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It is well known that the problem (1.1), in general, is NP-hard [9] and solving this

problem is an open problem. In this article we will consider the case in which Q0 may not

be positive semidefinite and m2 ̸= 0.

A non-convex QCQP problem as a linear programming problem with an additional re-

verse convex constraint is first studied in [14, 24]. Ye and Zhang in [29, 30] studied a non-

convex QCQP problem with two quadratic constraints and used semidefinite programming

(SDP) techniques. In [6, 10], problem (1.1) is reformulated as a copositive programming

problem. To our best knowledge, there is not any directly method for solving this copositive

programming problem. Yuill et al. in [31] introduced an iterative method, called CCCP

(convex-concave procedure) method, for solving problem (1.1). This method solves D.C.

(difference of convex functions) problem by solving a sequence of convex problems. Lipp

and Boyd extended CCCP method to be initialized without a feasible point and generalized

the method to solve problems including vector inequalities [18]. It is noted that CCCP

method is locally convergent [28].

Lu et al. in [21] reformulated QCQP problem as a linear conic programming and by in-

vestigating relationship between Lagrange multipliers and related linear conic programming

problem provided a global optimality condition. Shi and Jin proved that if the Hessian of

the corresponding Lagrangian is copositive over a set, then KKT solution is a global optimal

solution [32].

In [5], Deng et al. extended the idea of Lu and gave a new method called AE (Adaptive

Ellipsoid-based) method. They developed a conic formulation which leads to an approx-

imation to problem (1.1) and then they give a better approximation of optimal solution

using Reformulation-LinearizationTechnique (RLT). But AE method is suitable only for a

narrow class of problem (1.1) where all constraints are convex. Recently in [15], a method is

proposed to solve the problem (1.1) where m1 ≥ 0 and m2 = 1. The idea of this method is

to exchange the one non-convex constraint with the objective function so that the problem

can be solved by AE method.

In this paper, we present an extension of AE method to solve the problem (1.1). This

extension leads to a computational procedure for solving a general non-convex QCQP where

the objective function and some of constraints are non-convex. First, problem (1.1) is

approximated by a relaxed SDP problem. If the optimal solution of the new problem is

inside the feasible region, then it can be considered as an optimal solution. Otherwise by

adding a sequence of ellipsoid constraints to the problem, the optimal solution of the problem

is achieved.

The rest of this paper is organized as follows: In Section 2, we give details of the CCCP

and AE methods. Section 3 contains details of extension of AE method and new convergence

proof. Computational results are given in Section 4, and finally conclusions are in Section

5.

Notation. The following notations will be used in our work.
Sn the set of all n× n symmetric matrices,

Sn
+ the set of all n× n symmetric positive semidefinite matrices,

Yij the (i, j)th entry of matrix Y ,

M •N the inner product two matrices M and N ,

A ⪰ 0 denoted A is positive semidefinite matrix,

int(C) the interior of the set C.
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Morever, we define M+ ⪰ 0 and M− ⪰ 0 of M =M+ −M− ∈ Sn as

M+ =
∑

{i:λi(M)≥0}

λi(M)qiq
T
i , M− = −

∑
{i:λi(M)≤0}

λi(M)qiq
T
i ,

where qi is an eigenvector of M corresponding to the eigenvalue λi(M).

2 Preliminaries

This section provides a review of some methods needed for the other sections.

2.1 The convex-concave procedure (CCCP)

The CCCP method [31] is an iterative procedure that solves D.C problems via a sequence

of convex programing. Let the current point x be given. At first we decompose

Qj = Q
+

j −Q
−
j and Q0 = Q+

0 −Q−
0 , (2.1)

that Q+
0 , Q

−
0 , Q

+

j and Q
−
j are positive semidefinite matrices, for j = 1, 2, . . . ,m2. So the

problem (1.1) is converted into D.C problem as following:

minx∈Rn xTQ+
0 x+ 2p0

Tx+ r0 − xTQ−
0 x

xTQix+ 2pi
Tx+ ri ≤ 0, i = 1, 2, . . . ,m1

xTQ
+

j x+ 2pj
Tx+ rj − xTQ

−
j x ≤ 0, j = 1, 2, . . . ,m2.

(2.2)

From the first-order convexity condition [4] of xTQ
−
j x and xTQ−

0 x at a given feasible point

x, we have

xTQ
−
j x ≥ −(x)

T
Q

−
j x+ 2xTQ

−
j x

xTQ−
0 x ≥ −(x)

T
Q−

0 x+ 2xTQ−
0 x.

So problem (2.2) is approximated as follows:

minx∈Rn xTQ+
0 x+ 2p0

Tx+ r0 + (x)
T
Q−

0 x− 2xTQ−
0 x

xTQix+ 2pi
Tx+ ri ≤ 0 i = 1, 2, . . . ,m1

xTQ
+

j x+ 2pj
Tx+ rj + (x)

T
Q

−
j x− 2xTQ

−
j x ≤ 0 j = 1, 2, . . . ,m2.

(2.3)

It is easy to show that the feasible region of problem (2.3) is convex and can be solved

efficiently (i.e., in polynomial-time) [2, 4]. The algorithm of CCCP method is as follows:

Algorithm 1 (CCCP )

• Initialization: Take the initial feasible solution x0 ∈ Rn , k = 0 and ε > 0.

• Step 1: Construct problem (2.3) at the current point xk.

• Step 2: Solve problem (2.3) to find the new solution xk+1.

• Step 3: If ∥xk − xk+1∥ < ε, then terminate, otherwise set k = k + 1 and go to Step 1.
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Example 2.1. Consider the following problem

min(x1 + 0.5)2 + (x2 − 0.5)2

x21 + x22 ≤ 9,

−x21 + x22 ≤ −1.

(2.4)

The global optimal solution and the optimal value are x∗ = (−1.0524, 0.3279) and 0.3347,

respectively. By applying Algorithm 1, for several different initial point x0, we have:

• For x0 = (0, 0), the algorithm failed.

• For x0 = (1, 0), the output of algorithm is the local optimal solution x1 = (−1.0200, 0.2008)

and optimal value 2.3998.

• For x0 = (−1, 0), the output of algorithm is the global optimal solution x2 = (−1.0524, 0.3279)

and optimal value 0.3347.

This concludes that the CCCP method depends on the initial solution.

2.2 AE method

In this section we discuss AE method, proposed by Deng et al. in [5]. This method can only

solve a narrow class of problem (1.1) where all constraints are convex, i.e., m2 = 0. So the

problem (1.1) can be rewritten as follows.

minx∈C f(x) (2.5)

where C is a convex set as follows:

C = {x ∈ Rn| hi(x) ≤ 0, i = 1, 2, . . . ,m1}

The AE method is based on the cone of nonnegative quadratic functions that has been

proposed by Sturm and Zhang [29]. As shown in [29], problem (2.5) is equivalent to the

following linear conic programming problem:

minH0 • Y
(CP) Y11 = 1

Y ∈ D∗
C ,

(2.6)

where D∗
C = cone{Y ∈ Sn+1| Y =

[
1

x

] [
1

x

]T
for some x ∈ C} and H0 = [r0 p

T
0 ; p0 Q0].

Since the desired LMI representation of D∗
C does not exist, so the cone D∗

C is untractable.

Therefore the cone D∗
C must be approximated by tractable cones. The tractable cone DF

and its dual cone D∗
F over the set F ⊆ Rn are introduced in [29], and proved that Sn+1

+ ⊆
DF ⊆ DC and D∗

C ⊆ D∗
F ⊆ Sn+1

+ . By substituting the tractable cone D∗
F in problem (2.6)

instead of D∗
C , a tighter lower bound is obtained.

Let F =
{
F1

e , . . . ,F l
e

}
be a collection of full-dimensional ellipsoids,

F t
e =

{
x ∈ Rn

∣∣∣xTQt
ex+ 2

(
pte
)T
x+ rte ≤ 0

}
, (2.7)
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where Qt
e ∈ Sn

+, p
t
e ∈ Rn and rte ∈ R, for t = 1, . . . , l such that {F t

e}lt=1 is an ellipsoidal

cover of C, i.e.,

C ⊆ F =

l⋃
t=1

F t
e. (2.8)

Each cone DFt
e
has an LMI representation [23]. According to [29], the cone DF and its dual

cone D∗
F over set F are defined as follows:

DF =

{
U ∈ Sn+1

∣∣∣∣∣
[

1

x

]T
U

[
1

x

]
≥ 0 for all x ∈ F

}
(2.9)

D∗
F = cone

{
Y ∈ Sn+1

∣∣∣∣∣Y =

[
1

x

] [
1

x

]T
for some x ∈ F

}
. (2.10)

Since D∗
C ⊆ D∗

F , the problem (2.6) can be relaxed as the following problem

minH0 • Y
(RCP) Y11 = 1

Y ∈ D∗
F .

(2.11)

Theorem 2.2 ([5]). Let sets F t
e, F , DF and D∗

F be defined as in (2.7)–(2.10). Then the

following statements are equivalent:

– For any matrix Y ∈ Sn+1, we have Y ∈ D∗
F .

– For t = 1, . . . , l

Y = Y 1 + Y 2 + · · ·+ Y l,

[
rte (pte)

T

pte Qt
e

]
• Y t ≤ 0, Y t ∈ Sn+1

+ .

Using Theorem (2.2), problem (2.11) is converted as the following problem:

minH0 • Y
(RCP) Y = Y 1 + Y 2 + · · ·+ Y l, Y11 = 1[

rte (pte)
T

pte Qt
e

]
• Y t ≤ 0, Y t ∈ Sn+1

+ , t = 1, 2, . . . , l.

(2.12)

The Reformulation-Linearization Technique (RLT) is applied to the problem (2.12) by

adding the constraints

[
ri pTi
pi Qi

]
• Y t ≤ 0 for i = 1, 2, . . . ,m1 and t = 1, 2, . . . , l. So

problem (RCP-RLT) is as follows:

l∗ = minH0 • Y
(RCP-RLT) Y = Y 1 + Y 2 + · · ·+ Y l, Y11 = 1[

ri pTi
pi Qi

]
• Y t ≤ 0, i = 1, 2, . . . ,m1, t = 1, 2, . . . , l[

rte (pte)
T

pte Qt
e

]
• Y t ≤ 0, Y t ∈ Sn+1

+ , t = 1, 2, . . . , l.

(2.13)
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Problem (2.13) is a conic programming problem. Let
(
Y ∗, (Y 1)∗, . . . , (Y l)∗

)
be an optimal

solution of problem (2.13). The next theorem provides a relationship between optimal

solution of problems (2.5), (2.6), (2.12) and (2.13).

Theorem 2.3 ([5]). Let F and F t
e be defined as in (2.9) and (2.7) respectively and V (P ),

V (CP ), V (RCP ) and V (RCP-RLT) denote the optimal values of problems (2.5), (2.6),

(2.12) and (2.13) respectively. If C⊆F, then

V (RCP )≤V (RCP-RLT)≤V (CP ) = V (P ).

Theorem 2.4 ([5]). If int(F t
e∩C) ̸= ∅, for t = 1, . . . , l, then problem (RCP-RLT) is strongly

feasible.

Now the question arises how to find ellipsoids (2.7)? To answer this question, assume that

a rectangle set T = [u, v] = {x ∈ Rn |ui ≤ xi ≤ vi } is given. The corresponding ellipsoid FT
e

generated by T is considered as follows [5]:

FT
e =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

(2xi − vi − ui)
2

(vi − ui)
2 ≤ n

}
. (2.14)

To obtain initial rectangle T1 =
[
u1, v1

]
=

[
u11, v

1
1

]
× · · · ×

[
u1n, v

1
n

]
, we solve the following

problems:

u1i1 = minx∈C xi1 (2.15)

and

v1i1 = maxx∈C xi1 , (2.16)

for i1 = 1, 2, . . . , n. It is obvious that C ⊆ Tt. The initial ellipsoid F1
e is generated from T1

as (2.14).

Let the rectangle sets {Tt} and the ellipsoids {F t
e} generated by the rectangle sets be

detected. Let T =
⋃l

t=1 Tt and the set T =
⋃l

t=1 {Tt} be such that C ⊆ T. Then the set

F =
⋃l

t=1 F t
e, is an ellipsoid cover of C. The ellipsoids {F t

e} will need to be an efficient

arrangement to cover C. Consider the following decomposition

Y ∗ =
∑

i:(Y i)∗ ̸=0

ni∑
s=1

αis

[
1

xis

] [
1

xis

]T
, (2.17)

that ni ∈ {1, . . . , n + 1}, αis > 0, xis ∈ F j
e and

∑
i:(Y i)∗ ̸=0

∑ni

s=1 αis = 1. The solution

xsen is the most sensitive point if

xsen = argmin
{xis:(Y i)∗ ̸=0;s=1,2,...,ni }

{(
xis

)T
Q0x

is + 2pT0 x
is + r0

}
(2.18)

and the ellipsoid F t
e is called the most sensitive ellipsoid, if xsen ∈ F t

e [5].

Theorem 2.5 ([5]). Assume Y ∗ is the optimal solution to problem (RCP-RLT) with the

most sensitive point xsen, then[
1

xsen

] [
1

xsen

]T
•H0 ≤ V (P ) .
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Moreover, if xsen ∈ C, then the matrix

[
1

xsen

] [
1

xsen

]T
and xsen are optimal solution

for problems (2.6) and (2.5) respectively.

Therefore, if xsen ∈ C, then xsen is an optimal solution of problem (2.5). Other-

wise f(xsen) is a lower bound of problem (2.5). To get a better lower bound, the el-

lipsoid cover F must be refined. The most sensitive point xsen and the most sensitive

ellipsoid F t
e in F are used to determine which rectangle sets need to be refined. Let

id = arg max{i=1,...,n} {vti − uti} , then Tt = [ut, vt] is splited by half as Tt1 =
[
ut1, vt1

]
and Tt2 =

[
ut2, vt2

]
, where ut1 = ut, vt2 = vt, vt1i = vti , u

t2
i = uti, for i ̸= id , and

vt1id = ut2id =
ut
id+vt

id

2 . Two ellipsoids F t1
e and F t2

e generated from Tt1 and Tt2 are considered

as (2.7). If int(Tti∩C)=∅, the rectangle set Tti is eliminated for either i = 1 or 2. To specify

which rectangle set must be eliminated, the following problems are considered:

φ = minx∈C xid
ut ≤ x ≤ vt

(2.19)

and
ψ = maxx∈C xid
ut ≤ x ≤ vt

(2.20)

The problems (2.19) and (2.20) are convex and can be solved efficiently [2, 4].

The rectangle sets in T are changed in the following way:

T = T\ {Tt} ∪ {Tt2} , if φ >
utid + vtid

2
(2.21)

T = T\ {Tt} ∪ {Tt1} , if ψ <
utid + vtid

2
(2.22)

T = T\ {Tt} ∪ {Tt1} ∪ {Tt2} , otherwise (2.23)

Theorem 2.6 ([5]). If the rectangle sets in T are constructed according to (2.21)–(2.23),

then

∀Tt ∈ T : int(Tt∩C) ̸= ∅.

If xsen /∈ C then the measure of infeasibility of the current sensitive point xsen is defined

as the optimal value of the following problem:

minx∈C ∥x− xsen∥∞ . (2.24)

Problem (2.24) is convex and can be solved efficiently. Let x be an optimal solution of

problem (2.24). If ∥x− xsen∥∞ ≤ ε, x is as an ε-optimal solution of problem (2.5), that is

an approximate optimal solution when ε is sufficiently small.

Algorithm of AE method is as follows:

Algorithm 2. AE method

• Initialization: Given an tolerance ε > 0 and set low = −∞ and upp = +∞.
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• Step 1: Solve problems (2.15) and (2.16) for i = 1, 2, . . . , n to get an initial rectangle

set T1 and the corresponding ellipsoid F1
e . Set T = {T1} and F = {F1

e }.

• Step 2: Solve problem (2.13) with the approximation coneD∗
F . Take low = max{low, l∗}.

• Step 3: Decompose Y ∗ according to (2.17) and obtain the most sensitive point xsen
and the most sensitive ellipsoid F t

e ∈ F with (2.18). If xsen ∈ C, xsen is the optimal

solution and stop.

• Step 4: Set id = argmax{i=1,...,n} {vti − uti} and generate ellipsoids F t1
e and F t2

e .

• Step 5: Solve problems (2.19) and (2.20) to obtain the optimal values φ and ψ,

respectively.

– If φ >
ut
id+v

t
id

2 , set F = F\ {F t
e} ∪

{
F t2

e

}
and T = T\{Tt} ∪

{[
ut2, vt2

]}
.

– If ψ <
ut
id+vt

id

2 , set F = F\ {F t
e} ∪

{
F t1

e

}
and T = T\{Tt} ∪

{[
ut1, vt1

]}
.

– Otherwise F = F\ {F t
e} ∪

{
F t1

e

}
∪

{
F t2

e

}
and T = T\{Tt} ∪

{[
ut1, vt1

]}
∪{[

ut2, vt2
]}
.

• Step 6: Solve problem (2.24) to obtain the solution x. Set upp = min{p(x), upp}.

• Step 7: If |upp − low | <ε, stop and return x̃ = x as an ε-optimal solution. Otherwise,

take k = k + 1 and go to Step 2.

3 Proposed Method

In this section, we extend AE method, we called it EAE (extended Adaptive Ellipsoid-based)

method, to solve problem (1.1) and we prove the convergence of the proposed method. We

rewrite problem (1.1) as follows:

minx∈Λ f(x) (3.1)

where Λ = C ∩N and the sets C and N are as follows:

C = {x ∈ Rn| hi(x) ≤ 0, i = 1, 2, . . . ,m1}

N = {x ∈ Rn| gj(x) ≤ 0, j = 1, 2, . . . ,m2}.

Λ is a non-convex set, and we make the following assumptions in the rest of the paper.

Assumption 3.1. The feasible set of problem (1.1) is nonempty (i.e., Λ ̸= ∅).

Assumption 3.2. The problem (1.1) contains at least one strictly convex constraint, i.e.,

there exists i such that the function hi(x) be strictly convex.
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3.1 EAE method

In this subsection, we modify some steps of the AE method to find a global solution of the

non-convex problem (1.1).

* Initial rectangle. According to Assumption 3.2, the feasible region of the problem (1.1)

is bounded. So, this assumption guarantees the existence of an initial rectangle. Similar

to AE method, to get an initial rectangle, we consider the following problems:

u1i1 = minx∈Λ xi1 (3.2)

and

v1i1 = maxx∈Λ xi1 , (3.3)

for i1 = 1, 2, . . . , n. Since Λ is non-convex, we cannot solve problems (3.2) and (3.3).

We use the SDP relaxation of problems (3.2) and (3.3) as follows:

u1i1 = minx∈Rn xi1
Qi •X + 2pi

Tx+ ri ≤ 0 i = 1, 2, . . . ,m1

Qj •X + 2pj
Tx+ rj ≤ 0 j = 1, 2, . . . ,m2

X − xxT ⪰ 0

(3.4)

and
v1i1 = maxx∈Rn xi1
Qi •X + 2pi

Tx+ ri ≤ 0 i = 1, 2, . . . ,m1

Qj •X + 2pj
Tx+ rj ≤ 0 j = 1, 2, . . . ,m2

X − xxT ⪰ 0.

(3.5)

Now, we take T 1 =
[
u1, v1

]
=

[
u11, v

1
1

]
× · · · ×

[
u1n, v

1
n

]
as an approximate of the initial

rectangle set T1 =
[
u1, v1

]
. Since problems (3.4) and (3.5) are SDP relaxation problems

corresponding to problems (2.15) and (2.16) respectively, we have u1i1 ≤ u1i1 ≤ v1i1 ≤ v1i1
(for i1 = 1, . . . , n), thus T1 ⊆ T1 and rectangle T1 covers the feasible region Λ. In

addition, we take the ellipsoid F1

e generated from T1 by (2.14) as the initial ellipsoid

covers F of Λ.

* Solving problem (RCP-RLT). Let the ellipsoid F t

e be generated by Tt such that Λ ⊆
F =

⋃l
t=1 F

t

e. Therefore problem (2.13) is unchanged and by adding the RLT con-

straints

[
ri pTi
pi Qi

]
• Y t ≤ 0 and

[
rj pTj
pj Qj

]
• Y t ≤ 0 (for i = 1, 2, . . . ,m1, j =

1, 2, . . . ,m2 and t = 1, 2, . . . , l) to problem (2.13), we have

l∗ = minH0 • Y
(RCP-RLT) Y = Y 1 + Y 2 + · · ·+ Y l, Y11 = 1[

ri pTi
pi Qi

]
• Y t ≤ 0, i = 1, 2, . . . ,m1, t = 1, 2, . . . , l[

rj pTj
pj Qj

]
• Y t ≤ 0, j = 1, 2, . . . ,m2, t = 1, 2, . . . , l[

rte (pte)
T

pte Qt
e

]
• Y t ≤ 0, Y t ∈ Sn+1

+ , t = 1, 2, . . . , l.

(3.6)
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Problem (3.6) is a linear conic programming problem that can be solved effective.

Let
(
Y ∗, (Y 1)∗, . . . , (Y l)∗

)
be an optimal solution of problem (3.6), then we have the

following theorem.

Theorem 3.1. Let V (QCQP ) and V (RCP-RLT) denote the optimal values of prob-

lems (1.1) and (3.6) respectively. If Λ⊆F, then

V (RCP-RLT)≤V (QCQP ).

Proof. Let x ∈ Λ. There exists some t0 ∈ {1, . . . , l} such that x ∈ F t0
e . Take

Y t0 =

[
1

x

] [
1

x

]T
and Y t = 0 for t ̸= t0. So

(
Y, Y 1, . . . , Y l

)
is a feasible solution

to problem (3.6), where Y =
∑l

i=1 Y
i. Thus V (RCP-RLT)≤V (QCQP ) and the proof

is comleted.

Theorem 3.2. Let F t

e be generated from T t and int(F
t

e∩Λ) ̸= ∅ for t = 1, . . . , l, then

problem (3.6) is strongly feasible.

Proof. Since for any t = 1, . . . , l, int(F t

e∩Λ) ̸=∅, thus there exists a point x̂t ∈ int(F t

e ∩
Λ). So

(x̂t)TQix̂
t + 2pi

T x̂t + ri < 0, i = 1, 2, . . . ,m1

(x̂t)TQj x̂
t + 2pj

T x̂t + rj < 0, j = 1, 2, . . . ,m2

(x̂t)TQt
ex̂

t + 2pte
T
x̂t + rte < 0,

for t = 1, . . . , l. Let us define Y t =

[
1

x̂t

] [
1

x̂t

]T
for t = 1, . . . , l. It is easy to check

that Y t ∈ Sn+1
++ and[
ri pTi
pi Qi

]
• Y t < 0,

[
rj pTj
pj Qj

]
• Y t < 0,

[
rte (pte)

T

pte Qt
e

]
• Y t < 0.

Thus
(
Y, Y 1, . . . , Y l

)
is strongly feasible for problem (RCP-RLT) where Y = Y 1 +

· · ·+ Y l.

* Matrix decomposition. Now, to find the solution of the problem (3.6), we use matrix

decomposition (2.17) for the optimal solution
(
Y ∗, (Y 1)∗, . . . , (Y l)∗

)
of problem (3.6).

* Selection most sensitive ellipsoid and change the rectangle set. We remember that if

xsen ∈ Λ, then xsen is an optimal solution of problem (1.1), otherwise, f(xsen) is a

lower bound of problem (1.1). Analogous to AE method, to obtain the tighter lower

bound, we use the most sensitive ellipsoid F t

e containing xsen to determine that which

ones need to be refined. Let id = argmax{i=1,...,n}
{
vti − uti

}
, then Tt is splitted by

T t1 =
[
ut1, vt1

]
and T t2 =

[
ut2, vt2

]
, where ut1 = ut, vt2 = vt, vt1i = vti, ut2i = uti, for
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i ̸= id , and vt1id = ut2id =
ut
id+v

t
id

2 . Two ellipsoids F t1

e and F t2

e are generated by Tt1 and

Tt2 according to

F t1

e =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

(
2xi − vt1i − ut1i

)2(
vt1i − ut1i

)2 ≤ n

}
(3.7)

and

F t2

e =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

(
2xi − vt2i − ut2i

)2(
vt2i − ut2i

)2 ≤ n

}
. (3.8)

In order to determine which rectangle set should be eliminated, we have to solve the

following problems:
φ = minx∈Λ xid

ut ≤ x ≤ vt
(3.9)

and
ψ = maxx∈Λ xid

ut ≤ x ≤ vt.
(3.10)

Since problems (3.9) and (3.10) are non-convex, we consider the relaxation SDP form

of them as follows:

φ = minx∈Rn xid
Qi •X + 2pi

Tx+ ri ≤ 0 i = 1, 2, . . . ,m1

Qj •X + 2pj
Tx+ rj ≤ 0 j = 1, 2, . . . ,m2

X − xxT ⪰ 0

ut ≤ x ≤ vt.

(3.11)

and
ψ = maxx∈Rn xid
Qi •X + 2pi

Tx+ ri ≤ 0 i = 1, 2, . . . ,m1

Qj •X + 2pj
Tx+ rj ≤ 0 j = 1, 2, . . . ,m2

X − xxT ⪰ 0

ut ≤ x ≤ vt.

(3.12)

Problems (3.11) and (3.12) are convex programming problems. It is obvious that the

relationship between optimal value of problems (3.9)–(3.12) is as follows:

φ ≤ φ ≤ ψ ≤ ψ (3.13)

Lemma 3.3. Let int(T t∩Λ) ̸=∅ , then we have

1. if φ >
ut
id+v

t
id

2 then int
(
T t1∩Λ

)
=∅ .

2. if ψ <
ut
id+v

t
id

2 then int
(
T t2∩Λ

)
=∅.

Proof. 1. Suppose, contrary to claim, that int(T t1∩Λ) ̸=∅. Therefore there is a point

xt1 that xt1 ∈ T t1∩Λ. Since φ is the optimal value of problem (3.9), we have

φ ≤ xt1id ≤
utid + v

t

id

2
< φ
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that contradicts to (3.13).

2. Its proof is similar to part (1).

The sets T is updated as follows:

T = T\
{
T t

}
∪
{
T t2

}
, if φ >

utid + v
t

id

2
(3.14)

T = T\
{
T t

}
∪
{
T t1

}
, if ψ <

utid + v
t

id

2
(3.15)

T = T\
{
T t

}
∪
{
T t1

}
∪
{
T t2

}
, otherwise (3.16)

Theorem 3.4. Let int(T t∩Λ) ̸= ∅ for each rectangle set Tt in T. If the rectangle sets

are added into T according to (3.14)–(3.16), then int(T t1 ∩Λ) ̸= ∅ or int(T t2 ∩Λ) ̸= ∅.

Proof. According to (3.14)–(3.16), we have three following cases:

– If φ >
ut
id+v

t
id

2 , then T t1∩Λ has no interior and can not add to T. We claim

that T t∩Λ=T t2∩Λ. To see this, assume there is a point xt1 such that xt1 ∈(
T t\T t2

)
∩Λ, then xt1id ≤ ut

id+v
t
id

2 < φ. Since xt1 is a feasible solution for problem

(3.11), thus φ is not optimal value for (3.11), which contradicts to φ >
ut
id+v

t
id

2 .

– If ψ <
ut
id+v

t
id

2 , then the proof is similar.

– If φ ≤ ut
id+v

t
id

2 ≤ ψ, let xmin and xmax be the optimal solution of problems (3.11)

and (3.12), respectively, and also xint ∈ int(T t∩Λ). Then

xt1 = λxint + (1− λ)xmin ∈ int(T t1∩Λ)

or

xt2 = λxint + (1− λ)xmax ∈ int(T t2∩Λ),

for some λ ∈ (0, 1) .

So proof is completed.

* Solving problem (2.24) . Similar to AE method, if xsen /∈ Λ then by solving the

following problem, we can check whether xsen is close enough to the feasible region Λ:

minx∈Λ ∥x− xsen∥∞ . (3.17)

Since the feasible region Λ is non-convex, we apply the CCCP method [31] for solving

problem (3.17). First, we decompose

Qj = Q
+

j −Q
−
j ,
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That Q
+

j , Q
−
j ≽ 0, for j = 1, 2, . . . ,m2. Let x be a feasible solution for problem (1.1).

From the first-order convexity condition [4] of xTQ
−
j x at the feasible solution x, we

have

xTQ
−
j x ≥ −(x)

T
Q

−
j x+ 2xTQ

−
j x.

Therefore the problem (3.17) is approximated to the following problem:

minx∈Rn ∥x− xsen∥∞
xTQix+ 2pi

Tx+ ri ≤ 0 i = 1, 2, . . . ,m1

xTQ
+

j x+ 2pj
Tx+ rj + (x)

T
Q

−
j x− 2xTQ

−
j x ≤ 0 j = 1, 2, . . . ,m2.

(3.18)

Problem (3.18) is convex and assume that xnew is an optimal solution of problem

(3.18). If ∥xnew − xsen∥∞ ≤ ε, we consider xnew as an ε -optimal solution of problem

(1.1).

The algorithm of proposed method is as follows:

Algorithm 3. (EAE )

• Initialization: Given ε > 0. Let low = – ∞, upp = +∞ and x0 ∈ Λ.

• Step 1: Solve problems (3.4) and (3.5) to get T 1 and F1

e and set T = {T 1}, F = {F1

e},
T = ∅ and k = 1.

• Step 2: Solve problem (3.6) and set low = max {low, l∗}.

• Step 3: Decompose Y ∗ according to (2.17) and obtain the most sensitive point xsen ,

the most sensitive ellipsoid F t

e and the corresponding rectangle T t. Set yk = xsen. If

xsen ∈ Λ, then stop and xsen is an optimal solution and take xk = yk = xsen.

• Step 4: Set id = argmax{i=1,...,n}
{
vti − uti

}
. Generate ellipsoids F t1

e and F t2

e

according to (3.7) and (3.8), respectively.

• Step 5: Calculate φ and ψ from solving problems (3.11) and (3.12), respectively.

– If φ >
ut
id+v

t
id

2 , set F = F\{F t
e} ∪ {F t2

e }, T = T\{T t} ∪
{[
ut2, vt2

]}
and T =

T ∪
{[
ut1, vt1

]}
.

– If ψ <
ut
id+v

t
id

2 , set F = F\ {F t
e} ∪ {F t1

e }, T = T\{T t} ∪
{[
ut1, vt1

]}
and T =

T ∪
{[
ut2, vt2

]}
.

– Otherwise F = F\{F t
e}∪{F

t1

e }∪{F t2

e } and T = T\{T t}∪
{[
ut1, vt1

]}
∪
{[
ut2, vt2

]}
.

• Step 6: Solve problem (3.18) at the current solution xk−1 to obtain a new solution xk

and set upp = min{f(xk), upp}.
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• Step 7: If |upp − low | <ε, stop and the output is xk. Otherwise, set k = k + 1 and

go to Step 2.

Remark 3.5. From Step 3, we conclude that at most one additional rectangle is added

to the current rectangle cover at the end of each iteration. Therefore, the complexity of

problem (RCP-RLT) does not increase drastically.

Remark 3.6. The set T is the set of deleted rectangles and is used for the proof in Lemma

(3.7). It is easy to verify that the total volume of all rectangle sets in T and T always equals

to the volume of the initial rectangle set T 1.

3.2 Convergence of the EAE method

In this subsection, we prove the convergence of the proposed method. Also, we show that

the algorithm will terminate in finite steps. The following lemmas are useful in the proof of

convergence of EAE method.

Lemma 3.7. Let ε > 0, T 1 = [u1, v1] ∈ Rn be the initial rectangle and δ0 be the longest

edge of the initial rectangle, i.e. δ0 = max1≤i≤n{v1i −u1i }. Then, after
(⌈

δ0
√
n

ε

⌉)n

iterations

of Algorithm 3, there exists at least some rectangle [ut, vt] such that ∥vt − ut∥∞ ≤ ε√
n
.

Proof. First, we prove the lemma for the case n = 1. Let T 1 = [u1, v1] ⊆ R, so δ0 = v1−u1.
We claim that after k ≥ 1 iterations, there exists at least one subinterval [utk , vtk ] ⊆ T 1

satisfying vtk−utk ≤ δ, where δ = δ0
k . Suppose, contrary to the claim, that after k iterations,

the length of all subintervals in T ∪ T is grether than δ. Let δi denote the length of i-th

subinterval, for i = 1, . . . , k. So

k∑
i=1

δi >

k∑
i=1

δ0
k

= δ0.

It contradicts to
∑k

i=1 δi = δ0. Thus the claim is proved.

It is necessary to show that, after k =
⌈
δ0
ε

⌉
iterations, there is at least one subinterval

[utk , vtk ] such that vtk − utk ≤ ε. This fact is concluded from the following inequality

δ0
k

≤ ε.

Let T 1 = [u1, v1] = [u11, v
1
1] × [u12, v

1
2] × · · · × [u1n, v

1
n] ⊆ Rn and δ0 = max1≤i≤n{v1i − u1i }.

So, after
(⌈

δ0
√
n

ε

⌉)n

iterations, there is at least one rectangle [utk , vtk ] ⊆ T 1 such that

∥vtk − utk∥∞ ≤ ε√
n
.

Let xk be obtained by solving problem (3.18) and yk be the most sensitive point at

iteration k. We have the following lemma.

Lemma 3.8. For any given instance of problem (1.1) and ε > 0, there exists an Nε-th

iteration such that ∥xk − yk∥∞ ≤ ε for k ≥ Nε.
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Proof. If at some iteration k, Algorithm 3 obtains a solution yk such that yk ∈ Λ, then

xk = yk and the lemma holds. Otherwise, let Bε(∆) = {y ∈ Rn|∥x− y∥∞ ≤ ε, ∃x ∈ Λ}. It
is necessary to show that at some iteration, there exists a solution yk such that yk ∈ Bε(∆).

We denote the longest edge of the initial rectangle T 1 by δ0, i.e. δ0 = max1≤i≤n{v1i − u1i }.
From (2.14), it is clear that the length of i-th half axis of ellipsoid FT

e is equal to
√
n(vtki −

utki )/2. According to Lemma (3.7), after
(⌈

δ0
√
n

2ε

⌉)n

iterations, there is at least one rectangle

[utk , vtk ] such that ∥vtk − utk∥∞ ≤ ε√
n
. Assume that this rectangle was generated at N1

iterations. Thus, for xk, yk ∈ FT
e , we have

∥xk − yk∥∞ ≤
√
n∥vtk − utk∥∞ ≤ ε.

So, yk ∈ Bε(∆) and the proof is completed.

The following theorem proves convergence of the proposed method.

Theorem 3.9. Let z∗ be an optimal solution for problem (1.1) and the sequences
{
xk

}∞
k=1

and
{
yk

}∞
k=1

be generated by Algorithm 3, then:

1. limk→∞f(x
k) = limk→∞f(y

k) = f(z∗).

2. The solution z∗ is a global optimal solution for problem (1.1).

Proof. 1. From Theorem (3.1) and the problem (3.18), it is obvious that

∀k ≥ 1, f(yk) ≤ f(z∗) ≤ f(xk). (3.19)

According to Lemma (3.8) and this fact that the objective function f(x) is continuous,

we conclude that

limk→∞|f(xk)− f(yk)| = 0, (3.20)

It follows from (3.19) and (3.20) that

limk→∞f(x
k) = limk→∞f(y

k) = f(z∗).

2. Contrary to claim, we assume that z∗ is not a global optimal solution. So, there is a

feasible solution z ∈ Λ such that

f(z) < f(z∗).

According to (3.19), we conclude

f(z) < f(yk), (3.21)

for some k ≥ 1. Since {f(yk)} are the optimal values of problem (3.6), (3.21) contra-

dicts to Theorem (3.1).

4 Numerical Results

In this section, numerical results are given to validate the theoretical results obtained in

previous sections. The proposed algorithm is run on an Intel Core i7 PC and 8G memory

under Windows 7 and MATLAB R2014a. Also, all convex programming problems given in

this paper are solved with CVX solver [12]. The parameter ε is chosen 10−5.
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4.1 Numerical examples

In this subsection we give three examples to demonstrate how the proposed algorithm works.

Example 4.1. Consider the problem (1.1) with the following date [29]:

Q0 =

 −2 10 2

10 4 1

2 1 −7

 , p0 =

 −12

−6

56

 , r0 = 0,

Q =

 2 0 0

0 2 0

0 0 2

 , p =

 −2

0

−16

 , r = 64,

Q =

 2 0 0

0 −2 0

0 0 8

 , p =

 0

−2

−64

 , r = 256.

The optimal solution of this problem is x∗ = (0, 0, 8) and the optimal objective value is 224.

In Table 1 and Figure 1, we see that the gap between the upper bound and lower bound is

less than 0.0001 after 27 iterations. So the algorithm is stopped and we obtain the optimal

solution as a good approximation.

Table 1: The upper and lower bounds of Example 4.1.

Iter 1 5 10 15 20 25 27

Upper bound 225.1463 224.6415 224.0227 224.0002 224.0001 224.0001 224.0000

Lower bound 222.8841 223.5040 223.9286 223.9738 223.9951 223.9961 223.9999

Example 4.2. Consider the following problem [30]

min−x21 + x22 + x1
x21 − x22 ≤ 4

(x1 + x2)
2
+ x22 − 2x1 ≤ 0.

Solving this problem is similar to Example 4.1. The optimal solution and the optimal value

are x∗ = (2, 0) and -2 respectively. Since the gap between the upper bound and lower bound

is less than ε at 22nd iteration (Table 2 and Figure 2), so the EAE algorithm is stopped.

Table 2: The upper and lower bounds of Example 4.2.

Iter 1 5 10 15 20 22

Upper bound -0.5899 -1.7841 -1.9989 -2.0000 -2.0000 -2.0000

Lower bound -2.7639 -2.0722 -2.0034 -2.0006 -2.0001 -2.0000
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Figure 1: The upper and lower bounds of Example 4.1
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Figure 2: The upper and lower bounds of Example 4.2
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4.2 Random tests

The test problems are considered as follows [33]:

minx∈Rn xTQ0x+ 2(p0)
T
x+ r0

xTQix+ 2(pi)
T
x+ ri ≤ 0 i = 1, 2, . . . ,m1

xTQjx+ 2(pj)
T
x+ rj ≤ 0 j = m1 + 1, . . . ,m1 +m2.

(4.1)

where the k first constraints (i.e., for i = 1, . . . ,mk) are convex and the objective function

and other constraints (i.e., for j = m1+1, . . . ,m1+m2) are non-convex. The test problems

are generated using the following code:

for j = 0, 1, . . . ,m1 +m2

• rj = −6 + 5 rand

• pj = −50 + 50 rand(n, 1);

• for i=1:3

– ωi = −1 + 2 rand(n, 1); W j
i = In×n − 2

ωiω
T
i

∥ω∥2 ;

end {for}

• Oj =W j
1W

j
2W

j
3 ;

• If 1 ≤ j ≤ m1 (for convex constraints)

– v = 50 rand(n, 1);

– Dj = diag(v);

– Qj = OjDj(Oj)
T

• else (for objective function and non-convex constraints)

– n1 = n/2;

– n2 = n− n1;

– v1 = −50 + 50 rand(n1, 1);

– o1 = zeros(n2, 1);

– D−
j = diag(v1, o1);

– Q−
j = −OjD

−
j (Oj)

T

– v2 = 50 rand(n2, 1);

– o2 = zeros(n1, 1);

– D+
j = diag(o2, v2);

– Q+
j = OjD

+
j (Oj)

T
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end {if}

end {for}
Let Q0 = Q+

0 − Q−
0 and Qj = Q+

j − Q−
j , for j = m1 + 1, . . . ,m1 + m2. Since ri, rj ≤ 0,

x = 0 ∈ Rn is an initial feasible solution for problem (4.1).

The CPU time for solving 50 test problems for each cases n =20,30,40,50,60,100 and

m1 = m2 =5,10,15,20 by CCCP [18] and EAE methods, are summarized by using perfor-

mance profile [7] in Figure 3. Performance profile plots the function

πs (α) =
1

|P |
|{p ∈ P : log2(rp,s) ≤ α}| , (4.2)

where P denotes the set of test problems and rp,s denotes the ratio the amount of CPU time

needed to solve problem p with method s with the least amount of CPU time needed to

solve problem p .

Figure 3 shows that the CPU time of EAE method is less than CCCP method and the EAE

method is successful in more than 85% of problems in each cases (a)-(f). In addition EAE

method can solve all problems with n = 60, 100. In CCCP method, the objective function

and feasible region of the original problem are approximated to convex ones. So for problems

involving more non-convex functions, we expect CCCP method works worse.

5 Conclusions

In this paper, we have proposed an extension method to solve a non-convex QCQP problem

which contains non-convex objective function and non-convex constraints. For solving this

problem, we extended the AE method and combine it with CCCP method. At each iteration

of the proposed method, two solutions are generated. One of them is outside the feasible

region and found by solving problem (3.6). Another solution is inside and calculated by

solving problem (3.18). If the solution of problem (3.6) is in feasible region, this solution

is a global optimal solution. Otherwise by adding a sequence of ellipsoid constraints to

problem (3.6), distance of two solutions of problems (3.6) and (3.18) is convergent to zero.

Therefore they are convergent to the optimal solution. The convergence of EAE method

is investigated. Numerical results show that EAE method can be successfully applied to

problems (1.1).
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Figure 3: Performance profile for CPU time
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