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The presence of several optima makes global optimization difficult for local optimizer

methods unless the search is started to the vicinity of the global optimum or multiple starting

points are supplied. For many applications where the objective function is a black-box and

values are computed through a computer simulation, the gradients of the objective function

are not available. Then, evolutionary algorithms [7] and simulated annealing [14] are better

suited for escaping local minima for solving such complex problems but suffer from the high

computational cost due to their slow convergence to the global optimum. Also, there exists

no convergence proofs and the empirical convergence is quite slow. The main reason for this

slow convergence is that these methods explore the global search space by creating random

movements without using much local information about promising search direction [29]. In

contrast, local search methods have faster convergence because of using local information to

determine the most promising search direction by creating logical movements.

The quantum calculus is a novel theory that is based on finite difference re-scaling.

First, q-exponential functions were discovered in q-calculus by Euler, and then Gauss, who

discovered the q-binomial formula. But, the systematic development of q-calculus begins

from F. H. Jackson who reintroduced the q-difference operator in 1908 for q-analogs of

series, and special numbers [9]. He reintroduced the concept of the q-derivative, which

is also known as the Jackson derivative [17, 18]. Recently, the use of q-derivative in the

area of unconstrained optimization is studied as the q-variant of steepest descent method

[11]. The results show the effective performance to escape many local minima to reach the

global minimum. Searching for global optimum [11] using q-steepest descent and q-conjugate

gradient methods are proposed with a stochastic approach which does not focus order of

convergence of the scheme. Further, Newton and quasi-Newton methods with local and

global convergent schemes using q-calculus are proposed to solve unconstrained optimization

problems [4, 5] where the q-gradient vector is an extension of the classical gradient vector

with the aid of the parameter q and with the property that it reduces to the classical gradient

when q equals 1.

There are some well-known different conjugate gradient methods, such as the Fletcher-

Reeves (FR) method [10], Hestenes-Stiefel (HS) method [15], Polak-Ribiére-Polyak (PRP)

method [30, 31] and Dai-Yuan (DY) [8] method. A spectral gradient method is proposed

by combining the conjugate gradient method and the spectral gradient method [3]. The

reported numerical results show that the method performs well. Unfortunately, the spectral

conjugate gradient method can not guarantee descent directions. Thus, the scaled conjugate

algorithm [1] is developed based on quasi-Newton BFGS update formula and Wolfe line

search to ensure the decrease in the objective function. Further, (FR) method is modified

with different scalar parameter to converge globally [37].

In this paper, we utilize q-calculus in the modified (FR) [37] method such that the

direction generated by the proposed method always provides a descent direction. We prove

that the modified (FR) method with Armijo type line search due to q-gradient is globally

convergent.

The paper is organized as follows. Section 2 presents q-conjugate gradient for the mod-

ified (FR) method in the context of q-calculus. Section 3 proves the global convergence of

the method and the results of numerical experiments are shown in Section 4. Lastly, Section

5 provides conclusion.
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2 q-Conjugate Gradient Descent for Objective Function

We first present some concepts and fundamental results related to quantum calculus. In the

following, q is a positive number such that 0 < q < 1. Let the q-integer [n] be defined as

[n] = 1−qn

1−q , for n ∈ N, and the derivative of xn with respect to x be given as [n]xn−1, then

for a function f : R→ R, the q-derivative [17] is given as:

Dqf(x) =
f(x)− f(qx)

x− qx
, x ̸= 0, q ̸= 1, (2.1)

The q-derivative reduces to an ordinary derivative when q → 1 or when x → 0. The first-

order partial q-derivative of function f : Rn → R with respect to the variable xi, where

i = 1, . . . , n is [32]:

Dqi,xif(x) =
f(x1, . . . , qixi, . . . , xn)− f(x1, . . . , xi, . . . , xn)

qixi − xi
, xi ̸= 0, qi ̸= 1. (2.2)

Thus, the q-gradient is presented as the vector of n first-order partial q-derivative of f which

is expressed as:

∇qf(x)
T =

[
Dq1,x1

f(x) . . . Dqi,xi
f(x) . . . Dqn,xnf(x)

]
, (2.3)

where the parameter q is now a vector q = (q1, . . . , qi, . . . , qn)
T ∈ Rn. We first present the

following Algorithm 1 [24, 34] to find the gradient of the function using q-calculus. However,

the higher-order q-derivative of f can be found in [2].

Algorithm 1 q-Gradient Algorithm (q-GA)

1: Input q1 ∈ (0, 1), f : R→ R, z.
2: if x = 0 then

3: Set g ← lim

(
f(z)−f(q∗z)

(z−q∗z) , z, 0

)
.

4: else

5: Set g ← f(x)−f(q∗x)
(x−q∗x) .

6: Print ∇qf(x)← g.

Example 2.1. Let f : R2 → R be defined as f(x1, x2) = 2x2
2 + 3x3

1. Then ∇qf(x) =[
3(1 + q + q2)x2

1

2(1 + q)x2

]
.

We can also present the q-gradient for non-differentiable or discontinuous functions pro-

vided qi ̸= 0 and xi ̸= 0 for all i. The following result is due to [11] as:

Proposition 2.2. If f(x) = a0 + aTx where a0 ∈ R and a ∈ Rn, then for any x, q ∈ Rn

∇qf(x) = ∇f(x) = a. (2.4)

Proof. The partial derivative of f with respect to xi, where i = 1, . . . , n, then

∂f

∂xi
(x1, x2, . . . , xi, . . . , xn) = lim

h→∞

f(x1, x2, . . . , xi + h, . . . , xn)− f(x1, x2, . . . , xi, . . . , xn)

h
,

(2.5)
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Let xT =
[
x1 x2 . . . xi . . . xn

]
, and aT =

[
a1 a2 . . . ai . . . an

]
. Then,

gradient of f is:

∇f(x) =



∂f
∂x1

(x1, x2, . . . , xn)
∂f
∂x2

(x1, x2, . . . , xn)
...

∂f
∂xi

(x1, x2, . . . , xn)
...

∂f
∂xn

(x1, x2, . . . , xn)


=



lim
h→∞

f(x1+h,x2,...,xi,...,xn)−f(x1,x2,...,xi,...,xn)
h

lim
h→∞

f(x1,x2+h,...,xi,...,xn)−f(x1,x2,...,xi,...,xn)
h

...

lim
h→∞

f(x1,x2,...,xi+h,...,xn)−f(x1,x2,...,xi,...,xn)
h

...

lim
h→∞

f(x1,x2,...,xi,...,xn+h)−f(x1,x2,...,xi,...,xn)
h


,

that is,

∇f(x) =



lim
h→0

(
a0+a1x1+a1h−a0−a1x1

h

)
lim
h→0

(
a0+a2x2+a2h−a0−a2x2

h

)
...

lim
h→0

(
a0+aixi+aih−a0−aixi

h

)
...

lim
h→0

(
an+anxn+anh−an−anxn

h

)


,

∇f(x)T =
[
a1 a2 . . . ai . . . an

]
. (2.6)

Using (2.2), we obtain

∇qf(x) =



(
∂f
∂x1

)
q1

(x1, x2, . . . , xn)(
∂f
∂x2

)
q2

(x1, x2, . . . , xn)

...(
∂f
∂xi

)
qi

(x1, x2, . . . , xn)

...(
∂f
∂xn

)
qn

(x1, x2, . . . , xn)



=



f(x1q1,x2,...,xi,...,xn)−f(x1,x2,...,xi,...,xn)
q1x1−x1

f(x1,x2q2,...,xi,...,xn)−f(x1,x2,...,xi,...,xn)
q2x2−x2

...
f(x1,x2,...,xiqi,...,xn)−f(x1,x2,...,xi,...,xn)

qixi−xi

...
f(x1,x2,...,xi,...,xnqn)−f(x1,x2,...,xi,...,xn)

qnxn−xn


,

that is,

∇qf(x) =



a0+a1x1q1−a0−a1x1

q1x1−x1
a0+a2x2q2−a0−a2x2

q1x2−x2

...
a0+aixiqi−a0−aixi

qixi−xi

...
a0+anxnqn−a0−anxn

qnxn−xn


,
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that is,

∇qf(x)
T =

[
a1 a2 . . . ai . . . an

]
. (2.7)

From (2.6) and (2.7), we get (2.4).

Consider the unconstrained optimization problem:

minimize f(x), x ∈ Rn, (2.8)

where f : Rn → R is real-valued continuously q-differentiable function. We intend to utilize

the conjugate gradient methods for solving (2.8). Let x0 ∈ Rn be the starting point to solve

this problem. The method generates a sequence of iterates {xk} recurrently through the

following scheme:

xk+1 = xk + αkd
k
q , k = 0, 1, . . . , (2.9)

where dkq ∈ Rn is the line search direction, and αk is the step length moved along dkq [35].

For k = 0, the search direction is steepest descent direction and determined as:

d0q = −∇qf(x
0), (2.10)

and for k = 1, 2, . . . , we apply the following formula

dkq = −∇qf(x
k) + βkd

k−1
q , (2.11)

where βk is a scalar algorithmic parameter or conjugate gradient parameter. The step-length

αk is obtained by exact or inexact line searches for the global convergence of conjugate

gradient methods. In the case of an exact step length, one seeks αk along the direction dkq
such that

αk = argmin{f(xk + αdkq )|α > 0}. (2.12)

The algorithm does not run more than n iterations to find the minimizer of quadratic

functions. The parameter βk is chosen to minimize a strictly convex function so that the

direction dkq and dk−1
q are conjugate with respect to the Hessian of the objective function.

Consider an objective function in the following form:

f(x) =
1

2
xTQx− xT b, (2.13)

where Q = QT > 0, and ∇qf(x
k) = Qx− b.

Lemma 2.3. For quadratic function with positive definite Hessian Q, the conjugate direction

algorithm always holds in the sense of q-calculus as: (∇qf(x
k+1))T di = 0 for all k, 0 ≤ k ≤

n− 1, 0 ≤ i ≤ k, and each qi ∈ (0, 1).

Proof. Note that Q(xk+1 − xk) = (Qxk+1 − b)− (Qxk − b), then

∇qf(x
k+1) = ∇qf(x

k) + αkQdkq .

We prove by mathematical induction. For k = 0 :

(∇qf(x
1))T d0q = (Qx1 − b)T d0q = (Q(x0 + α0d

0
q)− b)T d0q = (Qx0 + α0Qd0q − b)T d0q,
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that is,

(∇qf(x
1))T d0q = (Qx0 + α0Qd0q − b)T d0q = (x0)TQd0 + α0(d

0)TQd0 − bT d0.

For exact line search [25], we have α0 = − (∇qf(x
0))T d0

q

(d0
q)

TQd0
q

, thus

(∇qf(x
1))T d0q = (x0)TQd0q −

(∇qf(x
0))T d0q

(d0q)
TQd0q

(d0q)
TQd0q − bT d0q

= (Qx0 − b)T d0 − (∇qf(x
0))T d0q.

Since Qx0 − b = ∇qf(x
0), then

(∇qf(x
1))T d0q = (∇qf(x

0))T d0q − (∇qf(x
0))T d0q = 0.

Assume that the result is true for k − 1, then

(∇qf(x
k))T diq = 0 (2.14)

for 0 ≤ i ≤ k − 1. Then, we prove that the result is true for k, that is,

(∇qf(x
k+1))T diq = 0,

where 0 ≤ i ≤ k. There are two cases:

1. For 0 < i < k, we know that

∇qf(x
k+1) = ∇qf(x

k) + αkQdkq ,

that is,

(∇qf(x
k+1)T diq = (∇qf(x

k)T diq + αk(d
k
q )

TQdiq.

From Q−conjugacy [28] in light of q-calculus, (dkq )
TQdiq = 0, where k ̸= i, and from

mathematical induction hypothesis, (∇qf(x
k)T diq = 0, thus

(∇qf(x
k+1))T diq = 0,

for all 0 < i < k.

2. For i = k,

(∇qf(x
k+1)T dkq = (Qxk+1 − b)T dkq

=
(
xk −

(∇qf(x
k)T dkq

(dkq )
TQdkq

dk
)T

Qdkq − bT dkq

= (∇qf(x
k)T dkq − (∇qf(x

k)T dkq ,

that is,

(∇qf(x
k+1)T dkq = 0.
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This completes the proof.

The Fletcher-Reeves (FR) method is a well known conjugate gradient method, where

the parameter βk is computed using q-gradient as

βk = βFR
k ≡ ∥∇qf(x

k)∥2

∥∇qf(xk−1)∥2
. (2.15)

We see from (2.11) that for each k ≥ 1, the q-derivative of f at xk along the direction dkq is

given by

∇qf(x
k)dkq = −∥∇qf(x

k)∥2 + βFR
k (∇qf(x

k))T dk−1
q . (2.16)

It is obvious that if exact line search is used, at that point we have (∇qf(x
k))T dk−1

q = 0

and we obtain

(∇qf(x
k))T dkq = −∥∇qf(x

k)∥2 < 0. (2.17)

Note that vector dkq is a descent direction of f at xk. Zoutendijk proved that the (FR)

method with exact line search is globally convergent [36]. The Armijo-type line search

guarantees the descent property of dkq , that is, αk satisfies the following inequality:

f(xk + αkd
k
q ) ≤ f(xk) + δ1αk(∇qf(x

k))T dkq − δ2α
2
k∥dkq∥2. (2.18)

where δ1 ∈ (0, 1) and 0 < δ2. We present the following modification [37] due to q−derivative
as:

dkq = −ϑk
q∇qf(x

k) + βFR
k dk−1

q for k = 1, 2, . . . , (2.19)

where

ϑk
q =

dk−1
q yk−1

∥∇qf(xk−1)∥2
. (2.20)

Since yk = ∇qf(x
k+1)−∇qf(x

k), then from (2.19)

dkq = −
dk−1
q yk−1

∥∇qf(xk−1)∥2
∇qf(x

k) + βFR
k dk−1

q

= −
dk−1
q yk−1

∥∇qf(xk−1)∥2
∇qf(x

k) +
∥∇qf(x

k)∥2

∥∇qf(xk−1)∥2
dk−1
q ,

that is,

dkq =
(dk−1

q )T∇qf(x
k−1)∇qf(x

k)

∥∇qf(xk−1)∥2

Multiplying ∇qf(x
k) on both sides and using (2.11), we obtain

(dkq )
T∇qf(x

k) = −∥∇qf(x
k)∥2. (2.21)
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Thus, dkq provides a descent direction of f at xk. Since (∇qf(x
k))T dk−1

q = 0, then

ϑk
q =

dk−1
q yk−1

∥∇qf(xk−1)∥2
= 1.

It is natural to say that the modified (FR) method reduces to the standard (FR) method

as q approaches (1, . . . , 1)T and ϑk
q = 1. Based on the above discussion, we present q-

Conjugate Gradient Algorithm with Armijo-Line Search (q-CGAALS) to solve unconstrained

optimization problems (2.8) which is given in Algorithm 2.

Algorithm 2 q-Conjugate Gradient Algorithm with Armijo-Line Search (q-CGAALS)

1: Given constants δ1 ∈ (0, 1), ρ ∈ (0, 1), δ2 > 0, q0i ∈ (0, 1) for i = 0, . . . , n − 1. Choose a

starting point x0 ∈ Rn.

2: Compute ∇qf(x
0) using Algorithm 1.

3: if ∥∇f(x0)∥ ≤ ϵ then

4: Stop.

5: else

6: Set d0q ← −∇qf(x
0).

7: for k=0,1,2,. . . do

8: Determine a stepsize αk = max{ρ−j , j = 0, 1, 2, . . . } satisfying

f(xk + αkd
k
q ) ≤ f(xk) + δ1αk(∇qf(x

k))T dkq − δ2α
2
k∥dkq∥2. (2.22)

9: Update xk+1 ← xk + αkd
k
q .

10: if ∥∇f(xk+1)∥ ≤ ϵ then

11: Stop.

12: else

13: Compute βk ← βFR
k using (2.15).

14: Compute the search direction dkq by (2.19).

Remark 2.4. 1. The starting vector parameter (q0, . . . , qn−1) is chosen in such a way

that each qi ∈ (0, 1) for i = 0, . . . , n− 1. Further, a suitable mechanism is attained to

generate the next q for each 0 < qi < 1, where i = 0, . . . n−1. The detailed description

about this mechanism is given in Section 3.

2. The stopping criteria is given as the general gradient of objective function which is

computed at each iterative point xk.

Note that dkq is a descent direction in the context of q-derivative. If vector q does not

approach to (1, . . . , 1)T , then search directions are not necessarily descent directions and

this makes it possible for Algorithm 2 to escape from local minima to global minima. Our

direction generated by modified Fletcher-Reeves given in [37] is modified by replacing the

gradient with q-gradient which always possess a descent direction due to (2.19), and does

not depend on any line search used, so the modified Armijo line search with backtracking is

utilized under mild conditions to obtain the global convergence of Algorithm 2.
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3 Global Convergence

In this section, we need the following assumptions on the objective function to prove the

global convergence.

Assumption 3.1. 1. Let x0 be a starting point for the iteration (2.9), (2.10) and (2.11)

such that the level set Ω := {x ∈ Rn|f(x) ≤ f(x0)} is bounded.

2. In some neighborhood N of Ω, f is continuously q-differentiable and for L > 0, we

have

∥∇qf(x)−∇qf(y)∥ ≤ L∥x− y∥, ∀ x, y ∈ N. (3.1)

From Proposition 2.2, condition (3.1) of Assumption 3.1 is obvious for classical gradient.

Thus, q-gradient and classical gradient provide same result as we have proved. To show that

condition (3.1) of Assumption 3.1 holds under general gradient for satisfying the Lipschitz

condition, we compute each qi [4] as: With a starting number q00 ∈ (0, 1), for k = 0, 1, . . .

qk+1
i = 1− qki

(k + 1)2
, (3.2)

where i = 0, . . . , n−1. It is worth mentioning that each qi finally approaches 1 when k →∞.

We present the following example to show the numerical solution of q-gradient and general

gradient for a given function.

Example 3.2. Consider a function f : R3 → R such that f(x) = 2x2
1 − x2

2 + 3x3
3 + 5.

We find the q-gradient by taking (q00 , q
0
1 , q

0
2)

T = (0.91, 0.91, 0.91)T , we run Algorithm 1

for k = 30 iterations. The generated numerical values are provided in Table 1 where the

last column is the computed q-gradient of the function at x. At x = (1,−1, 1)T , and

q = (q290 , q291 , q292 ) = (0.998812 , 0.998812 , 0.998812)T , we get the q-gradient of f as:

∇qf(x) = (3.997625 , 1.998812 , 8.989316)T .

On the other hand, general gradient of f provides:

∇f(x) = (4.0000 , 2.0000 , 9.0000)T .

The three dimension graphics is given in Figure 1.

Remark 3.3. 1. From Proposition 2.2, both q-gradient and gradient vectors are same.

2. For other nonlinear functions, we have provided Example 3.2 which demonstrates that

the q-gradient and gradient vectors are almost same for large value of k as qi, where

i = 1, . . . , n, approaches 1 due to (3.2). From computation point of view, we obtain

approximation results for both vectors.

Thus, from the above two justifications, condition (3.1) of Assumption 3.1 also holds for

the general gradient and subsequently satisfies for the general gradient Lipschitz condition.

The sequence {xk} generated by Algorithm 2 is in Ω. Thus, the sequence {f(xk)} is also
decreasing. For constant γ > 0, we have

∥∇qf(x
k)∥ ≤ γ, ∀ x ∈ Ω. (3.3)
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Table 1: q-Gradient Iteration using (3.2) for Example 3.2.
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Figure 1: 3D Graphics of Example 3.2

Theorem 3.4. Let {xk} and {dkq} be generated by Algorithm 2 and there exists a constant

c1 > 0 such that the following inequality holds for all k sufficiently large,

αk ≥ c1
∥∇qf(x

k)∥2

∥dkq∥2
. (3.4)

Proof. From the given Assumption 3.1 and (2.22), we have

∞∑
k=0

(−δ1αk(∇qf(x
k))T dkq + δ2α

2
k∥dkq∥2) <∞. (3.5)

This together with (2.21) yields ∑
k≥0

α2
k∥dkq∥2 <∞, (3.6)

and ∑
k≥0

αk∥∇qf(x
k)∥2 = −

∑
k≥0

αk(∇qf(x
k))T dkq <∞.

In particular, we have

lim
k→∞

αk∥dkq∥ = 0,

and

lim
k→

αk∥∇qf(x
k)∥ = 0. (3.7)

We now prove (3.4) by considering the following two cases:

1. αk = 1,

2. αk < 1.
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When we take Case 1, then we get ∥∇qf(x
k)∥ ≤ ∥dkq∥. In this case, inequality (3.4) is

satisfied with c1 = 1. From the mean value theorem in q-calculus, there is a tk ∈ (0, 1) such

that xk + tkρ−1αkd
k
q ∈ N and

f(xk + ρ−1αkd
k
q )− f(xk) = ρ−1αk∇qf(x

k + tkρ−1αkd
k
q )

T dkq

= ρ−1αk∇qf(x
k)dkq + ρ−1αk(∇qf(x

k + αkd
k
q )

T )dkq

≤ ρ−1αk∇qf(x
k)T dkq + Lρ−2α2

k∥dkq∥2.

Substituting the last inequality into (3.3), we get

αk >
(1− δ1)ρ∥∇qf(x

k)∥2

(L+ δ2)∥dkq∥2
. (3.8)

The Armijo line search is an important inexact line search, and it is very simple because

it requires only one gradient evaluation per iteration. In practice a line search procedure

may have to be equipped with several mechanism that guarantee that a step-size satisfying

the termination criteria will indeed be obtained. We have used q-derivative to compute

the q-gradient and replaced general gradient. We solve several numerical test problem to

show the advantage of q-gradient in backtracking Armijo line search for obtaining the least

number of iterations and function evaluations, respectively.

Feasibility of Backtracking Armijo Line Search with q-gradient: Note that (2.22)

establishes convergence to stationary points of smooth functions using an inexact line search

with a simple sufficient decrease condition. Armijo condition ensures that the line search

step is not too large. To prevent large steps relative to decreasing of f , we require (2.22)

with δ1 ∈ (0, 1). Typical values of δ1 ranges from 10−4 to 0.1. As q approaches (1, . . . , 1)T

for large value of k, backtracking Armijo search in the sense of q-calculus starts to behave as

a classical backtracking Armijo search. Moreover, due to inclusion of q-gradient, the value

of step length is responsible to converge fast in comparison to the classical condition. Note

that xk is generated by Algorithm 1 with backtracking Armijo line-search, then we find a q-

stationary point in a finite number of steps, which is eventually an approximation of general

stationary point, but if the function f is unbounded below , so the minimum does not exist.

If ∇q(x
k) and dkq do not become orthogonal and ∥dkq∥ ↛ 0, then ∥∇qf(x)∥ → 0 when q

approaches (1, . . . , 1)T as k → ∞. Thus, this is necessary to prove the global convergence

theorem in the q-calculus context.

Theorem 3.5. Suppose {xk} is generated by Algorithm 2. Then, for some k, we have

lim
k→∞

inf∥∇qf(x
k)∥ = 0.

Proof. From the sake of contradiction, we suppose that the conclusion is not true. Then,

there exists a constant ϵ > 0 such that

∥∇qf(x
k)∥ ≥ ϵ, k ≥ 0. (3.9)

We get

∥dkq∥2 = (βFR
k )2∥dk−1

q ∥2 − 2ϑk
q (d

k
q )

k∇qf(x
k)− (ϑk

q )
2∥∇qf(x

k)∥2.
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Dividing both sides of this inequality by (∇qf(x
k)T dkq ), we get

∥dkq∥2

∥∇qf(xk)∥4
=

∥dkq∥
((∇qf(xk))T dkq )

2
= (βk)

2
∥dk−1

q ∥2

(∇qf(xk)dkq )
2
−

2ϑk
q

(dkq )
T∇qf(xk)

−
2ϑk

q

dkq (∇qf(xk))
.

=

( ∥dkq∥2

(∇qf(xk−1))T

)2 ∥dk−1
q ∥2

∥∇qf(xk)∥4
+

2ϑk
q

∥∇qf(xk)∥2
−

ϑk
q

|∇qf(xk)∥2

=
∥dk−1

q ∥2

∥∇qf(xk−1)∥4
−

(ϑk
q − 1)2

∥∇qf(xk−1)∥2
+

1

∥∇qf(xk−1)∥2

≤
∥dk−1

q ∥2

∥∇qf(xk−1)∥4
+

1

∥∇qf(xk−1)∥2

≤
k−1∑
j=0

1

∥∇qf(xj)∥2
.

The last inequalities implies ∑
k≥1

∥∇qf(x
k)∥

dkq
≥ ϵ2

∑
k≥1

1

k
=∞.

This is a contradiction. Thus, the proof is complete.

Proposition 3.6. Let {xk} be the sequence generated by a q-gradient method xk+1 = xk +

αkd
k
q and satisfies ∇qf(x

k) → 0., then every limit point of sequences that it generates is a

q-stationary point of f .

Proof. There exists a subsequence {xk}K and ϵ > 0 such that |∇qf(x
k)| ≥ ϵ for all k ∈ K.

Since {xk}K is bounded it has at least one limit point x∗ and we must have |∇qf(x
∗)| ≥ ϵ

But this contradicts our hypothesis, which implies that x∗ must be a q-stationary point.

4 Numerical Results

We now report the numerical performance of Algorithm 2. We compare our numerical

performance with modified Fletcher-Reeves (CG(MFR)) method given in [37] and report

that our method is very efficient to solve non-convex unconstrained optimization problems.

The parameters in Algorithm 2 is specified by

ϵ = 10−6 ρ =
1

2
, δ1 = 10−3, δ2 = 10−8.

All codes (q-CGAALS) and (CG(MFR)) are written in MATLAB (2017a) and run on a

personal laptop equipped with Intel(R) Core(TM) i3-4005U CPU, 1.70 GHz CPU processor,

4 GB RAM memory, and Windows 10 operating system. We have taken general gradient

norm

∇f(xk) ≤ ϵ

for both algorithms as stopping criteria to terminate. We solve test problems using 50

different starting points and report the part of numerical results in Table 2, Table 3, and

Table 4. The following notations are used in tables:

IT : Number of iterations
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Table 2: Numerical Summary for Example 4.1

Table 3: Comparative results for different q for Example 4.2

Fe : Number of function evaluations

x∗ : Minimizer

f(x∗) : Minimum function value

Example 4.1. Consider a test function f : R3 → R such that f(x) = 1
2

(
x4
1 + x4

2 − 16x2
1 −

16x2
2 + 5x1 + 5x2

)
.

The function is continuous and non-convex and multimodal function. The search space

is [−5, 5] and we choose ten different starting points with ten different values of vector q. On

MATLAB platform, with these starting points, and tolerance limit of the general gradient

norm 10−6, the proposed Algorithm 2 reaches to the solution point. Results are summarized

in Table 2 for 10 different q as follows:

Example 4.2. Consider a function f : R2 → R such that f(x) = (x2
1 + x2 − 10)2 + (x1 +

x2
2 − 7)2 + (x2

1 + x3
2 − 1)2.

This is Continuous, Differentiable, Non-Scalable, and multimodal function. The global

minimization is located at x∗ = (3.4091 , −2.1714)T and f(x∗) = 1.7127. Starting with

the initial 11 random points generated from the search space [−3, 3], we are looking the

solution point for 11 different vector q given in Table 3. We conclude that the proposed

algorithm converges fast in comparison to (CG(MFR)) with the least number of iterations

and function evaluations. The graphics of the function is given in Figure 2.

We now report some numerical experiments as given in Table 4. We test Algorithm 2 on

well-known 31 test problems from CUTE library [12] where 15 test functions are non-convex,
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Figure 2: 3D Graphics of Example 4.2

Table 4: Summary of 31 Numerical Experiments

and compare its performance with the methodology used in [37], that is, (CG(MFR)). We

compare the performance of (q-CGAALS) with (CG(MFR)) using the performance profiles

introduced in [6], which is suitable when function evaluations Fe constitute the dominant
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Figure 3: Performance Profile for Number of Iterations

computational cost while running Algorithm 2. The performance profile in Figure 3 shows

that (q-CGAALS) is competitive than the (CG(MFR)) in term of number of iterations IT .

The comparison graph in terms of number of function evaluations is also given in Figure 4.
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Figure 4: Performance Profile for Number of Function Evaluations

5 Conclusions

In this paper, quantum calculus is used in the Armijo type line search to decrease the value

of objective function. The global convergence of the proposed algorithm has been provided

under mild conditions. In numerical experiments, the search process gradually moves from

global search in the beginning to the local search in the end and it is shown that the proposed

method is promising. From applications point of view, the authors hope that this concept

may be further extended for multiobjective optimization problems.



A q-CONJUGATE GRADIENT ALGORITHM 73

Acknowledgment

The authors are grateful to the anonymous referees for their valuable comments and sug-

gestions on the paper which have greatly improved the paper.

References

[1] N. Andrei, Scaled conjugate gradient algorithms for unconstrained optimization, Com-

putational Optimization and Applications 38 (2007) 401–416.

[2] C.R. Adams, The general theory of a class of linear partial difference equations, Trans-

actions of the American mathematical society 26 (1924) 183–312.

[3] E. G. Birgin and J. M. Martinez, A spectral conjugate gradient method for uncon-

strained optimization, Applied Mathematics and optimization 43 (2001) 117–128.

[4] S.K. Chakraborty and G. Panda, Newton like line search method using q-calculus in:

Mathematics and Computing. ICMC 2017. Communications in Computer and Infor-

mation Science, D. Giri, R. Mohapatra, H. Begehr and M. Obaidat (Eds.), Springer,

Singapore, 2017, pp. 196–208.

[5] S.K. Mishra, G. Panda, M.A.T. Ansary and B. Ram, On q-Newton’s method for un-

constrained multiobjective optimization problems, Journal of Applied Mathematics and

Computing 63 (2020) 391–410.
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