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operator [3], where T ∗ is the adjoint operator of T and PQ is the metric projection of H2

onto Q. Furthermore, if D ∩ T−1Q is nonempty, then z ∈ D ∩ T−1Q is equivalent to

z = PD(I − λT ∗(I − PQ)T )z, (1.1)

where λ > 0 and PD is the metric projection of H1 onto D. Furthermore, if G−10 ∩
T−1(B−10) is nonempty, then for γ > 0, z ∈ G−10 ∩ T−1(B−10) is equivalent to

z = Jλ(I − γT ∗(I −Qµ)T )z, (1.2)

where Jλ and Qµ are the resolvents of G for λ > 0 and B for µ > 0, respectively. Using such
results regarding nonlinear operators and fixed points, many authors have studied the split
feasibility problem, the split common null point problem and the split common fixed point
problem; see, for instance, [3, 6, 32, 33]. However, it is difficult to have such results outside
Hilbert spaces. Takahashi [25, 26] and Hojo and Takahashi [9] extended the results of (1.1)
and (1.2) in Hilbert spaces to Banach spaces; see Section 3.

In this article, we deal with the split common null point problem in two Banach spaces.
We first prove strong convergence theorems under the hybrid method by Nakajo and Taka-
hashi [14] for metric resolvents and generalized resolvents of maximal monotone operators
with metric projections and generalized projections in two Banach spaces. Furthermore,
using the shringking projection method by Takahashi, Takeuchi and Kubota [31] we prove
strong convergence theorems for two resolvents of maximal monotone operators with two
projections in two Banach spaces. Using these results, we get new results which are con-
nected with the split feasibility problem in two Banach spaces.

2 Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of E. We denote
the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence in E, we denote the
strong convergence of {xn} to x ∈ E by xn → x and the weak convergence by xn ⇀ x. The
modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if δ(ϵ) > 0 for
every ϵ > 0. It is known that a Banach space E is uniformly convex if and only if for any
two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex and
reflexive. We also know that a uniformly convex Banach space has the Kadec-Klee property,
i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [8, 16].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)



SOLVING THE SPLIT COMMON NULL POINT PROBLEM IN TWO BANACH SPACES 135

exists. In this case, E is called smooth. We know that E is smooth if and only if J is a
single-valued mapping of E into E∗. The norm of E is said to be Fréchet differentiable if
for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . The norm of E is said to
be uniformly smooth if the limit (2.1) is attained uniformly for x, y ∈ U . If E is uniformly
smooth, then J is uniformly norm-to-norm continuous on each bounded subset of E. We
also know that E is reflexive if and only if J is surjective, and E is strictly convex if and
only if J is one-to-one. Therefore, if E is a smooth, strictly convex and reflexive Banach
space, then J is a single-valued bijection and in this case, the inverse mapping J−1 coincides
with the duality mapping J∗ on E∗. For more details, see [22,23].

Lemma 2.1 ( [22]). Let E be a smooth Banach space and let J be the duality mapping on
E. Then, ⟨x − y, Jx − Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly convex and
⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let E be a smooth Banach space and let J be the duality mapping on E. Define a
function ϕE : E × E → R by

ϕE(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E. (2.2)

In the case when E is clear, ϕE is simply denoted by ϕ. Observe that, in a Hilbert space H,
ϕ(x, y) = ∥x− y∥2 for all x, y ∈ H. Furthermore, we know that for each x, y, z, w ∈ E,

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2; (2.3)

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩; (2.4)

2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w). (2.5)

If E is additionally assumed to be strictly convex, then

ϕ(x, y) = 0 if and only if x = y. (2.6)

The following lemma was proved by Kamimura and Takahashi [10].

Lemma 2.2 ( [10]). Let E be a uniformly convex and smooth Banach space and let {yn},
{zn} be two sequences of E. If ϕ(yn, zn) → 0 and either {yn} or {zn} is bounded, then
yn − zn → 0.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach
space E. Then we know that for any x ∈ E, there exists a unique element z ∈ C such that
∥x − z∥ ≤ ∥x − y∥ for all y ∈ C. Putting z = PCx, we call PC the metric projection of E
onto C. We know the following result.

Lemma 2.3 ( [22]). Let E be a smooth, strictly convex and reflexive Banach space. Let C
be a nonempty, closed and convex subset of E and let x ∈ E and z ∈ C. Then, the following
conditions are equivalent:

(1) z = PCx;

(2) ⟨z − y, J(x− z)⟩ ≥ 0, ∀y ∈ C.

For any x ∈ E, we also know that there exists a unique element z ∈ C such that

ϕ(z, x) = min
y∈C

ϕ(y, x).

The mapping ΠC : E → C defined by z = ΠCx is called the generalized projection of E
onto C. The following results are well-known. For example, see [1, 2, 10].
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Lemma 2.4 ( [1, 2, 10]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x ∈ E and z ∈ C. Then, the
following conditions are equivalent:

(1) z = ΠCx;

(2) ⟨z − y, Jx− Jz⟩ ≥ 0, ∀y ∈ C.

Lemma 2.5 ( [1,2,10]). Let E be a smooth, strictly convex and reflexive Banach space. Let
C be a nonempty, closed and convex subset of E and let x ∈ E. Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x)

for all y ∈ C.

Let E be a Banach space and let B be a mapping of E into 2E
∗
. The effective domain

of B is denoted by dom(B), that is, dom(B) = {x ∈ E : Bx ̸= ∅}. A multi-valued mapping
B on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all x, y ∈ dom(B), u∗ ∈ Bx, and
v∗ ∈ By. A monotone operator B on E is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator on E. The following theorem is due
to Browder [5, 18]; see also Theorem 3.5.4 in [23].

Theorem 2.6 ( [5, 18]). Let E be a uniformly convex and smooth Banach space and let J
be the duality mapping of E into E∗. Let B be a monotone operator of E into 2E

∗
. Then B

is maximal if and only if for any r > 0,

R(J + rB) = E∗,

where R(J + rB) is the range of J + rB.

Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone
operator of E into 2E

∗
. For all x ∈ E and r > 0, we consider the following equation

0 ∈ J(xr − x) + rBxr.

This equation has a unique solution xr; see [23]. We define Jr by xr = Jrx. Such a Jr is
denoted by

Jr = (I + rJ−1B)−1

and is called the metric resolvent of B. For r > 0, the Yosida approximation Ar : E → E∗

is defined by

Arx =
J(x− Jrx)

r
, ∀x ∈ E.

Lemma 2.7 ( [4, 23]). Let E be a uniformly convex and smooth Banach space and let
B ⊂ E × E∗ be a maximal monotone operator. Let r > 0 and let Jr and Ar be the metric
resolvent and the Yosida approximation of B, respectively. Then, the following hold:

(1) ⟨Jrx− u, J(x− Jrx)⟩ ≥ 0, ∀x ∈ E, u ∈ B−10;

(2) (Jrx,Arx) ∈ B, ∀x ∈ E;

(3) F (Jr) = B−10.
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For all x ∈ E and r > 0, we also consider the following equation

Jx ∈ Jxr + rBxr.

This equation has a unique solution xr; see [11]. We define Qr by xr = Qrx. Such a Qr is
called the generalized resolvent of B. For r > 0, the Yosida approximation Br : E → E∗ is
defined by

Brx =
Jx− JQrx

r
, ∀x ∈ E.

The set of null points of B is defined by B−10 = {z ∈ E : 0 ∈ Bz}. We know that B−10 is
closed and convex; see [23]. In case a Banach space is a Hilbert space, we have that Jr = Qr

for all r > 0. Such a Jr is simply called the resolvent of B.

Lemma 2.8 ( [11]). Let E be a uniformly convex and smooth Banach space and let B ⊂
E × E∗ be a maximal monotone operator. Let r > 0 and let Qr and Br be the generalized
resolvent and the Yosida approximation of B, respectively. Then, the following hold:

(1) ϕ(u,Qrx) + ϕ(Qrx, x) ≤ ϕ(u, x), ∀x ∈ E, u ∈ B−10;

(2) (Qrx,Brx) ∈ B, ∀x ∈ E;

(3) F (Qr) = B−10.

For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space E, define
s-Lin Cn and w-Lsn Cn as follows: x ∈ s-Lin Cn if and only if there exists {xn} ⊂ E such
that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N. Similarly, y ∈ w-Lsn Cn if
and only if there exist a subsequence {Cni

} of {Cn} and a sequence {yi} ⊂ E such that {yi}
converges weakly to y and yi ∈ Cni

for all i ∈ N. If C0 satisfies

C0 = s-Li
n
Cn = w-Ls

n
Cn, (2.7)

it is said that {Cn} converges to C0 in the sense of Mosco [12] and we write C0 = M-limn→∞ Cn.
It is easy to show that if {Cn} is nonincreasing with respect to inclusion, then {Cn} con-
verges to

∩∞
n=1 Cn in the sense of Mosco. For more details, see [12]. The following lemma

was proved by Tsukada [34].

Lemma 2.9 ( [34]). Let E be a uniformly convex Banach space. Let {Cn} be a sequence
of nonempty, closed and convex subsets of E. If C0 =M-limn→∞ Cn exists and nonempty,
then for each x ∈ E, {PCn

x} converges strongly to PC0
x, where PCn

and PC0
are the mertic

projections of E onto Cn and C0, respectively.

3 Four Results under the Hybrid Method

In this section, using the hybrid method by Nakajo and Takahashi [14] we obtain strong
convergence theorems for finding a solution of the split common null point problem in two
Banach spaces. See also [15,19] for the hybrid method. The following lemma was proved by
Takahashi [26].

Lemma 3.1 ( [26]). Let E and F be strictly convex, reflexive and smooth Banach spaces and
let JE and JF be the duality mappings on E and F , respectively. Let A and B be maximal
monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and B−10 ̸= ∅,

respectively. Let JA
λ and JB

µ be the metric resolvents of A for λ > 0 and B for µ > 0,
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respectively. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the
adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let λ, µ, r > 0 and z ∈ E.
Then the following are equivalent:

(i) z = JA
λ

(
z − rJ−1

E T ∗JF (Tz − JB
µ Tz)

)
;

(ii) z ∈ A−10 ∩ T−1(B−10).

Hojo and Takahashi [9].also proved the following lemma..

Lemma 3.2 ( [9]). Let E and F be uniformly convex and smooth Banach spaces and let
JE and JF be the duality mappings on E and F , respectively. Let A and B be maximal
monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and B−10 ̸= ∅,

respectively. Let QA
λ and QB

µ be the generalized resolvents of A for λ > 0 and B for µ > 0,
respectively. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the
adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let λ, µ, r > 0 and z ∈ E.
Then the following are equivalent:

(i) z = QA
λ J

−1
E

(
JEz − rT ∗(JFTz − JFQ

B
µ Tz)

)
;

(ii) z ∈ A−10 ∩ T−1(B−10).

Using the idea of Lemma 3.1, we can solve the split common null point problem for two
metric resolvents of maximal monotone operators with metric projections in two Banach
spaces. The following theorem was proved by Takahashi [27].

Theorem 3.3 ( [27]). Let E and F be uniformly convex and smooth Banach spaces and
let JE and JF be the duality mappings on E and F , respectively. Let A and B be maximal
monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and B−10 ̸= ∅,

respectively. Let JA
λ and JB

µ be the metric resolvents of A for λ > 0 and B for µ > 0,
respectively. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the
adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ E and let {xn} be a
sequence generated by

zn = xn − µnJ
−1
E T ∗JF (Txn − JB

µn
Txn),

yn = JA
λn

zn,

Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : ⟨yn − z, JE(zn − yn)⟩ ≥ 0},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PCn∩Dn∩Qn

x1, ∀n ∈ N,

where {λn}, {µn} ⊂ (0,∞) satisfy that for some a, b, c ∈ R,

0 < a ≤ µn ≤ b <
1

∥T∥2
and 0 < c ≤ λn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ A−10 ∩ T−1(B−10), where z0 =
PA−10∩T−1(B−10)x1.

Using the idea of Lemma 3.2, we can solve the split common null point problem for two
generalized resolvents of maximal monotone operators with generalized projections in two
Banach spaces. The following was proved by TTakahashi [28]
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Theorem 3.4 ( [28]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let A and
B be maximal monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and

B−10 ̸= ∅, respectively. Let QA
λ and QB

µ be the generalized resolvents of A for λ > 0 and B
for µ > 0, respectively. Let T : E → F be a bounded linear operator such that T ̸= 0 and let
T ∗ be the adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ E and let
{xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
B
µn

Txn)
)
,

yn = QA
λn

zn,

Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q
B
µn

Txn)},
Dn = {z ∈ E : ⟨yn − z, JEzn − JEyn⟩ ≥ 0},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠCn∩Dn∩Qn

x1, ∀n ∈ N,

where {λn}, {µn} ⊂ (0,∞) satisfy that for some a, b ∈ R,

0 < a ≤ rn ≤ 1

∥T∥2
and 0 < b ≤ λn, µn ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ A−10 ∩ T−1(B−10), where z0 =
ΠA−10∩T−1(B−10)x1.

The following is the hybrid method of solving the split common null point problem for
metric resolvents and generalized resolvents of maximal monotone operators with generalized
projections in two Banach spaces. The following was proved by Takahashi [30].

Theorem 3.5 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
JA
µ = (I+µJ−1

E A)−1 be the metric resolvent of A for all µ > 0, let QB
λ = (JE +λB)−1JE be

the generalized resolvent of B for all λ > 0 and let QG
η = (JF + ηG)−1J be the generalized

resolvent of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0
and let T ∗ be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
G
ηn
Txn)

)
,

yn = JA
µn

zn,

un = QB
λn

yn,

Bn = {z ∈ E : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn)},
Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q

G
ηn
Txn)},

Dn = {z ∈ E : ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠBn∩Cn∩Dn∩Qn

x1, ∀n ∈ N,

where {rn}, {λn}, {µn}, {ηn} ⊂ (0,∞) and a, b ∈ R satisfy the following inequalities:

0 < a ≤ rn ≤ 1

∥T∥2
and b ≤ λn, µn, ηn, ∀n ∈ N.
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Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Finally, using the hybrid method, we solve the split common null point problem for gener-
alized resolvents and metric resolvents of maximal onotone operators with metric projections
in two Banach spaces. The following was proved by Takahashi [30].

Theorem 3.6 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
QA

µ = (JE+µA)−1JE be the generalized resolvent of A for all µ > 0, let JB
λ = (I+λJ−1

E B)−1

be the metric resolvent of B for all λ > 0 and let JG
η = (I+ηJ−1

F G)−1 be the metric resolvent
of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗

be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − JG

ηn
Txn),

yn = QA
µn

zn,

un = JB
λn

yn,

Bn = {z ∈ E : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2},
Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : 2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PBn∩Cn∩Dn∩Qn

x1, ∀n ∈ N,

where {rn}, {λn}, {µn}, {ηn} ⊂ (0,∞) and a, b ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
and b ≤ λn, µn, ηn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.

4 Four Results under the Shrinking Projection Method

Using the shrinking projection method by Takahashi, Takeuchi and Kubota [31], we can
solve the split common null point problem for two metric resolvents of maximal monotone
operators with metric projections in two Banach spaces. The following theorem was proved
by Takahashi and Takahashi [?].

Theorem 4.1 ( [?]). Let E and F be uniformly convex and smooth Banach spaces and let
JE and JF be the duality mappings on E and F , respectively. Let A and B be maximal
monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and B−10 ̸= ∅,

respectively. Let JA
λ and JB

µ be the metric resolvents of A for λ > 0 and B for µ > 0,
respectively. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the
adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ E and let C1 = E.
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Let {xn} be a sequence generated by

zn = xn − ηnJ
−1
E T ∗JF (Txn − JB

µn
Txn),

yn = JA
λn

zn,

Cn+1 = {z ∈ Cn : ⟨zn − z, JE(xn − zn)⟩ ≥ 0

and ⟨yn − z, JE(zn − yn)⟩ ≥ 0},
xn+1 = PCn+1

x1, ∀n ∈ N,

where {ηn}, {λn}, {µn} ⊂ (0,∞) satisfy the following conditions such that for some a, b, c ∈
R,

0 < a ≤ ηn∥T∥2 ≤ b < 1 and 0 < c ≤ λn, µn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ A−10 ∩ T−1(B−10), where
w1 = PA−10∩T−1(B−10)x1.

Next, using the shrinking projection method, we can solve the split common null point
problem for two generalized resolvents of maximal monotone operators with generalized
projections in two Banach spaces. The following theorem was proved by Takahashi and
Takahashi [20].

Theorem 4.2 ( [20]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let A and
B be maximal monotone operators of E into 2E

∗
and F into 2F

∗
such that A−10 ̸= ∅ and

B−10 ̸= ∅, respectively. Let QA
λ and QB

µ be the generalized resolvents of A for λ > 0 and B
for µ > 0, respectively. Let T : E → F be a bounded linear operator such that T ̸= 0 and let
T ∗ be the adjoint operator of T . Suppose that A−10 ∩ T−1(B−10) ̸= ∅. Let x1 ∈ E and let
C1 = E. Let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
B
µn

Txn)
)
,

yn = QA
λn

zn,

Cn+1 = {z ∈ Cn : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q
B
µn

Txn)

and ⟨yn − z, JEzn − JEyn⟩ ≥ 0},
xn+1 = ΠCn+1

x1, ∀n ∈ N,

where {rn}, {λn}, {µn} ⊂ (0,∞) satisfy the following conditions such that for some a, b ∈ R,

0 < a ≤ rn ≤ 1

∥T∥2
and 0 < b ≤ λn, µn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ A−10 ∩ T−1(B−10), where
w1 = ΠA−10∩T−1(B−10)x1.

The following is the shrinking projection method of solving the split common null point
problem for metric resolvents and generalized resolvents of maximal monotone operators with
generalized projections in two Banach spaces. The following was proved by Takahashi [29].

Theorem 4.3 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
JA
µ = (I+µJ−1

E A)−1 be the metric resolvent of A for all µ > 0, let QB
λ = (JE +λB)−1JE be
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the generalized resolvent of B for all λ > 0 and let QG
η = (JF + ηG)−1J be the generalized

resolvent of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0
and let T ∗ be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
G
ηn
Txn)

)
,

yn = JA
µn

zn,

un = QB
λn

yn,

Cn+1 =
{
z ∈ Cn : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn),

⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2

and 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q
G
ηn
Txn)

}
,

xn+1 = ΠCn+1
x1 ∀n ∈ N,

where {rn}, {λn}, {µn}, {ηn} ⊂ (0,∞) and a, b ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
and 0 < b ≤ λn, µn, ηn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Finally, using the shrinking method, we solve the split common null point problem for
generalized resolvents and metric resolvents of maximal onotone operators with metric pro-
jections in two Banach spaces. The following was proved by Takahashi [29].

Theorem 4.4 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
QA

µ = (JE+µA)−1JE be the generalized resolvent of A for all µ > 0, let JB
λ = (I+λJ−1

E B)−1

be the metric resolvent of B for all λ > 0 and let JG
η = (I+ηJ−1

F G)−1 be the metric resolvent
of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗

be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − JG

ηn
Txn),

yn = QA
µn

zn,

un = JB
λn

yn,

Cn+1 =
{
z ∈ Cn : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2,

2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)

and ⟨zn − z, JE(xn − zn)⟩ ≥ 0
}
,

xn+1 = PCn+1x1, ∀n ∈ N,

where {rn}, {λn}, {µn}, {ηn} ⊂ (0,∞) and a, b ∈ R satisfy the following inequalities

0 < a ≤ rn ≤ 1

∥T∥2
and 0 < b ≤ λn, µn, ηn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.
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5 Applications

In this section, using Theorems 3.5 and 3.6, we get new strong convergence theorems which
are connected with the split feasibility problem and the split common null point problem in
two Banach spaces. Let E be a Banach space and let f : E → (−∞,∞] be a proper, lower
semicontinuous and convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ ⟨y − x, x∗⟩+ f(x), ∀y ∈ E}

for all x ∈ E. Then we know that ∂f is a maximal monotone operator; see [17] for more
details. Let C be a nonempty, closed and convex subset of E and let iC be the indicator
function, that is,

iC =

{
0, x ∈ C,

∞, x /∈ C.

Then we have that ∂iC is a maximal monotone operator and the generalized resolvent
Qr = ΠC for all r > 0, where ΠC is the generalized projection of E onto C. In fact, for any
x ∈ E and r > 0, we have from Lemma 2.4 that

z = Qrx ⇔ Jz + r∂iC(z) ∋ Jx

⇔ Jx− Jz ∈ r∂iC(z)

⇔ iC(y) ≥
⟨
y − z,

Jx− Jz

r

⟩
+ iC(z), ∀y ∈ E

⇔ 0 ≥ ⟨y − z, Jx− Jz⟩, ∀y ∈ C

⇔ z = argmin
y∈C

ϕ(y, x)

⇔ z = ΠC .

Furthermore, the metric resolvent Jr = PC for all r > 0, where PC is the metric projection
of E onto C. In fact, for any x ∈ E and r > 0, we have that

z = Jrx ⇔ J(z − x) + r∂iC(z) ∋ 0

⇔ J(x− z) ∈ r∂iC(z)

⇔ iC(y) ≥ ⟨y − z,
J(x− z)

r
⟩+ iC(z), ∀y ∈ E

⇔ 0 ≥ ⟨y − z, J(x− z)⟩, ∀y ∈ C

⇔ z = PCx.

As a direct consequence of Theorem 3.5, we have the following theorem for finding a
solution of the split common null point problem in two Banach spaces.

Theorem 5.1 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
JA
µ = (I+µJ−1

E A)−1 be the metric resolvent of A for all µ > 0, let QB
λ = (JE +λB)−1JE be

the generalized resolvent of B for all λ > 0 and let QG
η = (JF + ηG)−1J be the generalized

resolvent of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0
and let T ∗ be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.
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Let x1 ∈ E and let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
G
η Txn)

)
,

yn = JA
µ zn,

un = QB
λ yn,

Bn = {z ∈ E : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn)},
Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q

G
η Txn)},

Dn = {z ∈ E : ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following inequalities:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Next, using Theorem 3.5, we have the following theorem for finding a solution of the
split feasibility problem in two Banach spaces.

Theorem 5.2 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let C and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F . Let PC be the metric projection of E onto C, let ΠC be the generalized projection of E
onto C. and let ΠH be the generalized projection of F onto H. Let T : E → F be a bounded
linear operator such that T ̸= 0 and let T ∗ be the adjoint operator of T . Suppose that

Ω = C ∩D ∩ T−1H ̸= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFΠHTxn)
)
,

yn = PCzn,

un = ΠDyn,

Bn = {z ∈ E : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn)},
Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn,ΠHTxn)},
Dn = {z ∈ E : ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following inequalities:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Proof. We have that QG
ηn

= ΠH , JA
µn

= PC and QB
λn

yn = PiD in Theorem 3.5. Therefore,
we have the desired result from Theorem 3.5.
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Similarly, using Theorem 3.6, we have the following strong convergence theorems for the
split common null point problem and the split feasibility problem in two Banach spaces.

Theorem 5.3 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
QA

µ = (JE+µA)−1JE be the generalized resolvent of A for all µ > 0, let JB
λ = (I+λJ−1

E B)−1

be the metric resolvent of B for all λ > 0 and let JG
η = (I+ηJ−1

F G)−1 be the metric resolvent
of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗

be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − JG

η Txn),

yn = QA
µ zn,

un = JB
λ yn,

Bn = {z ∈ E : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2},
Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : 2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PBn∩Cn∩Dn∩Qn

x1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.

Theorem 5.4 ( [30]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let C and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F . Let ΠC be the generalized projection of E onto C, let PD be the metric projection of
E onto D and let PH be the metric projection of F onto H. Let T : E → F be a bounded
linear operator such that T ̸= 0 and let T ∗ be the adjoint operator of T . Suppose that

Ω = C ∩D ∩ T−1H ̸= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − PHTxn),

yn = ΠCzn,

un = PDyn,

Bn = {z ∈ E : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2},
Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : 2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PBn∩Cn∩Dn∩Qn

x1, ∀n ∈ N,
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where {rn} ⊂ (0,∞) and a ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.

As a direct consequence of Theorem 4.3, we can also prove the following theorem for
finding a solution of the split common null point problem in two Banach spaces.

Theorem 5.5 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
JA
µ = (I+µJ−1

E A)−1 be the metric resolvent of A for all µ > 0, let QB
λ = (JE +λB)−1JE be

the generalized resolvent of B for all λ > 0 and let QG
η = (JF + ηG)−1J be the generalized

resolvent of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0
and let T ∗ be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
G
η Txn)

)
,

yn = JA
µ zn,

un = QB
λ yn,

Cn+1 =
{
z ∈ Cn : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn),

⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2

and 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q
G
ηn
Txn)

}
,

xn+1 = ΠCn+1
x1 ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Next, using Theorem 4.3, we have the following theorem for finding a solution of the
split feasibility problem in two Banach spaces.

Theorem 5.6 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let C and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F . Let PC be the metric projection of E onto C, let ΠC be the generalized projection of E
onto C. and let ΠH be the generalized projection of F onto H. Let T : E → F be a bounded
linear operator such that T ̸= 0 and let T ∗ be the adjoint operator of T . Suppose that

Ω = C ∩D ∩ T−1H ̸= ∅.
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For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFΠHTxn)
)
,

yn = PCzn,

un = ΠDyn,

Cn+1 =
{
z ∈ Cn : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn),

⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2

and 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn,ΠHTxn)
}
,

xn+1 = ΠCn+1
x1 ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Proof. We have that QG
ηn

= ΠH , JA
µn

= PC and QB
λn

yn = PiD in Theorem 4.3. Therefore,
we have the desired result from Theorem 4.3.

Similarly, using Theorem 4.4, we have the following strong convergence theorems for the
split common null point problem and the split feasibility problem in two Banach spaces.

Theorem 5.7 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let A,B ⊂ E × E∗

be maximal monotone operators and let G ⊂ F × F ∗ be a maximal monotone operator. Let
QA

µ = (JE+µA)−1JE be the generalized resolvent of A for all µ > 0, let JB
λ = (I+λJ−1

E B)−1

be the metric resolvent of B for all λ > 0 and let JG
η = (I+ηJ−1

F G)−1 be the metric resolvent
of G for all η > 0. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗

be the adjoint operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − JG

η Txn),

yn = QA
µ zn,

un = JB
λ yn,

Cn+1 =
{
z ∈ Cn : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2,

2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)

and ⟨zn − z, JE(xn − zn)⟩ ≥ 0
}
,

xn+1 = PCn+1
x1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following inequalities

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.
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Theorem 5.8 ( [29]). Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let C and D be
nonempty, closed and convex subsets of E and let H be a nonempty, closed and convex subset
of F . Let ΠC be the generalized projection of E onto C, let PD be the metric projection of
E onto D and let PH be the metric projection of F onto H. Let T : E → F be a bounded
linear operator such that T ̸= 0 and let T ∗ be the adjoint operator of T . Suppose that

Ω = C ∩D ∩ T−1H ̸= ∅.

For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − PHTxn),

yn = ΠCzn,

un = PDyn,

Cn+1 =
{
z ∈ Cn : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2,

2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)

and ⟨zn − z, JE(xn − zn)⟩ ≥ 0
}
,

xn+1 = PCn+1x1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following inequalities

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.
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