set of PV I(F + c,K) is nonempty and compact for every c ∈
int{SOL(A(m), I,K∞)}∗.

Remark 3.15. The obtained results in Theorem 3.13 and Corollary 3.14 are useful for

studying the stability of parametric GPVIs and PVIs. This interesting topic will be con-

cerned in our next studies. Part (ii) in Corollary 3.14 is a recent result obtained by Hieu [2,

Theorem 4.1]. A better result, which can be easily obtained from Theorem 3.13, has been

proposed by Ma et al. [8].
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Conclusion

In the paper, to investigate the solution existence of the GPVI, we have proposed a new

regular condition (Definition 3.1). We have presented sufficient conditions for the solution

existence of the GPVI (Theorem 3.4). By this main theorem, we have obtained the existence

results for the boundedness of the solution set and the special case where K is a compact

set (Theorems 3.11 and 3.13).
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