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TWO PROJECTION METHODS FOR SOLVING THE SPLIT
COMMON NULL POINT PROBLEM IN TWO BANACH
SPACES
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Abstract: In this article, we study the split common null point problem in two Banach spaces. Using
metric resolvents and generalized resolvents of maximal monotone operators in Banach spaces, we prove
strong convergence theorems under two projection methods for finding a solution of the split common null
point problem in two Banach spaces. Using these results, we get new results which are connected with the
split feasibility problem in two Banach spaces.
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Introduction

Let H be a Hilbert space and let C' be a nonempty, closed and convex subset of H. A
mapping U : C' — H is called inverse strongly monotone if there exists o > 0 such that

<$_ya Ux—Uy> 2O[”Uv‘/L'_Uv:l/||27 vxaye C.

Such a mapping U is called a-inverse strongly monotone. Let H; and Hy be Hilbert spaces.
Let D and @ be nonempty, closed and convex subsets of H; and Hs, respectively. Let
T : Hy — Hy be a bounded linear operator. Then the split feasibility problem [7] is to find
z € Hy such that 2 € DNT~'Q. Byrne, Censor, Gibali and Reich [6] also considered the
following problem: Given maximal monotone mappings G : H, — 271 and B : Hy — 22,
respectively, and a bounded linear operator T : H; — Hs, the split common null point
problem [6] is to find a point z € H; such that

zeGtonT Y(B7'0),

where G710 and B~!0 are null point sets of G and B, respectively. Defining U = T*(I—Pg)T
in the split feasibility problem, we have that U : H; — H; is an inverse strongly monotone
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operator [3], where T* is the adjoint operator of T' and Py is the metric projection of Ho
onto Q. Furthermore, if D N T~!Q is nonempty, then z € D NT~'Q is equivalent to

2 = Pp(I — XT*(I — Po)T)z, (1.1)

where A > 0 and Pp is the metric projection of H; onto D. Furthermore, if G710 N
T-1(B~10) is nonempty, then for v > 0, z € G0N T~1(B~10) is equivalent to

z2=J\I =TI —-QuT)z, (1.2)

where Jy and @, are the resolvents of G for A > 0 and B for i > 0, respectively. Using such
results regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem, the split common null point problem and the split common fixed point
problem; see, for instance, [3,6,32,33]. However, it is difficult to have such results outside
Hilbert spaces. Takahashi [25,26] and Hojo and Takahashi [9] extended the results of (1.1)
and (1.2) in Hilbert spaces to Banach spaces; see Section 3.

In this article, we deal with the split common null point problem in two Banach spaces.
We first prove strong convergence theorems under the hybrid method by Nakajo and Taka-
hashi [14] for metric resolvents and generalized resolvents of maximal monotone operators
with metric projections and generalized projections in two Banach spaces. Furthermore,
using the shringking projection method by Takahashi, Takeuchi and Kubota [31] we prove
strong convergence theorems for two resolvents of maximal monotone operators with two
projections in two Banach spaces. Using these results, we get new results which are con-
nected with the split feasibility problem in two Banach spaces.

Preliminaries

Let E be a real Banach space with norm || - || and let E* be the dual space of E. We denote
the value of y* € E* at « € E by (z,y*). When {z,} is a sequence in E, we denote the
strong convergence of {z,} to z € E by x,, — x and the weak convergence by z,, — z. The
modulus 0 of convexity of F is defined by

5(e) = inf {1

[z +yll
- el =Lyl <Lz —yll = e

for every e with 0 < e < 2. A Banach space FE is said to be uniformly convex if d(¢) > 0 for
every € > 0. It is known that a Banach space E is uniformly convex if and only if for any
two sequences {x,} and {y,} in E such that

lim ||z,|| = lm |ly.||=1and lim ||z, + y.| = 2,
n—»00 n—00 n— 00
lim, 00 ||Zn, — yn|| = 0 holds. A uniformly convex Banach space is strictly convex and

reflexive. We also know that a uniformly convex Banach space has the Kadec-Klee property,
ie, x, = u and ||z,| — |Ju|| imply =, — w; see [8,16].
The duality mapping J from F into 2€” is defined by

Jr={z" € E*: (z,2") = |[«|* = [[2"]|*}

for every x € E. Let U = {x € E : ||z|| = 1}. The norm of E is said to be Géateaux
differentiable if for each z,y € U, the limit

o o tyll = ]

lim 7 (2.1)
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exists. In this case, F is called smooth. We know that F is smooth if and only if J is a
single-valued mapping of F into E*. The norm of F is said to be Fréchet differentiable if
for each x € U, the limit (2.1) is attained uniformly for y € U. The norm of E is said to
be uniformly smooth if the limit (2.1) is attained uniformly for z,y € U. If E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E. We
also know that F is reflexive if and only if J is surjective, and F is strictly convex if and
only if J is one-to-one. Therefore, if F is a smooth, strictly convex and reflexive Banach
space, then .J is a single-valued bijection and in this case, the inverse mapping .J~! coincides
with the duality mapping J, on E*. For more details, see [22,23].

Lemma 2.1 ( [22]). Let E be a smooth Banach space and let J be the duality mapping on
E. Then, (x —y,Jx — Jy) > 0 for all x,y € E. Furthermore, if E is strictly convex and
(x —y,Jx — Jy) =0, then x = y.

Let F be a smooth Banach space and let J be the duality mapping on E. Define a
function ¢ : E X E — R by

¢p(e,y) = ||z - 2@z, Jy) + lyl?, Va,y € E. (2.2)

In the case when F is clear, ¢ g is simply denoted by ¢. Observe that, in a Hilbert space H,
é(x,y) = ||z — y||* for all z,y € H. Furthermore, we know that for each z,y,2,w € E,

(lll = lyl)* < d(z,y) < (ll=ll + ylD?; (2.3)
¢(x,y) = ¢z, 2) + ¢(2,y) + 2(z — 2,z = Jy);
2z —y,Jz = Jw) = d(z,w) + ¢y, 2) = ¢(x,2) = Py, w).
If F is additionally assumed to be strictly convex, then
¢(x,y) =0 ifandonlyif z=y. (2.6)
The following lemma was proved by Kamimura and Takahashi [10].

Lemma 2.2 ( [10]). Let E be a uniformly convex and smooth Banach space and let {yn},
{zn} be two sequences of E. If ¢(yn,2n) — 0 and either {y,} or {z,} is bounded, then
Yn — 2n — 0.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive Banach
space E. Then we know that for any x € F, there exists a unique element z € C' such that
|z — z|]] < ||z —y|| for all y € C. Putting 2 = Pex, we call Po the metric projection of E
onto C. We know the following result.

Lemma 2.3 ( [22]). Let E be a smooth, strictly convex and reflexive Banach space. Let C
be a nonempty, closed and convex subset of E and let x € E and z € C. Then, the following
conditions are equivalent:

(1) z = Pox;
For any x € F, we also know that there exists a unique element z € C such that

P(z,x) = 228 oy, ).

The mapping Il : E — C defined by z = Ilgx is called the generalized projection of E
onto C. The following results are well-known. For example, see [1,2,10].
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Lemma 2.4 ( [1,2,10]). Let E be a smooth, strictly conver and reflexive Banach space.
Let C' be a nonempty, closed and convex subset of E and let x € E and z € C'. Then, the
following conditions are equivalent:

(1) z=T¢gx;
(2) (z—y,Jr—Jz) >0, VYyeC.

Lemma 2.5 ( [1,2,10]). Let E be a smooth, strictly convex and reflexive Banach space. Let
C be a nonempty, closed and convex subset of E and let x € E. Then

d)(ya HC‘T) + d)(HCiL’,l’) < ¢(ya (E)
forally e C.

Let E be a Banach space and let B be a mapping of E into 22" . The effective domain
of B is denoted by dom(B), that is, dom(B) = {z € F : Bx # 0}. A multi-valued mapping
B on E is said to be monotone if (x — y,u* — v*) > 0 for all x,y € dom(B), u* € Bz, and
v* € By. A monotone operator B on E is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator on E. The following theorem is due
to Browder [5,18]; see also Theorem 3.5.4 in [23].

Theorem 2.6 ( [5,18]). Let E be a uniformly convex and smooth Banach space and let J
be the duality mapping of E into E*. Let B be a monotone operator of E into 28" . Then B
is mazimal if and only if for any r > 0,

R(J+rB)=E",
where R(J + rB) is the range of J + rB.

Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone
operator of E into 2¥". For all z € F and r > 0, we consider the following equation

0€ J(x, —xz)+rBx,.

This equation has a unique solution z,; see [23]. We define J, by z, = J.x. Such a J, is
denoted by
Jo=I+rJ'B)!

and is called the metric resolvent of B. For r > 0, the Yosida approximation A, : £ — E*
is defined by
Ap=tE=T) g
r
Lemma 2.7 ( [4,23]). Let E be a uniformly convex and smooth Banach space and let
B C E x E* be a maximal monotone operator. Let r > 0 and let J,. and A, be the metric
resolvent and the Yosida approximation of B, respectively. Then, the following hold:

(1) (Jrx —u,J(x— Jox)) >0, VzeFE, ueB'0;
(2) (Jyz,Arx) € B, VzeE;

(3) F(J,) = B~10.
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For all x € F and r > 0, we also consider the following equation
Jx € Jx, +rBx,.

This equation has a unique solution x,; see [11]. We define @, by x, = Q,x. Such a @, is
called the generalized resolvent of B. For r > 0, the Yosida approximation B, : E — E* is

defined by

B,x = L‘]QTJS7 Ve € E.
r

The set of null points of B is defined by B~'0 = {z € E: 0 € Bz}. We know that B~10 is
closed and convex; see [23]. In case a Banach space is a Hilbert space, we have that J, = Q,
for all 7 > 0. Such a J, is simply called the resolvent of B.

Lemma 2.8 ( [11]). Let E be a uniformly convex and smooth Banach space and let B C
E x E* be a mazimal monotone operator. Let r > 0 and let Q, and B, be the generalized
resolvent and the Yosida approximation of B, respectively. Then, the following hold:

(1) ¢(u,Qrz) + ¢(Qrx,x) < ¢p(u,x), Yz e E,ue B 10;
(2) (Q.x,Byx) € B, Vx¢€E;
(3) F(Q,)=B~"0.

For a sequence {C,,} of nonempty, closed and convex subsets of a Banach space E, define
s-Li, C, and w-Ls, C, as follows: = € s-Li,, C, if and only if there exists {z,} C E such
that {x,} converges strongly to « and z, € C, for all n € N. Similarly, y € w-Ls, C,, if
and only if there exist a subsequence {C,,, } of {C,} and a sequence {y;} C F such that {y;}
converges weakly to y and y; € C,,, for all ¢ € N. If Cy satisfies

Cy=sLiC, = w-LsC,, (2.7)

it is said that {C,, } converges to Cj in the sense of Mosco [12] and we write Cy = M-lim,, o0 Ch,.
It is easy to show that if {C,} is nonincreasing with respect to inclusion, then {C,} con-
verges to ()2, Cy, in the sense of Mosco. For more details, see [12]. The following lemma

was proved by Tsukada [34].

Lemma 2.9 ( [34]). Let E be a uniformly convex Banach space. Let {Cy,} be a sequence
of monempty, closed and convex subsets of E. If Cy =M-lim,, .., C), exists and nonempty,
then for each x € E, {Pc, x} converges strongly to Pc,x, where Po, and Pc, are the mertic
projections of E onto C, and Cy, respectively.

Four Results under the Hybrid Method

In this section, using the hybrid method by Nakajo and Takahashi [14] we obtain strong
convergence theorems for finding a solution of the split common null point problem in two
Banach spaces. See also [15,19] for the hybrid method. The following lemma was proved by
Takahashi [26].

Lemma 3.1 ( [26]). Let E and F be strictly convez, reflexive and smooth Banach spaces and
let Jg and Jg be the duality mappings on E and F, respectively. Let A and B be mazximal
monotone operators of E into 28" and F into 2 such that A='0 # 0 and B=0 # 0,
respectively. Let J{* and Jf be the metric resolvents of A for A > 0 and B for u > 0,
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respectively. Let T : E — F be a bounded linear operator such that T' # 0 and let T* be the
adjoint operator of T. Suppose that A~0NT~1(B~10) # 0. Let A\,p,7 > 0 and z € E.
Then the following are equivalent:

(i) z=Jd(z = rJg' T*Jp(Tz — JBT2));
(i) z € A='0NT-(B~10).
Hojo and Takahashi [9].also proved the following lemma..

Lemma 3.2 ( [9]). Let E and F be uniformly convex and smooth Banach spaces and let
Jg and Jp be the duality mappings on E and F, respectively. Let A and B be maximal
monotone operators of E into 2% and F into 2F such that A='0 # § and B=10 # 0,
respectively. Let Q4 and QE be the generalized resolvents of A for A > 0 and B for u > 0,
respectively. Let T : E — F be a bounded linear operator such that T # 0 and let T* be the
adjoint operator of T. Suppose that A~0NT—1(B~10) # 0. Let \,pu,7 > 0 and z € E.
Then the following are equivalent:

(i) 2= Q35" (Jpz — rT*(JpTz — JpQETz));
(i) z € A~'0oN T~ (B~10).

Using the idea of Lemma 3.1, we can solve the split common null point problem for two
metric resolvents of maximal monotone operators with metric projections in two Banach
spaces. The following theorem was proved by Takahashi [27].

Theorem 3.3 ( [27]). Let E and F be uniformly convex and smooth Banach spaces and
let Jg and Jg be the duality mappings on E and F', respectively. Let A and B be mazimal
monotone operators of E into 28" and F into 2" such that A='0 # 0 and B='0 # 0,
respectively. Let Jf and Jf be the metric resolvents of A for A > 0 and B for u > 0,
respectively. Let T : E — F be a bounded linear operator such that T # 0 and let T* be the
adjoint operator of T. Suppose that A~10NT~Y(B~10) # (0. Let x1 € E and let {x,,} be a
sequence generated by

2 =Tn — pnJ g T*Jp(Tay — JB Tay),
Yn = J)f‘nzm

Cpn={2€FE: {2z — 2, Jg(xn — 2)) >0},
D,={2€E: {yn—2,J5(zn —yn)) > 0},
Qn=4{2€E:{(x,— 2z Jg(x1 —x,)) > 0},
Tn+1 = Po,np,nQ. 21, Yn €N,

where {\,}, {pn} C (0,00) satisfy that for some a,b,c € R,

1
O<a§un§b<WandO<c§/\n, Vn € N.
Then the sequence {x,} converges strongly to a point zg € A~10NT~1(B~10), where zy =
Py-10nr-1(B-10)21-

Using the idea of Lemma 3.2, we can solve the split common null point problem for two
generalized resolvents of maximal monotone operators with generalized projections in two
Banach spaces. The following was proved by TTakahashi [28]
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Theorem 3.4 ( [28]). Let E and F be uniformly conver and uniformly smooth Banach
spaces and let Jg and Jp be the duality mappings on E and F, respectively. Let A and
B be mazimal monotone operators of E into 2¥  and F into 2F  such that A=10 # § and
B710 #£ 0, respectively. Let Qf and Qf be the generalized resolvents of A for A >0 and B
for u > 0, respectively. Let T : E — F be a bounded linear operator such that T # 0 and let
T* be the adjoint operator of T. Suppose that A~*0NT~1(B710) # 0. Let x1 € E and let
{zn} be a sequence generated by

Zn = Jbil(JExn —r,T*(JpTx, — JFQEn’Tx,L)),

Yn = anzna

Cn={2€FE:2x,—z,Jpx, — Jgzn) > rnqSF(T;vn,anTxn)},
D,={z€E:(y,—z,Jgzn — Jgyn) > 0},
Qn={z€FE:(xy,— 2z Jegx1 — Jgz,) > 0},

Tnt1 = e, np,ng, 71, VN €N,

where {\,}, {un} C (0,00) satisfy that for some a,b € R,

0<a<r, <

1
ST and 0 <b< Ay, ity VneN.

Then the sequence {x,} converges strongly to a point zg € A~'0NT~1(B~10), where zy =
HAflomTfl(Bflo)ﬂUl-

The following is the hybrid method of solving the split common null point problem for
metric resolvents and generalized resolvents of maximal monotone operators with generalized
projections in two Banach spaces. The following was proved by Takahashi [30].

Theorem 3.5 ( [30]). Let E and F be uniformly convexr and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let A,B C E x E*
be maximal monotone operators and let G C F x F* be a maximal monotone operator. Let
J,‘f = (I +pJgtA)~1 be the metric resolvent of A for all u > 0, let Q¥ = (Jp+AB)~'Jg be
the generalized resolvent of B for all A > 0 and let QnG = (Jrp +1nG)~1J be the generalized
resolvent of G for allm > 0. Let T : E — F be a bounded linear operator such that T # 0
and let T* be the adjoint operator of T'. Suppose that

Q=A"onBronTHGt0) £ 0.
Let 1 € E and let {x,} be a sequence generated by

Zn = ng(JExn —r,T*(JpTx, — JFQ,C];nTxn)),

Yn = J,fnzm

Up = anyna

B, ={2 € E: 2(yn — 2, JgYn — JEUn) = OE(Yn,Un) + OE(Un,Yn)},
Cn={z€ E: 2@y —2,Jprn — Jpzn) > rndr(Ta,, Q5 Tay)},
Dp={z€ E:(zn—2,Ju(zn — yn)) = 20 — ynl*},

Qn=1{2€ E:{(x,— 2z Jgx1 — Jpz,) > 0},

ZTn+1 = Up,nc,AD.nQ.T1, YN €N,

where {rp}, { A}, {tn}, {nn} C (0,00) and a,b € R satisfy the following inequalities:

O<a<mr, and bSAnaMnannv Vn € N.

< L
— Tl
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Then the sequence {x,} converges strongly to a point zg € Q, where zy = lgx;.

Finally, using the hybrid method, we solve the split common null point problem for gener-
alized resolvents and metric resolvents of maximal onotone operators with metric projections
in two Banach spaces. The following was proved by Takahashi [30].

Theorem 3.6 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let A,B C E x E*
be maximal monotone operators and let G C F x F* be a maximal monotone operator. Let
Ql‘;‘ = (Jg+pA)~'Jg be the generalized resolvent of A for all p > 0, let JZ = (I+\J;'B)~!
be the metric resolvent of B for all A\ > 0 and let Jf = (I+77J;1G)_1 be the metric resolvent
of G for allm > 0. Let T : E — F be a bounded linear operator such that T # 0 and let T*
be the adjoint operator of T. Suppose that

Q=A"tonBlonT1(G10) # 0.
Let x1 € E and let {x,} be a sequence generated by

2 =@y — g T Jp(Tay — JG Tay),

Yn = ;‘,,LGa

Uy = Jﬁyn,

By ={2€E:(yn — 2, J(Yn — un)) > |lyn — U’TL||2}7
Cn={2€FE:{z,— 2z, Jg(xy — 2,)) >0},

D, ={2€ E:2(zy, — 2,Jp2n — JEYn) > O8(2n,Yn)},
Qn={2€FE:{x,—z Jg(x1 —x,)) > 0},

ZTn+1 = PB,nc,nD.nQ,.T1, YN EN,

where {rn}, { A}, {tn}, {nn} C (0,00) and a,b € R satisfy the following:

O0<a<r,<

1
_W and b < Ap, tin,Mn, VneN.

Then the sequence {x,} converges strongly to a point wy € Q, where wy = Pox;.

Four Results under the Shrinking Projection Method

Using the shrinking projection method by Takahashi, Takeuchi and Kubota [31], we can
solve the split common null point problem for two metric resolvents of maximal monotone

operators with metric projections in two Banach spaces. The following theorem was proved
by Takahashi and Takahashi [?].

Theorem 4.1 ( [?]). Let E and F be uniformly convex and smooth Banach spaces and let
JEg and Jp be the duality mappings on E and F, respectively. Let A and B be maximal
monotone operators of E into 2% and F into 2F such that A='0 # 0 and B='0 # 0,
respectively. Let Jf and Jf be the metric resolvents of A for A > 0 and B for p > 0,
respectively. Let T : E — F be a bounded linear operator such that T # 0 and let T be the
adjoint operator of T. Suppose that A=*0NT~1(B~10) # 0. Let x+1 € E and let C; = E.
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Let {x,} be a sequence generated by

2 =Ty — pd g T Jp (T — JB Tay),
Yn = anzm
Cry1=1{2€Ch:{(zn— 2, Je(xy —2,)) >0
and  (yn — 2, Jg(zn — yn)) > 0},
Tny1 = Po,,, 1, VneN,

where {ny}, { A}, {tn} C (0,00) satisfy the following conditions such that for some a,b,c €
R

)

0<a<n|T|?<b<land0<c<\,pn, VneN.

Then the sequence {x,} converges strongly to a point w; € A='0N T~Y(B~10), where
w1 = Py-10n7-1(B-10)Z1-

Next, using the shrinking projection method, we can solve the split common null point
problem for two generalized resolvents of maximal monotone operators with generalized
projections in two Banach spaces. The following theorem was proved by Takahashi and
Takahashi [20].

Theorem 4.2 ( [20]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let Jg and Jp be the duality mappings on E and F, respectively. Let A and
B be mazimal monotone operators of E into 28" and F into 25 such that A=10 # 0 and
B0 # 0, respectively. Let Q4 and Qf be the generalized resolvents of A for A > 0 and B
for > 0, respectively. Let T : E — F be a bounded linear operator such that T # 0 and let
T* be the adjoint operator of T. Suppose that A~'0NT~1(B~10) # 0. Let x; € E and let
Cy = E. Let {z,} be a sequence generated by

Zp = ng(JExn —r,T*(JpTx, — JFanTxn)),

Yn = anzm

Crs1={z€Cp:2an — 2, Jpxn — Jpzn) = 1ndp(Trn, QF Tiy)
and  (yn — 2, Jgzn — Jgyn) > 0},

Tny1 =lg, 71, Yn €N,

where {r, },{\n}, {un} C (0,00) satisfy the following conditions such that for some a,b € R,

0<a<r, and 0 < b < A\, pttp, Vn€eN.

_ 1
— TP

Then the sequence {x,} converges strongly to a point w; € A='0N T~Y(B710), where
wy = g-10n7-1(B-10)21-

The following is the shrinking projection method of solving the split common null point
problem for metric resolvents and generalized resolvents of maximal monotone operators with
generalized projections in two Banach spaces. The following was proved by Takahashi [29].

Theorem 4.3 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let A,B C E x E*
be mazimal monotone operators and let G C F x F* be a mazimal monotone operator. Let
J"f = (I+pJz"A)~" be the metric resolvent of A for all 1> 0, let Q¥ = (Jg +AB)~'Jg be
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the generalized resolvent of B for all A > 0 and let Q,]G = (Jr +nG)~YJ be the generalized
resolvent of G for allm > 0. Let T : E — F be a bounded linear operator such that T # 0
and let T™ be the adjoint operator of T'. Suppose that

Q=AtonBlonTH(G10) # 0.
For x1 € E and Cy; = E, let {z,} be a sequence generated by
2 =Jg' (Jptn — T (JpTan — JrQS Txy)),
Yn = anzna
Un = anynv
Chy1 = {Z ey 2<yn — 2, JEYn — JEun> > ¢E(yn7un) + ¢E(un7yn)7
(zn — 2, JE(2n — Yn)) > |l2n — yn||2
and 2<xn -z, Jex, — JEZn> > Tn¢F(Txn> Q,C];nTﬂCn)},

Tny1 =g, 71 Vn €N,

where {ru}, {\n}, {tn}, {nn} C (0,00) and a,b € R satisfy the following:

0<a<mr, and 0<b< Ap, tn,Mn, Vn €N,

< 1
— Tl
Then the sequence {x,} converges strongly to a point zy € 0, where zg = llgx;.

Finally, using the shrinking method, we solve the split common null point problem for
generalized resolvents and metric resolvents of maximal onotone operators with metric pro-
jections in two Banach spaces. The following was proved by Takahashi [29].

Theorem 4.4 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let A,B C E x E*
be maximal monotone operators and let G C F x F* be a maximal monotone operator. Let
QI’:‘ = (Jg+pA)~'Jg be the generalized resolvent of A for all p > 0, let JZ = (I+\J;'B)~!
be the metric resolvent of B for all A > 0 and let JS = (I+1J5"'G)™! be the metric resolvent
of G for allm > 0. Let T : E — F be a bounded linear operator such that T # 0 and let T*
be the adjoint operator of T. Suppose that

Q=AtonBtonTH(G10) # 0.
Forzy € E and C; = E, let {x,} be a sequence generated by
2 =an — T d g T Jp(Tay — JS Tay),

— DA

Yn = Qannv
_ 7B

Up = J)\nyn7

Cn+1 = {Z eCy: <yn —Zz, J(yn - un)> > ||yn - un||2a
2(zn — 2, JEZ0 — JEYR) > OE(Zn, Yn)
and (zn — 2z, Jgp(Tn — 2zn)) > 0 },

Tny1 = Pc, . 71, YneN,

where {rp}, { .}, {tn}, {mn} C (0,00) and a,b € R satisfy the following inequalities

0<a<m, and 0 <b < Apypin, M, Vn €N

< L
— TP

Then the sequence {x,} converges strongly to a point wy € §, where w1 = Pox1.



SOLVING THE SPLIT COMMON NULL POINT PROBLEM IN TWO BANACH SPACES 143

Applications

In this section, using Theorems 3.5 and 3.6, we get new strong convergence theorems which
are connected with the split feasibility problem and the split common null point problem in
two Banach spaces. Let E be a Banach space and let f : E — (—o0, 00| be a proper, lower
semicontinuous and convex function. Define the subdifferential of f as follows:

Of (x) ={a" € E": f(y) = {y —x,2") + f(x), Vy € E}

for all x € E. Then we know that 0f is a maximal monotone operator; see [17] for more
details. Let C' be a nonempty, closed and convex subset of E and let i be the indicator

function, that is,
. 0, zedC,
10 =
oo, z¢C.
Then we have that dic is a maximal monotone operator and the generalized resolvent

@, = Il for all » > 0, where Il is the generalized projection of E onto C'. In fact, for any
xz € F and r > 0, we have from Lemma 2.4 that

z=Qrr < Jz+rdic(z) 3 Jz
< Jr— Jz € rdic(z)
) Jr—Jz )
< ic(y) > <y -z, T> +ic(z), Vy e E
0> (y—zJe—Jz), Vyel
&z = i ,
z arggggMy )

&z =1l¢.

Furthermore, the metric resolvent J,. = P¢ for all r > 0, where P¢ is the metric projection
of F onto C. In fact, for any z € F and r > 0, we have that

z=Jx e J(z—x)+1dic(z) 50
< J(z —2) € rdic(z)
x

J(x —2)

Sicy) 2y 52 +ic(), Vy € E

S0>y—2Jx—2), Vyel
& 2= Po.

As a direct consequence of Theorem 3.5, we have the following theorem for finding a
solution of the split common null point problem in two Banach spaces.

Theorem 5.1 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let A,B C E x E*
be mazimal monotone operators and let G C F x F* be a mazximal monotone operator. Let
J,‘f = (I +pJg A)~! be the metric resolvent of A for all u > 0, let Q¥ = (Jp+AB)~Jg be
the generalized resolvent of B for all A > 0 and let QnG = (Jr +nG)~YJ be the generalized
resolvent of G for alln > 0. Let T : E — F be a bounded linear operator such that T # 0
and let T be the adjoint operator of T'. Suppose that

Q=A"'0onBronTHG0) £ 0.



144 WATARU TAKAHASHI

Let x1 € E and let {x,,} be a sequence generated by

Zn = ng(JExn —r,T*(JpTx, — JFQ,C];Tmn)),

Yn = J;?Zna

Up = nym

B, ={2€ E:2(yn — 2, Jgyn — JEUn) > O£ (Yn,tun) + OE(Un,Yn)},
C,={z€E:2x,— 2z Jgx, — Jpz,) > rnczﬁp(T:cn,Qfon)},

Dy ={2€ E: (25 — 2,J5(zn — yn)) = 20 — ynll*},

Qn={2z€ E:{(x, — 2z, Jgx1 — Jgx,) > 0},

Tny1 = Up,nc,nD.n@. 71, YR EN,

where {r,} C (0,00) and a € R satisfy the following inequalities:

O<a<mr, Vn € N.

< 1
— T
Then the sequence {x,} converges strongly to a point zg € Q, where zo = lgx.

Next, using Theorem 3.5, we have the following theorem for finding a solution of the
split feasibility problem in two Banach spaces.

Theorem 5.2 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let Jg and Jp be the duality mappings on E and F', respectively. Let C' and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F. Let Pg be the metric projection of E onto C, let Ilg be the generalized projection of E
onto C. and let Iy be the generalized projection of F onto H. Let T : E — F be a bounded
linear operator such that T # 0 and let T™ be the adjoint operator of T. Suppose that

Q=CNDNT 'H +#0.
Let x1 € E and let {x,} be a sequence generated by

2o = Jg' (Jpzn — T (JpTa, — JpllgTay,)),

Yn = PCZn7

Unp = HDynv

B, ={2€ E:2(yy — 2, Jgyn — JEUn) > OE(Yn,tun) + GE(Un,Un)},
Cn - {Z S E: 2<-rn -z, JExn - JEZn> Z Tn¢F(Txn7HHTxn)}a

D, = {Z EE: <zn —Z JE(Zn - yn)> > ”Zn - ynHQ}’:

Qn={2€ E:(x, —2z,Jpx1 — Jpzs) > 0},

Tn+1 =g, nc,.nD.nQ,.T1, Vn €N,

where {r,} C (0,00) and a € R satisfy the following inequalities:

O<a<nmr, Vn € N.

< 1
— TP
Then the sequence {x,} converges strongly to a point zy € Q, where zg = ;.

Proof. We have that QnGn = 11y, J/fn = P and anyn = Pip in Theorem 3.5. Therefore,
we have the desired result from Theorem 3.5. O
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Similarly, using Theorem 3.6, we have the following strong convergence theorems for the
split common null point problem and the split feasibility problem in two Banach spaces.

Theorem 5.3 ([30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let A,B C E x E*
be maximal monotone operators and let G C F x F* be a maximal monotone operator. Let

4 = (Jp+nA)~ g be the generalized resolvent of A for all u > 0, let JP = (I+M\J5'B)~!
be the metric resolvent of B for all A > 0 and let J,? = (I—i—nJ;lG)_l be the metric resolvent

of G for alln > 0. Let T : E — F be a bounded linear operator such that T # 0 and let T*
be the adjoint operator of T. Suppose that

Q=A"'0onB'onTH(G10) #0.
Let x1 € E and let {x,,} be a sequence generated by

2 =Ty — P T Jp(Tay — JSTy),

Yn = Qﬁ%u

Up = J)\Bynv

B, = {Z EL: <yn —Z, J(yn _un» > Hyn - UTLH2}7
Co={2€E:{zn— 2, Jg(xn —2z,)) >0},

D,, = {Z ck: 2<Zn — 2z, Jezn — JEyn> > (bE(Znayn)}v
Qn=1{2z€FE:{(x, — 2, Jep(x1 —x,)) > 0},

ZTnt1 = PB,nc.nD.nQ,.T1, YN EN,

where {r,} C (0,00) and a € R satisfy the following:

O<a<mr, Vn € N.

< 1
A
Then the sequence {x,} converges strongly to a point wy € €, where wy = Pox;.

Theorem 5.4 ( [30]). Let E and F be uniformly conver and uniformly smooth Banach
spaces and let Jg and Jp be the duality mappings on E and F, respectively. Let C' and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F. Let Il be the generalized projection of E onto C, let Pp be the metric projection of
FE onto D and let Py be the metric projection of F onto H. Let T : E — F be a bounded
linear operator such that T # 0 and let T™ be the adjoint operator of T. Suppose that

Q=CNDNT 'H #0.

Let x1 € E and let {x,,} be a sequence generated by

Zn = Ty — rnngT*Jp(Txn — PyTx,,),

yn = leozy,

Un = PDyna

Bn={2 € E: (yn — 2, J(Yn — un)) > [lyn — UnH2}7
Chn=4{2€E:{(z,— 2z, Jg(x, — 2z)) > 0},

Dy ={2€ E:2(z, — 2,Jp2n — JEYn) > ¢8(Zn,yn)},
Qn={2€FE:{(x,— 2z Jg(x1 —x,)) > 0},

ZTn+1 = Pp,nc,nD,n0,T1, Vn €N,
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where {r,} C (0,00) and a € R satisfy the following:

1

TG Vn € N.

O0<a<r,<

Then the sequence {x,} converges strongly to a point wy € Q, where wy = Pox;.

As a direct consequence of Theorem 4.3, we can also prove the following theorem for
finding a solution of the split common null point problem in two Banach spaces.

Theorem 5.5 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jg be the duality mappings on E and F, respectively. Let A,B C E x E*
be maximal monotone operators and let G C F' x F* be a mazimal monotone operator. Let
Jl‘:‘ = (I +pJ5  A)~ be the metric resolvent of A for all u > 0, let Q¥ = (Jg +AB)™1Jg be
the generalized resolvent of B for all A > 0 and let QnG = (Jr +nG)~1J be the generalized
resolvent of G for alln > 0. Let T : E — F be a bounded linear operator such that T # 0
and let T be the adjoint operator of T. Suppose that

Q=AtonBlonT 1 (G10) # 0.
Forzy € E and C; = E, let {x,} be a sequence generated by

2 =Jg' (Jpan — roT*(JpTan — JrQSTay)),
Yn = Sz,
U = Q¥ yn,
Cny1 = {Z € Cn 2 2(Yn — 2, JEYn — JEUR) = OE(Yn, Un) + OB (Un, Yn),
(zn — 2, JE(2n — Yn)) > |l2n — yn||2
and  2{xy, — 2z, Jgxn — Jgzn) > rndp (T, Q%’;Txn)},

Tny1 =g, x1 VR eEN,

where {r,} C (0,00) and a € R satisfy the following:

O<a<mr, Vn € N.

< 1
— TP
Then the sequence {x,} converges strongly to a point zg € Q, where zo = g

Next, using Theorem 4.3, we have the following theorem for finding a solution of the
split feasibility problem in two Banach spaces.

Theorem 5.6 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let Jg and Jp be the duality mappings on E and F, respectively. Let C' and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F. Let Pc be the metric projection of E onto C, let Il be the generalized projection of E
onto C'. and let Il be the generalized projection of F onto H. Let T : E — F be a bounded
linear operator such that T # 0 and let T* be the adjoint operator of T'. Suppose that

Q=CNDNT'H #0.
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Forzy € E and Cy = E, let {x,} be a sequence generated by

Zp = ng(JE:En —r,T*(JpTx, — JFHHTxn)),

Yn = Pozn,

un, = Ipyn,

Cny1 = {Z € Cn : 2(Yn — 2, JeYn — JEUR) = OE(Yn, Un) + OB (Un, Yn),
(2 = 2, J6(20 = Yn)) 2 120 — ynl?

and 2(xp, — 2z, Jgxy — Jgzn) > radr(Ta,, HHT:vn)}7

Tny1 =g, 71 VneN,

where {r,} C (0,00) and a € R satisfy the following:

0<a<r, Vn € N.

< 1
~ 7y
Then the sequence {x,} converges strongly to a point zg € Q, where zy = lgxy.

Proof. We have that Q,?n = Iy, Jlf‘n = Pc and an Yn = Pip in Theorem 4.3. Therefore,
we have the desired result from Theorem 4.3. O

Similarly, using Theorem 4.4, we have the following strong convergence theorems for the
split common null point problem and the split feasibility problem in two Banach spaces.

Theorem 5.7 ([29]). Let E and F be uniformly convexr and uniformly smooth Banach spaces
and let Jg and Jg be the duality mappings on E and F, respectively. Let A,B C E x E*
be mazimal monotone operators and let G C F' X F* be a mazimal monotone operator. Let
Qﬁ = (Jg+pA) " Jg be the generalized resolvent of A for all u > 0, let JP = (I—I—)\JElB)’l
be the metric resolvent of B for all A\ > 0 and let Jf = (I—I—nJ;lG)_l be the metric resolvent
of G for allm > 0. Let T : E — F be a bounded linear operator such that T # 0 and let T*
be the adjoint operator of T'. Suppose that

Q=AtonBtonTH(Gt0) # 0.
Forzy € E and Cy, = E, let {x,} be a sequence generated by

2 = n — T d g T*Jp(Tan — J$T2y),
Yn = Qi 2n,
Uy = nyn,
Cusr = {2 € Cu: (g = 2, T (g = un)) = lym — %,
2(zn — 2, Jp2n — JEYn) > OE(2n,Yn)
and {2y — 2z, Jp(xn — 2,)) >0 }7

Tny1 = Po,,, 71, VneN,

where {r,} C (0,00) and a € R satisfy the following inequalities

O<a<r, Vn € N.

1
AT

Then the sequence {x,} converges strongly to a point wy € §, where w; = Pox.
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Theorem 5.8 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let Jg and Jp be the duality mappings on E and F', respectively. Let C' and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F. Let Il be the generalized projection of E onto C, let Pp be the metric projection of
E onto D and let Py be the metric projection of F onto H. Let T : E — F be a bounded
linear operator such that T # 0 and let T* be the adjoint operator of T'. Suppose that

Q=CNDNT'H +#9.

For xy € E and Cy, = E, let {x,} be a sequence generated by

2n = 2p — T d g T* Jp(T2y — PuT,),
Yn = Heozn,
Un = Ppyn,
Gt = {2 € Cut (g = 2T = a)) 2 = wall,
2(zn — 2, JE2n — JEYR) = OE(Zn, Yn)
and {(z, — 2z, Jg(xn — 2,)) >0 },

Tny1 = Pc, 71, YneN,

where {r,} C (0,00) and a € R satisfy the following inequalities

O0<a<mr, Vn € N.

_ 1
— AT

Then the sequence {x,} converges strongly to a point wy € Q, where wy = Pox;.
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