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2 The Projected PRP Method

In this section, we first simply recall iterative form of the unmodified PRP method for uncon-

strained optimization. Then we present a projected PRP method for solving optimization

with convex constraint.

The general scheme of the unmodified PRP method for solving the smooth unconstrained

optimization problem

min
x∈Rn

f(x), (2.1)

is given by xk+1 = xk + αkdk, k = 0, 1, . . . . Here the stepsize αk is computed by some line

search, and the search direction dk is generated by the PRP formula

dk =

{
−gk, if k = 0,

−gk + βPRP
k dk−1, if k ≥ 1,

(2.2)

where gk = ∇f(xk) and

βPRP
k =

gTk yk−1

∥gk−1∥2
, yk−1 = gk − gk−1. (2.3)

Throughout the paper, we denote 2-norm by ∥ · ∥.
The aim of this paper is to generalize the PRP method for the problem (2.1) to solve

the following constrained optimization problem

min
x∈Ω

f(x), (2.4)

where Ω ⊆ Rn is a closed convex set, f : Rn → R is a smooth function and its gradient

g(x) = ∇f(x) is available. It is clear that if x∗ is a local minimizer of the problem (2.4),

then it is a stationary point which satisfies the following definition.

Definition 2.1. We say that x∗ ∈ Ω is a stationary point of the problem (2.4) if it satisfies

g(x∗)T (x− x∗) ≥ 0, ∀x ∈ Ω.

Let PΩ : Rn → Ω be the projected operator, that is,

PΩ(x) = Argmin
y∈Ω

∥y − x∥.

Set

rk = PΩ(xk − gk)− xk. (2.5)

It is well-known that rk = 0 if and only if xk is a stationary point of the problem (2.4).

Using the projection, we introduce the following projected PRP method for the problem

(2.4).

Algorithm 1. (The projected PRP method)
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Step 0. Choose x0 ∈ Ω, δ > 0, ρ ∈ (0, 1), 0 < λmin < λmax < ∞. Select a positive

sequence {ηk} satisfying
∞∑
k=0

ηk ≤ η < ∞. (2.6)

Set d0 = −g0. Let k := 0.

Step 1. If rk = 0, then stop. Otherwise, go to Step 2.

Step 2. Compute dk by (2.2).

Step 3. Compute the stepsize αk = max{σkρ
i| i = 0, 1, . . .} satisfying

f(PΩ(xk + αkdk)) ≤ f(xk)− δ∥αkdk∥2 + ηk, (2.7)

where σk ∈ [λmin, λmax].

Step 4. Set xk+1 := PΩ(xk + αkdk). Let k := k + 1 and go to Step 1.

Remark 2.2. By (2.5), if gk=0, then rk = 0, which means that xk is a stationary point

of the problem (2.4). Moreover, from the continuity of the projected operator and ηk > 0,

then the line search (2.7) is satisfied for all sufficiently small α > 0. The non-descent line

search (2.7) is a modification of that of [21].

Now we give some important properties of the projected operator, which are very useful

for global convergence analysis of Algorithm 1. The following two lemmas come from [3].

Lemma 2.3. If z ∈ Ω, then(
PΩ(x)− x

)T (
z − PΩ(x)

)
≥ 0, ∀x ∈ Rn, (2.8)

∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn. (2.9)

Lemma 2.4. For any fixed x ∈ Ω, ∥PΩ(x−αg(x))−x∥
α is nonincreasing in α > 0.

Lemma 2.5. Let xk ∈ Ω. Then

gTk
(
xk − PΩ(xk − αgk)

)
≥ ∥PΩ(xk − αgk)− xk∥2

α
, ∀α > 0. (2.10)

Proof. In fact, from (2.8) and xk ∈ Ω, we have

gTk
(
xk − PΩ(xk − αgk)

)
=

1

α

(
xk − PΩ(xk − αgk) + PΩ(xk − αgk)− (xk − αgk)

)T (
xk − PΩ(xk − αgk)

)
=

∥PΩ(xk − αgk)− xk∥2

α
+

1

α

(
PΩ(xk − αgk)− (xk − αgk)

)T (
xk − PΩ(xk − αgk)

)
≥ ∥PΩ(xk − αgk)− xk∥2

α
.

The proof is completed.
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3 Global Convergence

In this secton, we discuss global convergence property of Algorithm 1 under the following

assumptions. To begin with, let us define the level set

Ω1 = {x| f(x) ≤ f(x0) + η} ∩ Ω, (3.1)

where η satisfies (2.6). It is clear that xk ∈ Ω1 for all k ≥ 0.

Assumption 1.

(i) The level set Ω1 defined by (3.1) is bounded.

(ii) There exists some convex neighborhood N of Ω1 such that the gradient g(x) is

Lipschitz continuous in N ∩ Ω, namely, there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N ∩ Ω. (3.2)

Assumption 1 implies that there exists a positive constant M such that

∥g(x)∥ ≤ M, ∀x ∈ N ∩ Ω. (3.3)

Clearly, by the line search (2.7) and (2.6), we have

lim
k→∞

αkdk = 0. (3.4)

The following result shows that Algorithm 1 converges globally.

Theorem 3.1. Let Assumption 1 hold and the sequence {xk} be generated by Algorithm 1.

Then

lim inf
k→∞

∥rk∥ = 0. (3.5)

Proof. We prove this theorem by contradiction. If it is not true, then there exists a constant

τ > 0 such that

∥rk∥ ≥ τ, ∀k ≥ 0. (3.6)

This implies that for some positive constant τ1,

∥gk∥ ≥ τ1, ∀k ≥ 0. (3.7)

Otherwise, there exists some infinite subset K ⊆ {0, 1, 2, . . . } such that

lim
k∈K,k→∞

∥rk∥ = lim
k∈K,k→∞

∥PΩ(xk − gk)− xk∥ ≤ lim
k∈K,k→∞

∥gk∥ = 0,

where the last inequality uses (2.9) and the fact PΩ(xk) = xk. This contradicts with (3.6).

Therefore, by (2.3), (3.2), (2.9), (3.3), (3.4) and (3.7), we obtain

|βPRP
k | ≤ L∥gk∥αk−1∥dk−1∥

τ21
→ 0. (3.8)

This together with (3.3) and (2.2) means that there exists a constant M1 > 0 such that

∥dk∥ ≤ M1. (3.9)
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By (3.8)-(3.9) and (2.2), we have

βPRP
k dk−1 → 0, dk → −gk. (3.10)

(i) If lim supk→∞ αk > 0, then (3.4) yields

lim inf
k→∞

∥dk∥ = 0,

which leads a contradiction with (3.10) and (3.7).

(ii) If lim supk→∞ αk = 0, then α′
k = αk

ρ can not satisfy the line search (2.7). Thus,

f(PΩ(xk + α′
kdk))− f(xk) > −δ∥α′

kdk∥2 + ηk > −δ∥α′
kdk∥2. (3.11)

By the mean value theorem, we have

f(PΩ(xk + α′
kdk))− f(xk)

α′
k

=
g(ξk)

T (PΩ(xk + α′
kdk)− xk)

α′
k

=
gTk (PΩ(xk − α′

kgk)− xk)

α′
k

+
(g(ξk)− gk)

T (PΩ(xk + α′
kdk)− xk)

α′
k

+
gTk (PΩ(xk + α′

kdk)− PΩ(xk − α′
kgk))

α′
k

=
gTk (PΩ(xk − α′

kgk)− xk)

α′
k

+∆k

≤ −∥PΩ(xk − α′
kgk)− xk∥2

α′2
k

+∆k,

where ξk lies in the segment between xk and PΩ(xk + α′
kdk) and the last inequality follows

from Lemma 2.5. This together with (3.11) yields

∥PΩ(xk − α′
kgk)− xk∥2

α′2
k

≤ |∆k|+ δα′
k∥dk∥2. (3.12)

Moreover, we have

|∆k|

≤ ∥g(ξk)− gk∥
∥∥∥ (PΩ(xk + α′

kdk)− xk)

α′
k

∥∥∥+ ∥gk∥
∥∥∥ (PΩ(xk + α′

kdk)− PΩ(xk − α′
kgk))

α′
k

∥∥∥
≤ M1∥g(ξk)− gk∥+ ∥gk∥∥dk + gk∥
= M1∥g(ξk)− gk∥+M∥βPRP

k dk−1∥,

where the second inequality uses (2.9) and (3.9). By the continuity of g and α′
k → 0 and

(3.10), we get that ∆k → 0. By (2.5), Lemma 2.4 and (3.12), we obtain

∥rk∥2 = ∥PΩ(xk − gk)− xk∥2 ≤ ∥PΩ(xk − α′
kgk)− xk∥2

α′2
k

≤ |∆k|+ δα′
k∥dk∥2 → 0.

This contradicts with (3.6). The proof is then completed.
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Table 1: Test results on the problem (4.2) with γ = (1, 2, . . . , n− 1)T .

Algorithm 1 The PG method

n Iter ∥rk∥∞ Time Iter ∥rk∥∞ Time

100 74 9.1256e-06 0.049779 70 9.9467e-06 0.027479

500 60 8.2435e-06 0.092343 91 8.7241e-06 0.10784

1000 59 8.3732e-06 0.16285 104 9.289e-06 0.22721

1500 55 9.0037e-06 0.21005 116 8.5336e-06 0.38664

2000 62 8.9135e-06 0.30178 122 8.1618e-06 0.53083

2500 78 9.2436e-06 0.55164 128 9.8512e-06 0.71693

3000 71 9.451e-06 0.5897 131 9.2855e-06 0.91072

3500 60 9.1161e-06 0.5529 129 9.8574e-06 1.0503

Table 2: Test results on the problem (4.2) with γ = 1
n (1, 2

2, . . . , (n− 1)2)T .

Algorithm 1 The PG method

n Iter ∥rk∥∞ Time Iter ∥rk∥∞ Time

100 72 9.7616e-06 0.044399 67 9.1474e-06 0.025313

500 60 9.2637e-06 0.092921 98 9.2032e-06 0.12744

1000 71 9.2677e-06 0.19903 102 9.5268e-06 0.2381

1500 62 8.0182e-06 0.2427 115 8.5563e-06 0.40841

2000 66 8.5835e-06 0.35081 121 8.1772e-06 0.57016

2500 75 8.7576e-06 0.54326 125 8.4656e-06 0.74873

3000 82 9.4057e-06 0.78966 130 9.3253e-06 0.98772

3500 63 8.9983e-06 0.59293 128 8.3004e-06 1.137
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4 Numerical Results

In this section, we compare the performance of the following two methods for solving the

problem (2.4).

• Algorithm 1. We set the parameters δ = 0.1, ρ = 0.1, λmin = λmax = 1 and ηk = 0.5k.

• The following classical projected gradient method (PG) [13] with the same parameters

as Algorithm 1 in our numerical experiments:

Step 0. Choose x0 ∈ Ω, δ > 0, ρ ∈ (0, 1). Set d0 = −g0. Let k := 0.

Step 1. If rk = 0, then stop. Otherwise, go to Step 2.

Step 2. Compute dk = −gk .

Step 3. Compute the stepsize αk = max{σkρ
i| i = 0, 1, . . .} satisfying

f(PΩ(xk + αkdk)) ≤ f(xk) + δgTk
(
PΩ(xk + αkdk)− xk

)
, (4.1)

where σk ∈ [λmin, λmax].

Step 4. Set xk+1 := PΩ(xk + αkdk). Let k := k + 1 and go to Step 1.

We test both methods on the following problem with different γi.

f(x) =
1

2

n−1∑
i=1

(xi − xi+1)
2 +

1

12

n−1∑
i=1

γi(xi − xi+1)
4 +

1

2
xTx (4.2)

with the constrained set Ω = {x| − 10 ≤ xi ≤ 10, i = 1, 2, ..., n}, where γi ≥ 0, i =

1, 2, . . . , n− 1, are constants. We denote γ = [γ1, γ2, . . . , γn−1]
T .

The codes were written in Matlab R2015a. We stopped the iteration if k ≥ 500 or

∥rk∥∞ ≤ 10−5. We chose the initial point x0 = (1, 1, . . . , 1)T . Numerical results are listed in

Table 1 and Table 2, where Iter, ∥rk∥∞ and Time stand for the total number of iterations,

the infinite norm of rk at the stopping point and the CPU times in second respectively.

From both Tables, we can see that Algorithm 2.1 performs better than the PG method

since it requires less iterations and less CPU times especially for relatively large n.

5 Conclusions

Using the projection and some non-descent line search, we present a projected PRP method

for optimization with convex constraint. It is a natural extension of the classical PRP

method for unconstrained optimization. We show that the proposed method converges

globally. Numerical results show that the proposed method performs better than the classical

projected gradient method for the given test problem. Our further study is to apply the

proposed method to some financial optimization problems [6].
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