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perturbation are not only on the right-hand side of the constraints, while with integer and

mixed integer linear programming models, [11] computes the SP which is caused by the

changes in the coefficients matrix.

Furthermore, the development of constraint qualifications consolidates the relationships

between SP and LM in mathematical programming models [3, 4]. In particular, several con-

ditions (e.g., the linear independence constraint qualification [7] and the strict Mangasarian-

Fromovitz constraint qualification [28]) guarantee the uniqueness of LM and also the equiva-

lence of LM and SP [29, 15]). In this sense, a central folk wisdom of SP in classical economic

theory is that SP is equivalent to LM (see the comments in [1]). This equivalence, however,

fails to hold when LM is not unique, since the graph of the value function is not necessarily

smooth when the set of LMs is not a singleton [16]. It is therefore conceivable that multiple

LMs may lead to incorrect computation of SP in economic models [26]. This observation

raises the natural question of what kind of sensitivity information do LMs convey when they

are not unique [7].

The first step in this direction is taken by [2, 1, 25], who propose two types of SPs (the

buying SP and the selling SP) in linear programming models. The buying and selling shadow

prices in convex programming models are developed by [25] under the assumption of the

Slater constraint qualification. The series works by Gauvin propose general sensitivity results

on the optimal value function when the related problem is nonconvex [18, 19, 20, 21, 22]. A

significant step forward for the derivation of SP in the multiple LMs’ case is taken by [6],

which show that an LM with the minimum Euclidean norm is exactly SP. The minimum

norm shadow price is extremely useful in nonconvex optimization models since it builds the

equivalence of SP to a particular LM, while buying / selling SPs fail to satisfy the property

[18]. Moreover, the minimum norm Lagrange multiplier can be computed efficiently by first

- order algorithms [32]. However, the economic significance of the minimum norm LM is

obscure which limits its practical value in the management areas. It is also noted that the

existence of the minimum norm LM is guaranteed only if the tangent cone of the abstract

constraint (i.e., the domain of the decision variables) is convex [7].

The concept of buying / selling SP and the minimum norm SP are based on the marginal

analysis of the value function. Instead of the traditional marginal analysis, [9] and [27] de-

veloped the concept of average shadow price (hereafter referred to as, ASP) by an average

analysis. The ASP coincides with the marginal shadow price in convex programming and

suggests a priori information for decision - making problems about resources. It is particu-

larly useful when the abstract constraint of decision variables is discrete (in which case the

minimum norm SP may not exist), and therefore it is widely applied in integer program-

ming and mixed integer programming problems [27, 10, 30]. In [8], the ASP is applied to

determine the best ways for future investments to improve the profit (i.e.,“remove the bot-

tleneck” of a particular resource [8]). However, the main limitation of using ASP to identify

“bottlenecks” is that it is only applicable if objective and constraints are linear [8, 11].

Although the theory of shadow prices are well developed in recent years, there are still

following relevant issues needed to be further addressed.

(1) Existence of SPs. The shadow price, by its definition, has an intimate connection

with the differentiability of the value function[16]. The classical line of analysis on the

For further details of the “bottlenecks”, please refer to [8]
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differentiability of the value function are mainly focused on the parametric mathematical

programming problem [13, 14], and the differential properties are usually obtained under

relatively strong assumptions, which are unlikely to be guaranteed in some real - world

problems. However, the shadow price only provides the sensitivity information of a

special parametric mathematical programming problem, in which the perturbations are

only occurred on the right - hand side of the constraints. Therefore it is conceivable

that some weaker conditions can be established to guarantee the existence of SP (also

the differentiability of the value function) [25, 24]. [6] propose a weaker condition for

the existence of shadow price, which however, fails to capture the case of the zero -

multiplier. According to [6], the zero - multiplier is the minimum norm multiplier, and

hence is a shadow price. However, as would become clear below, the zero - multiplier

may fail to express the meaning of shadow price in some situations. Therefore, it is

natural to understand which condition lies on the basis to ascertain the existence of

shadow prices.

(2) Generalized shadow price. In real - world applications, it is not sufficient to consider

the shadow price of a particular resource. For example, the ingredients required for

pharmaceutical manufacturing should be input proportionally. This observation raises

the natural question that what is the shadow price of a set of resources when they are

required to be input proportionally, i.e., the generalized shadow price.

Inspired by the idea of average shadow prices, in this research we first extend the notion of

shadow prices to the generalized shadow price, which is defined as the directional derivative

of the value function. Then we propose the sufficient condition for the existence of shadow

price without assuming any constraint qualifications. Our proposed condition is weaker than

the classical constraint qualifications. Finally, we introduce the shadow price mapping as a

tool to build the relationship between the set of Lagrange multipliers and the set of shadow

prices. Based on the shadow price mapping, a unified framework is proposed to analyze the

property of the set of shadow price. Our framework offers advantages that the Lagrange

multipliers with nice theoretical properties can be identified as the shadow prices.

Structure of the Paper

In Section 2, we review the definition and properties of two classical shadow prices. In

Section 3, we propose the notion of generalized shadow price, and the sufficient condition

guaranteeing the existence of generalized shadow price. In Section 4, we analyze the relation

of the our proposed sufficient condition and the classical constraint qualifications. In Section

5, we introduce the shadow price mapping as a tool to build the relationship between the

shadow prices and Lagrange multipliers. In addition, based on the shadow price mapping,

more Lagrange multipliers with nice theoretical properties are identified as shadow prices.

In Section 6, we use an illustrative example to show the power of the generalized shadow

price and the shadow price mapping. Finally, Section 7 contains some concluding remarks.
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2 Overview of the Shadow Price

Consider the following cost minimization problem:

min f(x)

s.t. hi(x) = 0, i = 1, . . . ,m,

gj(x) ≤ 0, j = 1, . . . , r,

x ∈ X.

(2.1)

Throughout this paper, we assume that f : Rn → (−∞,∞], gj : Rn → (−∞,∞]

j = 1, . . . , r are proper, convex and continuously differentiable functions, hi :

Rn → (−∞,∞], i = 1, . . . ,m are affine functions, and X is a nonempty closed

convex set. Furthermore, we assume that the optimal value of Problem (2.1) is

finite, i.e.,

−∞ < fopt < ∞. (2.2)

The objective function f represents the cost of the economic system, and each hi(x) =

0, i = 1, . . . ,m, and gj(x) ≤ 0, j = 1, . . . , r is viewed as a restriction of the availability of the

ith (or jth) resource. In this sense, the objective of Problem (2.1) aims to determine the

best input of each resource to minimize the overall system cost subject to the given resource

constraints.

Let

X∗ = {x ∈ X|f(x) = fopt, hi(x) = 0, i = 1, . . . ,m, gj(x) ≤ 0, j = 1, . . . , r}

be the optimal solution set, and assume that X∗ 6= ∅. Suppose x∗ ∈ X∗ is a minimum

of Problem (2.1), and let A(x∗) be the set of indices of the active constraints, i.e., those

constraints are satisfied as equations at x∗,

A(x∗) = {i|gi(x∗) = 0}.

A vector d ∈ Rn is said to be a tangent of X at x∗ if either d = 0 or there exists a sequence

{xk} in X such that xk 6= x∗ for all k and

xk → x∗,
xk − x∗

‖xk − x∗‖
→ d

‖d‖
.

The set of all tangents of X at x∗ is called the tangent cone of X at x∗, and is denoted by

TX(x∗).

The Lagrange dual problem of Problem (2.1) is defined as follows:

max
λ∈Rm,µ≥0

min
x∈X

{L(x, λ, µ)}, (2.3)

where L : Rn+m+r 7→ R is the Lagrange function of Problem (2.1)

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

µjgj(x).

Furthermore, let

S(u, v) = {x ∈ X |hi(x) = ui, i = 1, . . . ,m, gj(x) ≤ vj , j = 1, . . . , r, }
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be the set of feasible solutions at the level of (u, v). The value function ν(u, v), which denotes

the optimal cost given the parameters (u, v), is defined by

ν(u, v) =

{
inf

x∈S(u,v)
f(x), if S(u, v) 6= ∅,

∞, if S(u, v) = ∅.

It is clear that ν(0, 0) = fopt.

In Problem (2.1), the shadow price of the ith resource pi is defined as the partial derivative

of the marginal function at u [33],

pi =
∂ν(u, v)

∂ui
, i = 1, . . . ,m,

and

pj =
∂ν(u, v)

∂vi
, j = 1, . . . , r.

This definition is valid, provided assumptions are satisfied to guarantee the existence of the

above partial derivatives. Typically, these assumptions include the linear independence of the

active constraint gradients [e.g., the linear independence constraint qualification (LICQ) [7]].

Furthermore, LICQ also asserts the equivalence of shadow prices and Lagrange multipliers.

A Lagrange multiplier (λ∗, µ∗) ∈ Rm+r of Problem (2.1) at x∗ is a kind of vector satisfies

the following conditions,∇f(x∗) +

m∑
i=1

λ∗
i∇hi(x

∗) +

r∑
j=1

µ∗
j∇gj(x

∗)

T

y ≥ 0, ∀y ∈ TX(x∗) (2.4)

µ∗ ≥ 0, (2.5)

µ∗
i = 0, i /∈ A(x∗), (2.6)

where TX(x∗) denotes the tangent cone of X at x∗. Note that if X = Rn, then Eq. (2.4) is

simplified as

∇f(x∗) +

m∑
i=1

λ∗
i∇hi(x

∗) +

r∑
j=1

µ∗
j∇gj(x

∗) = 0.

For Problem (2.1), the Lagrange multiplier (λ∗, µ∗) also satisfies the following condition

fopt = inf
x∈X

L(x, λ∗, µ∗), (2.7)

and can be referred to as the “geometric multiplier” [7]. Therefore if there exists a Lagrange

multiplier (λ∗, µ∗), then strong duality holds for Problem (2.1) and (2.3) [7], that is,

fopt = q(λ∗, µ∗) = qopt, (2.8)

where q(λ, µ) = infx∈X L(x, λ, µ) is the dual function of Problem (2.1). For ease of reference,

we denote by M(x∗) the set of all Lagrange multipliers at the optimal solution x∗,

M(x∗) = {(λ, µ)|(λ, µ) satisfies conditions (2.4), (2.5) and (2.6)}.

However, the derivatives in the above definition of shadow price may not exist, and

to address this issue, [20] proposes two types of shadow prices by using the Dini partial

derivatives [see also in [1]].
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Definition 2.1. When ν(0, 0) is finite, the buying shadow price of the resources i and j

are

p+i (0, 0) = lim
t→0+

ν(0, 0)− ν(0 + tei, 0)

t
,

and

p+j (0, 0) = lim
t→0+

ν(0, 0)− ν(0, 0 + tej)

t
.

Similarly, the selling shadow price of the resources i and j are

p−i (0, 0) = lim
t→0−

ν(0, 0)− ν(0 + tei, 0)

t
,

and

p−j (0, 0) = lim
t→0−

ν(0, 0)− ν(0, 0 + tej)

t
.

[20] shows that the buying / selling shadow prices of resource i (or j) are equal to the

negative of the smallest and largest ith (or jth) entry of the corresponding Lagrange mul-

tipliers respectively, when the Mangasarian - Fromovitz constraint qualification is satisfied

and the feasible solution set S(u, v) is uniformly compact near (0, 0); that is,

p+i (0, 0) = min
(λ,µ)∈M(x∗)

λi,

p+j (0, 0) = min
(λ,µ)∈M(x∗)

µj ,

p−i (0, 0) = max
(λ,µ)∈M(x∗)

λi,

p−j (0, 0) = max
(λ,µ)∈M(x∗)

µj .

(2.9)

The buying / selling shadow prices have limited connection with the real - world appli-

cation, since the resources are usually required proportionally. For example, the ingredients

required for pharmaceutical manufacturing should be input proportionally. Therefore, the

need arises to extend the buying / selling prices to a more generalized formulation. [6] show

that the minimum Euclidean norm Lagrange multiplier (MNLM) is informative, and thus

is a kind of shadow price. For ease of reference, we referred to this kind of shadow price

as the MNLM shadow price (i.e., pMNLM). pMNLM expresses the rate of cost reduction per

unit constraint violation, along the maximum reduction direction dMNLM [7]. It extends the

notion of shadow prices to directional derivatives of the value function ν along the direction

dMNLM ∈ Rm+r, in the sense that

pMNLM = ‖(λMNLM, µMNLM)‖
= lim

t→0+

ν(0)−ν(tdMNLM)
t ,

(2.10)

where (λMNLM, µMNLM) is the MNLM. In view of equation (2.10), pMNLM is not the shadow

price of some particular resource, it express the rate of reduction per unit increment of all

m + r resources in proportion with weights dMNLM
1 : dMNLM

2 : · · · : dMNLM
m+r . We note that

these weights are determined by f, hi, gj , i = 1, . . . ,m, j = 1, . . . , r and X in Problem (2.1),

while can not be selected by decision makers to their own wills.

In the managerial application, [9] point out that a manager may get additional profit by

buying a certain reasonable additional amount of resource i, even when the market price of
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the resource is greater than the buying shadow price. Therefore, a new type of SP - the

ASP, is proposed to overcome the limitation the buying / selling SPs in nonconvex models

(especially in the integer or mixed integer linear programming models). The ASP measures

the contribution of resources along the direction d = (d1, d2) ∈ Rm+r in an average sense,

and is defined as

pASP (d) = sup
t>0

ν(0, 0)− ν(0 + td1, 0 + td2)

t
,

In particular, pASP (ei) refers to the ASP of a particular resource i. It is noted that in Model

(2.1), the average shadow price pASP (ei) coincides with the buying shadow price p+i (0, 0).

Based on the work of [6], [7] and [9], we extend the definition of shadow price to the

generalized shadow price by using directional derivative of the value function ν.

Definition 2.2. Given a direction vector d ∈ Rm+r, a real valued p(d) is said to be the gen-

eralized shadow price of the direction d, or simply generalized shadow price if the directional

derivative of the value function ν at the point 0 in the direction d exists, and

p(d) = lim
t→0+

ν(0)− ν(td)

t
. (2.11)

The set of all generalized shadow prices is denoted by

SP = {p(d)|d ∈ Rm+r}.

For ease of reference, we refer to the generalized shadow price as GSP for short. We

provide some orientation by summarizing the main attributes of the GSP.

(1) Clearly, under the assumption that p(d) exists for any d, then by Definition 2.2, the

buying / selling shadow prices [p+i and p−i ], and the MNLM shadow price pMNLM are

three special GSPs of three particular directions, ei, −ei and dMNLM, respectively. Note

that p−i = p(−ei).

(2) The salient property of the GSP is that it is not only consistent with the classical sen-

sitivity interpretation of Lagrange multipliers, but also it offers full control for decision

makers on selecting the weights to input resources. To get some insight, assume that

there are no inequality constraints, X = Rn and the equality constraint gradients at the

local minimum x∗ are linearly independent. This assumption is usually denoted as the

LICQ under which there exists a unique Lagrange multiplier λ∗ at x∗. Furthermore, for

each perturbation vector u ∈ Rm, the following perturbed problem

ν(u) = min f(x)

s.t. hi(x) = ui, i = 1, . . . ,m

always has a unique optimal solution x(u), and the sensitivity property of the value

function ν at u = 0 can be represented as

p(d) = ν′(0, d) = λ∗T d, d ∈ Rm.

We note that the preceding formula of p(d) is consistent with the result given in [15].

Furthermore, when we select d = ei, then λ∗
i = p(ei), which interprets the rate of cost
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reduction when the ith constraint is violated. This is consistent with the notion of the

classical shadow price. On the other hand, when we choose d̃ = (ω1, . . . , ωm)T , where

ωi represents the weight for increasing resource i. Then p(d̃) denotes the rate of cost

reduction when all resources are increased proportionally with weights ω1, . . . , ωm.

(3) We note that assuming 0 ∈ intdom(ν), then by the property of the directional deriva-

tive [5], the GSP p(d) is convex with respect to d.

(4) More importantly, as would become clear below, the GSP set has an intimate connec-

tion with the set of Lagrange multipliers, so that each GSP can be represented by a

corresponding Lagrange multiplier, and computed by primal and dual algorithms.

3 Sufficient Conditions for the Existence of Shadow Price

In this section, we discuss the existence of the GSPs. [7] prove that the existence of the

minimum norm shadow price pMNLM is guaranteed, provided that there exists at least one

Lagrange multiplier vector. Since the constraint qualifications ascertain the existence of

Lagrange multipliers, then it follows that there exists shadow prices as long as X is convex

and some constraint qualifications are satisfied at x∗. However, as it would become clear

below, not all constraint qualifications assert the existence of GSPs. The reason is that the

zero multiplier case is excluded from consideration in analysis of [7]. This can be seen by

considering the following example where there are no GSPs, although the set of Lagrange

multipliers is nonempty.

min x1 + x2

s.t. x2
1 = 0

x ∈ X = {(x1, x2)|x1 ≥ 0, x2 ≥ 0}.
(3.1)

The minimum of Problem (3.1) is (x∗
1, x

∗
2) = (0, 0), and the set of Lagrange multipliers

is

{λ|λ ∈ R}.

Hence, λ∗ = 0 is the minimum norm Lagrange multiplier of Problem (3.1). However, notice

that the value function of Problem (3.1) is:

ν(u) = min{x1 + x2|x2
1 = u, (x1, x2) ∈ X}

=

{ √
u, if u ≥ 0,

∞, if u < 0
,

then by Definition 2.2, for any nonzero direction d (i.e., d = α or d = −α with α > 0), the

GSPs
p(α) = lim

t→0+

ν(0)−ν(tα)
t ,

p(−α) = lim
t→0+

ν(0)−ν(−tα)
t ,

do not exist. Hence it is not generally true that the existence of Lagrange multipliers

ascertains the existence of GSPs. Naturally, the need arises to develop conditions that

guaranteeing the existence of GSPs. In Problem (3.1), although the value function ν has

nice properties, (e.g. ν is proper, closed and convex), it however fails to satisfy the condition
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of 0 ∈ int(dom(ν)). Hence it is conceivable that the condition 0 ∈ int(dom(ν)) lies at the

heart of guaranteeing the existence of the GSP. In fact, if 0 ∈ int(dom(ν)), then for any

direction d ∈ Rm+r, the quotient

ν(0)− ν(0 + td)

t

is well-defined, which then combined with the convexity of the value function ν, yields the

existence of direction derivatives of ν. The following proposition presents the sufficient

condition guaranteeing the existence of the GSP.

Proposition 3.1. Let ν(u, v) be the value function of Problem (2.1). Assume that 0 ∈
int(dom(ν)). Then there exists the generalized shadow price p(d).

In order to prove Proposition 3.1, we need the following lemma [5].

Lemma 3.2. Let f : Rn 7→ (−∞,∞] be a proper convex function and let x ∈ int(dom(f)).

Then for any d ∈ Rn, the directional derivative f ′(x; d) exists.

Proof. Proof of Proposition 3.1 We will use Lemma 3.2 to prove Proposition 3.1. We

first note that by the assumption 0 ∈ int(dom(ν)), the value function ν(u, v) is proper in a

neighbourhood N of the origin point satisfying N ⊆ int(dom(ν)). Then we will show that

the value function ν(u, v) of Problem (2.1) is convex. Consider the function

F (x, u, v) =

{
sup

λ∈Rm,µ≥0
{L(x, λ, µ)− λTu− µT v}, if x ∈ X,

∞, otherwise.
(3.2)

It is clear that

ν(u, v) = inf
x∈X

F (x, u, v). (3.3)

Our proof will revolve around the function F (x, u, v).

Since f, gi, i = 1, . . . ,m are proper and convex and hj , j = 1, . . . , r are affine, it follows

that

L(x, λ, µ)− λTu− µT v

is proper and convex with respect to x. Thus F (x, u, v) is also proper and convex in

the sense that the supreme of a class of convex functions is also convex. Suppose that

(u1, v1), (u2, v2) ∈ Rm+r, and β ∈ (0, 1). Then by Eq. (3.3), there exist sequences {xk
1}

and {xk
2} in X such that lim

k→∞
F (xk

1 , u1, v1) = ν(u1, v1) and lim
k→∞

F (xk
2 , u2, v2) = ν(u2, v2).

Therefore, by Eq. (3.3) and the convexity of F , we have

ν(β(u1, v1) + (1− β)(u2, v2)) = inf
x∈X

{F (x, βu1 + (1− β)u2, βv1 + (1− β)v2)}

≤ F (βxk
1 + (1− β)xk

2 , βu1 + (1− β)u2, βv1 + (1− β)v2)

≤ βF (xk
1 , u1, v1) + (1− β)F (xk

2 , u2, v2).

Taking the limit in the above inequality, yields

ν(β(u1, v1) + (1− β)(u2, v2)) ≤ βν(u1, v1) + (1− β)ν(u2, v2),

which indicates that the value function ν(u, v) is convex.
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Thus we have ν(u, v) is proper and convex on N , combining 0 ∈ int(dom(ν)), and in

view of Lemma 3.2 we obtain that for any d ∈ Rm+r, the GSP

p(d) = lim
t→0+

ν(0)− ν(td)

t

exists.

For ease of reference, we refer to the condition 0 ∈ int(dom(ν)) as the shadow price

existence condition (SPE for short). We will show that the set of GSPs is closely related to

the set of Lagrange multipliers under the SPE condition. The following proposition clarifies

the relationship between the set of GSPs and the set of LMs.

Proposition 3.3. Let ∂ν(0, 0) be the subdifferential of the value function at the origin.

Assume that the SPE condition holds. Then

(1) the set of Lagrange multipliers M(x∗) is equivalent to −∂ν(0, 0);

(2) the generalized shadow price p(d) of direction d is equal to

− min
g∈M(x∗)

gT d.

In order to prove Proposition 3.3, we need the following lemma of “max formula”[5]:

Lemma 3.4. (max formula.)Let f : Rn 7→ (−∞,∞] be a proper convex function, and

∂f(x) be the subdifferential of function f at the point x. Then for any x ∈ int(dom(f))

and each d ∈ Rn, the direction derivative of f at x in the direction d is

f ′(x; d) = lim
t→0+

f(x+td)−f(x)
t ,

= max
g∈∂f(x)

gT d.

Proof. Proof of Proposition 3.3

(1) We first note that for any λ ∈ Rm, µ ≥ 0, the dual function q(λ, µ) of Problem (2.1) is

q(λ, µ) = inf
x∈X

{f(x) + λTh(x) + µT g(x)}

= inf
(u,v)∈Rm+r

inf
h(x) = u, g(x) ≤ v,

x ∈ X,

{f(x) + λTh(x) + µT g(x)}

= inf
(u,v)∈Rm+r

{ν(u, v) + λTu+ µT v}.

Suppose that (λ∗, µ∗) is a Lagrange multiplier, then by strong duality we have q(λ∗, µ∗) =

fopt = ν(0, 0) [c.f. Eq. (2.8)], and it follows that

ν(0, 0) ≤ ν(u, v) + (λ∗)Tu+ (µ∗)T v, ∀(u, v) ∈ Rm+r . (3.4)

Therefore by the definition of subdifferentials, we have (λ∗, µ∗) ∈ −∂ν(0, 0).
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Conversely, suppose ν is proper and Eq. (3.4) holds for some (λ, µ). Then since ν is

monotonically nonincreasing with respect to the component of v, it follows that µ∗ ≥ 0.

Moreover, we have
fopt = ν(0, 0)

≤ inf
u,v

{ν(u, v) + λTu+ µT v}

= q(λ, µ)

≤ qopt
≤ fopt,

it follows that (λ, µ) is a Lagrange multiplier.

(2) We recall from the proof of Proposition 3.1 that the value function ν is proper and

convex. In view of the SPE condition, combining Lemma 3.4 and the definition of the

generalized shadow price, we obtain for any d ∈ Rm

p(d) = ν′((0, 0); d)

= max
g∈∂ν(0,0)

gT d

= − min
g∈M(x∗)

gT d,

which proves the second part of Proposition 3.3.

We note that the equivalence of the Lagrange multiplier set M(x∗) and the subdifferential

−∂ν(0, 0) is also proved in [15], under the assumption that the Slater constraint qualification

holds. As would become clear in Section 4, the Slater constraint qualification implies the

SPE condition, and therefore Proposition 3.3 can be seen as a generalization of the result

in [15].

4 Relations between the Shadow Price Existence and Constraint

Qualifications

In the preceding section, we propose the SPE condition to ascertain the existence of shadow

price. The SPE condition, however, is hard to verify in practice. Furthermore, the classical

line of development of the shadow price theory revolves around the constraint qualifications.

Therefore, naturally the need arises to understand the relation of the SPE condition and

the constraint qualifications. In this section, we discuss the relation of the SPE condition

with the following four classical constraint qualifications.

(1) (CQ1. Linear Independence Constraint Qualification) X = Rn and x∗ satisfies

LICQ, i.e., the equality constraint gradients ∇hi(x
∗), i = 1, . . . ,m, and the active

inequality constraint gradients ∇gj(x
∗), j ∈ A(x∗), are linearly independent.

(2) (CQ2. Mangasarian Fromovitz Constraint Qualification) X = Rn, the equality

constraint gradients ∇hi(x
∗), i = 1, . . . ,m, are linearly independent, and there exists a

y ∈ Rn such that
∇hi(x

∗)y = 0, i = 1, . . . ,m,

∇gj(x
∗)y < 0, j ∈ A(x∗).

(4.1)
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(3) (CQ3. Slater Constraint Qualification) There are no equality constraints. X = Rn,

the inequality constraints gj(x), j = 1, . . . , r are convex and there exists a feasible vector

x̄ ∈ X satisfying:

gj(x̄) < 0, j ∈ A(x∗),

gj(x̄) ≤ 0, j /∈ A(x∗).
(4.2)

(4) (CQ4) There are no inequality constraints. All the equality constraints hi(x), i =

1, . . . ,m are affine, and X = Rn.

We will show that the SPE condition can be derived from all these constraint quali-

fications except for CQ4. This implies that the constraint qualifications are sufficient to

guarantee the existence of the GSP. Compared with classical constraint qualifications, the

SPE condition is a weaker condition, and it lies at the heart of guaranteeing the existence

of the GSP. As is well - known, either CQ1 or CQ3 implies CQ2, hence we only prove that

the SPE condition can be derived from CQ2.

We first introduce a lemma from [7] to show that the value function ν is lower semicon-

tinuous at (u, v) = (0, 0) under either of the preceding four constraint qualifications.

Lemma 4.1. Assume that fopt < ∞, the set X is convex, and f and gj ,= 1, . . . , r are

convex over X, hi, i = 1, . . . ,m are affine over X. Then, there is no duality gap if and only

if ν is lower semicontinuous at (u, v) = (0, 0).

We note that by assumptions on Problem (2.1) [c.f. f ,gj and X are convex, hi are affine],

CQ1 to CQ4 ascertain the strong duality of Problem (2.1) and (2.3). Then combining Eq.

(2.2) and Lemma 4.1, the value function ν is lower semicontinuous at (u, v) = (0, 0), implying

ν(u, v) ≥ ν(0, 0) = fopt for any (u, v) in the neighbourhood of the origin. Hence in order to

show CQ1,CQ2 and CQ3 will lead to the SPE condition, it is sufficient to prove that the

following perturbed problem

min f(x)

s.t. hi(x) = ui, i = 1, . . . ,m

gj(x) ≤ vj , j = 1, . . . , r

x ∈ X

(4.3)

is feasible.

To prove CQ2 is sufficient to guarantee the SPE condition, we need the following lemma

which can be viewed as the enhanced form of the implicit function theorem [12].

Lemma 4.2. Assume that g : Rn 7→ Rm is a continuously differentiable function, and

∇g1(x0), . . . ,∇gm(x0) are linear independent, then

(1) ∀h ∈ Rn, there exists a t0 > 0 such that ∀− t0 ≤ t ≤ t0, there exists a unique continuous

function x = x(t), t ∈ (−t0, t0), satisfying x(0) = x0 and x′(0) = h,

(2) g(x(t)) = g(x0) + t
m∑
i=1

hi∇gi(x0), for all t ∈ (−t0, t0).

Proposition 4.3. Suppose that CQ2 holds, then 0 ∈ int(dom(ν)).
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Proof. Proof of Proposition 4.3 Let Dh(x∗) =
(
∇h1(x

∗), · · · ,∇hm(x∗)
)
, and

α = max
j /∈A(x∗)

gj(x
∗),

δ1 = min
j∈A(x∗)

{|∇gj(x
∗)y|},

δ2 = max
j /∈A(x∗)

{|∇gj(x
∗)y|},

(4.4)

where y ∈ Rn satisfies Eq. (4.1). For j = 1, . . . , r, given any vector ξ ∈ Rm satisfying

‖ξ‖ ≤ 1, the following problem

max
z

|∇gj(x
∗)T z|

s.t. Dh(x∗)T z = ξ,

has an optimal solution z∗j , because of the linear independent assumption. Let

Mj = |∇gj(x
∗)T z∗j |,M = max

j=1,...,r
{Mj},

j̃ = arg max
j=1,...,r

{Mj}, z =
δ1
2M

z∗
j̃
.

Then for any j we have

|∇gj(x
∗)T zj̃ | ≤ M, (4.5)

|∇gj(x
∗)T z| ≤ δ1

2
, (4.6)

Dh(x∗)z = η, (4.7)

with some η satisfying ‖η‖ ≤ δ1
2M .

Moreover, since ∇hi(x
∗), i = 1, . . . ,m are linear independent, then by Lemma 4.2, there

exists t0 such that ∀ − t0 ≤ t ≤ t0, there exists a continuous function x(t) such that

x(0) = x∗,

x′(0) = y + z,

and combing Eqs. (4.4), (4.1), (4.6) and (4.7), we obtain

h(x(t)) = h(x∗) + tDh(x∗)(y + z) = tη, (4.8)

and for all j ∈ A(x∗),

gj(x(t)) = gj(x
∗) + t∇gj(x

∗)(y + z) + o(t)

≤ t(−δ1 +∇gj(x
∗)z) + o(t)

≤ − δ1t
2 + o(t)

≤ − δ1t
4 .

(4.9)

Moreover, noticing that α = max
j /∈A(x∗)

gj(x
∗) [c.f. Eq. (4.4)]. Then for all j /∈ A(x∗), we have

gj(x(t)) = gj(x
∗) + t∇gj(x

∗)(y + z) + o(t)

≤ α+ t(δ2 +
δ1
2 ) + o(t)

≤ α+ t(δ2 +
3δ1
4 ).

(4.10)
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Setting t1 = min{t0,− α
2(δ2+

3
4 δ1)

}, we have ∀t ∈ [ t12 , t1], function x(t) satisfies

h(x(t)) = tu, ‖u‖ ≤ δ1
2M ,

gj(x(t)) ≤ − δt
4 ≤ − δt1

8 , ∀j ∈ A(x∗),

gj(x(t)) ≤ α+ t(δ2 +
3δ1
4 ) ≤ α

2 , ∀j /∈ A(x∗).

Therefore, let ρ = min{ δt1
8 , δt1

4M ,−α
2 }. Then for all (u, v) ∈ B(0, ρ), there exists t̃ ∈ [ t12 , t1]

such that
hi(x(t̃)) = u,

gj(x(t̃)) ≤ − δt1
8 ≤ vj , ∀j ∈ A(x∗),

gj(x(t̃)) ≤ α
2 ≤ vj , ∀j /∈ A(x∗).

Therefore, similar to the proof in preceding proposition, this implies that for all (u, v) ∈
B(0, ρ), the perturbed problem [c.f. Problem (4.3)] is feasible, which proves the desired

result.

Proposition 4.4. Suppose that CQ1 or CQ3 holds, then 0 ∈ int(dom(ν)).

From Proposition 4.4, we can immediately obtain the following two corollaries which

coincides with the results in [24] and [25].

Corollary 4.5. Suppose there are no equality constraints in Problem (2.1). Assume the

Slater constraint qualification holds at some feasible point x̄. Then there exists the directional

derivative of the value function ν at v = 0 in the direction α ∈ Rr and is given by

ν′(0, α) = max
µ∈M(x∗)

{(−µTα)}.

Corollary 4.6. Suppose there are no equality constraints in Problem (2.1). Assume the

Slater constraint qualification holds at some feasible point x̄. Moreover, let the set of La-

grange multipliers M(x∗) be compact. Then it holds

p+i = ν′(0, ei) = − min
µ∈M(x∗)

µi,

p−i = −ν′(0,−ei) = − max
µ∈M(x∗)

µi.

We have shown that either of the first three constraint qualifications [c.f. CQ1, CQ2 and

CQ3] guarantees the SPE condition. However, CQ4 is not sufficient for the SPE condition.

As a example, consider the following problem

min f(x1, x2)

s.t. x1 + 2x2 − 1 = 0

2x1 + 4x2 − 2 = 0

Assume that there exists a perturbation

(
u1

u2

)
on the righthand side of the two equality

constraints with u2 6= 2u1. Then the perturbed problem is inconsistent, and thus ν(u1, u2) =

∞, which implies the SPE condition fails to be satisfied.

[11] proposes the generalized average shadow price which corresponds to the perturbation

on the coefficients matrix of constraints. It is naturally to ask whether our proposed GSP
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can be applied to convex programming models when the perturbations are not only on the

right-hand side.

Consider the following perturbed convex programming problem

minx f(x)

s.t. hi(x, y) = 0, i = 1, . . . ,m,

gj(x, y) ≤ 0, j = 1, . . . , r,

x ∈ X,

(4.11)

where y ∈ Rm+r is a perturbation vector, f : Rn → (−∞,∞], gj : Rn × Rm+r → (−∞,∞]

j = 1, . . . , r are proper, convex and continuously differentiable functions, hi : Rn ×Rm+r →
(−∞,∞], i = 1, . . . ,m are affine functions, and X is a nonempty closed convex set. Let

S(y) = {x ∈ X |hi(x, y) = 0, i = 1, . . . ,m, gj(x, y) ≤ 0, j = 1, . . . , r, }

be the set of feasible solutions at the level of y. The value function ν(y), which denotes the

optimal cost given the parameters y, is defined by

ν(y) =

{
inf

x∈S(y)
f(x), if S(y) 6= ∅,

∞, if S(y) = ∅.

Similarly to Proposition 3.1, it is not difficult to show the SPE condition (0 ∈ intdom(ν))

guarantees the existence of GSP of Problem (4.11). However, we can not build the equiv-

alence of the Lagrange multipliers’ set (M(x∗)) and −∂ν(0), since Eq. (3.4) may not hold

without any further assumptions, even if the constraints are linear. Consider the following

example.
min x

s.t. −x ≤ 0,

x ≤ 1.

(4.12)

The optimal solution is x∗ = 0 and the set of Lagrange multipliers is M(x∗) = {(λ1, λ2)|λ1−
λ2 = 1, λ1 ≥ 0, λ2 ≥ 0}, which indicates that λ1 and λ2 can not be both zero valued. Suppose

the coefficient matrix of constraints are perturbed as follows,

minx x

s.t. (−1 + ∆1)x ≤ 0,

(1 + ∆2)x ≤ 1,

(4.13)

where ∆1 and ∆2 are sufficiently small scalars. Then for any direction d ∈ R2, the GSP

of Problem (4.12) is p(d) = limt→0+
ν(0)−ν(td)

t = 0, which cannot be expressed by the inner

product of any Lagrange multipliers and the direction d.

It is also noted that [21] shows the equivalence of M(x∗) with −∂ν(0) under the assump-

tion of CQ.1 and the uniformly compactness of the solution set S(y) near y = 0.

5 The Shadow Price Mapping

Traditional treatments of the shadow price theory revolve around identifying special La-

grange multipliers with particular properties [7]. In this line of analysis, the Lagrange
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multipliers are treated separately. In this section, by proposing the shadow price mapping,

we develop a unified framework to analyze the properties of the shadow price set. The line of

our framework is new, and offers some advantages. For example, more Lagrange multiplies

of nice theoretical properties can be identified as shadow price in our framework.

The idea of the shadow price mapping are primarily motivated as follows. Recall from

Proposition 3.3 in Section 3 that the shadow price

p(d) = − min
g∈M(x∗)

gT d,

provided the SPE condition holds. Notice that the SPE condition also guarantees the

nonemptiness and compactness of the subdifferential ∂ν(0, 0) [5], then by Proposition (3.3),

we obtain that the Lagrange multiplier set M(x∗) is nonempty and compact. Therefore, for

any compact set D in Rm+r, the following minmax equality holds

−max
d∈D

min
g∈M(x∗)

gT d = − min
g∈M(x∗)

max
d∈D

gT d. (5.1)

Since the left - hand side of Eq. (5.1) is equal to min
d∈D

p(d), implying a kind of shadow price

of a particular direction d. On the other hand, assume that d∗ is the optimal solution of

max
d∈D

gT d, then the right - hand side of Eq. (5.1) can be simplified as

− min
g∈M(x∗)

gT d∗,

implying a particular Lagrange multiplier. In this sense, by Eq. (5.1), we can build a close

relationship between the shadow prices and the Lagrange multipliers. The rest part of this

section revolves around the saddle point problem [c.f. Eq. (5.1)].

First, we introduce the notion of the shadow price mapping.

Definition 5.1. Assume the SPE condition holds. Let M(x∗) be the set of Lagrange

multipliers at x∗, SP be the set of GSPs in Rm+r, D be the set of compact sets. Given a

compact set D ∈ D, the mapping TSP

TSP : D 7→ SP

D 7→ TSP(D) = min
d∈D

p(d),

is called the shadow price mapping.

By the compactness of D ∈ D and M(x∗), there exists a saddle point of the saddle point

problem [c.f. Eq. (5.1)], and it follows that the shadow price mapping TSP is well defined.

Furthermore, the shadow price mapping TSP is surjective, since TSP({{d}|d ∈ Rm+r}) =
SP , where {d} denotes a singleton set.

The main potential advantage of the shadow price mapping is that it provides a way to

identify more Lagrange multipliers as GSPs. Let us consider several different GSPs.

(1) The minimum norm shadow price. In Eq. (5.1), by setting D = {d|‖d‖ ≤ 1}, we
obtain

TSP(D) = min
{d|∥d∥≤1}

p(d)

= − min
g∈M(x∗)

max
{d|∥d∥≤1}

gT d.
(5.2)
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Since gT d ≤ ‖g‖‖d‖, and the inequality holds as a equality when d = g
∥g∥ , thus Eq.

(5.2) equals to

− min
g∈M(x∗)

‖g‖,

implying that the minimum norm Lagrange multiplier is a type of shadow price p(d),

where d = arg max
{d|∥d∥≤1}

p(d). We denote this type of shadow price as the minimum norm

shadow price.

(2) Buying / Selling Shadow Price. In Eq. (5.1), by setting D = {ei}, i = 1, . . . ,m+ r,

we obtain
TSP({ei}) = min p(ei)

= − min
g∈M(x∗)

gi,
(5.3)

implying that the Lagrange multiplier with the minimum ith entry is a type of shadow

price, namely the buying shadow price of the ith resource [c.f. Eq. (2.9)]. Similarly, the

selling shadow price of the ith resource can be obtained by setting D = {−ei}.

(3) Minimum and Maximum Value Shadow Price. In Eq. (5.1), by setting D = {e},
we obtain

TSP(D) = min p(e)

= − min
g∈M(x∗)

m+r∑
i=1

gi,
(5.4)

implying that the Lagrange multiplier with the minimum sum of entries is a type of

shadow price p(e). We denote this type of shadow price as the minimum value shadow

price. Similarly, by setting D = {d|d = −e}, the Lagrange multiplier with the maximum

sum of entries is also a type of shadow price, and is denoted as the maximum value

shadow price.

(4) Minimum p-Norm Shadow Price. In Eq. (5.1), by setting D = {d|‖d‖p ≤ 1} (here

‖d‖p = (
m+r∑
i=1

dpi )
1
p denotes the p-norm of the vector d), we obtain

TSP(D) = min
{d|∥d∥p≤1}

p(d)

= − min
g∈M(x∗)

max
{d|∥d∥p≤1}

gT d.
(5.5)

Since gT d ≤ ‖g‖q‖d‖p, where 1
p + 1

q = 1, and the inequality holds as a equality when

d = g
∥g∥q

, thus Eq. (5.5) equals to

− min
g∈M(x∗)

‖g‖q,

implying that the Lagrange multiplier with the minimum q-norm is a type of shadow

price. In particular, by setting p = 1, we obtain

min
{d|∥d∥1≤1}

p(d) = − min
g∈M(X∗)

‖g‖∞

= − min
g∈M(X∗)

max
i=1,...,r+m

|gi|,
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implying that the Lagrange multiplier whose largest absolute value of entries is the

minimum, is a type of shadow price. Moreover, by setting p = ∞, we obtain

min
{d|∥d∥∞≤1}

p(d) = − min
g∈M(X∗)

‖g‖1

= − min
g∈M(X∗)

r+m∑
i=1

|gi|,

implying that the Lagrange multiplier with the minimum sum of absolute value of en-

tries, is a type of shadow price.

(5) Maximum Largest Absolute Value Shadow Price. Let us now consider the unit

simplex set D = ∆m+r = {d|
m+r∑
i=1

di = 1, di ≥ 0, i = 1, . . . ,m + r}. We will show that

the Lagrange multiplier with maximum entry is a type of shadow price. To prove this

desired result, we need the following lemma [5].

Lemma 5.2. Let f : Rn 7→ (−∞,∞] be a proper convex function. Suppose that

ri(∆n)
∩
ri dom(f) 6= ∅. Then x∗ ∈ ∆n is an optimal solution of

min{f(x)|x ∈ ∆n}

if and only if there exists g ∈ ∂f(x∗) and µ ∈ R for which

gi =

{
= µ, x∗

i > 0,

≥ µ, x∗
i = 0.

In Eq. (5.1), by setting D = {d|d ∈ ∆m+r}, we obtain

TSP(D) = min
{d|d∈∆m+r}

p(d)

= − min
g∈M(X∗)

max
{d|d∈∆m+r}

gT d.
(5.6)

By Lemma 5.2, the optimal solution of

max
{d|d∈∆m+r}

gT d (5.7)

is

g∗ =

{
µ, d∗i > 0,

≥ µ, d∗i = 0.
(5.8)

It can be inferred that µ = − max
i=1,...,m+r

{|gi|}, since otherwise Eq. (5.8) will be vio-

lated. Notice that d∗ ∈ ∆m+r, hence the optimal value of Problem (5.7) is g∗T d∗ =

− max
i=1,...,m+r

{|gi|} Combining this Eqs. (5.6) and (5.8), we obtain that

min
{d|d∈∆m+r}

p(d) = − min
g∈M(X∗)

{− max
i=1,...,m+r

|gi|}

= max
g∈M(X∗)

max
i=1,...,r+m

|gi|,

implying that the Lagrange multiplier whose largest absolute value of entries is the

maximum, is a type of shadow price.
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6 Illustrative Example

In this section, we will use an illustrative example to show the power of GSP and the shadow

price mapping. It will be shown that incorrect decisions would be made if policy makers

only consider the buying / selling shadow price. Consider the following example.

Medicare is a small pharmaceutical manufacturing company that manufactures medicines

I and II. To produce 1 unit of I, Medicare needs to invest 3 units of material A and 2 units

of material B, while to produce 1 unit of II, Medicare needs to invest 2 units of material A

and 4 units of material B. Assume that Medicare has available 7
2 units of material A and 5

units of material B. Let x1 and x2 denote the quantity of medicines I and II manufactured.

If in addition, the production cost of I and II can be expressed as (x1 − 1)2 + (x2 − 2)2.

Then the optimal production of medicines I and II can be obtained by solving the following

quadratic programming:

min (x1 − 1)2 + (x2 − 2)2

s.t. g1(x) = 3x1 + 2x2 − 7
2 ≤ 0

g2(x) = 2x1 + 4x2 − 5 ≤ 0

x ∈ X = {(x1, x2)|x1 ≥ 0, x2 ≥ 0}.

(6.1)

The optimal solution of Problem (6.1) is x∗ = ( 12 , 1)
T , and the corresponding Lagrange

multiplier set is Mµ = {(µ1, µ2)|µ1 + 2µ2 ≥ 0, µ1 ≥ 0, µ2 ≥ 0}.
Assume that the two materials A and B can either be produced by Medicare or be

purchased from the supplier. If Medicare choose to purchase A and B from the suppliers,

the prices for purchasing A and B are 1
200 and 1

100 , respectively. Otherwise, Medicare

can only produce A and B by themselves. Suppose in addition, the materials A and B

are produced proportionally by Medicare, i.e., 1 unit of raw material can simultaneously

produce 1 unit of A and 1
3 unit of B, and the cost of 1 unit of raw material is 1

10 . Then

Medicare must determine whether to expand their production of medicines.

Since the gradients of the two constraints at the optimal solution ∇g1(x
∗) = (3, 2)T and

∇g2(x
∗) = (2, 4)T are linear independent, it follows that for any small perturbation (u1, u2)

on the right - hand side of the constraints, there exists a continuous function x(u) of the

following system {
g1(x) = 3x1 + 2x2 − 3.5 = u1

g2(x) = 2x1 + 4x2 − 5 = u2
,

satisfying x(0) = x∗. Notice that x∗ is positive, then by the continuity of x(u), we have

x(u) ∈ X. Therefore, combining Lemma 4.1, the SPE condition holds for Problem (6.1).

We first consider the case of purchasing A and B from the Supplier. By using the shadow

price mapping with d1 = (1, 0)T and d2 = (0, 1)T , we have

TSP(d1) = − min
(µ1,µ2)∈Mµ

µ1 = 0

and

TSP(d2) = − min
(µ1,µ2)∈Mµ

µ2 = 0

implying that the manufacturing cost of medicines I and II will not decrease if an extra

unit of A or B are purchased from suppliers.
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We then consider the case of producing A and B by Medicare. By using the shadow

price mapping with d3 = (1, 1
3 )

T we have

TSP(d3) = − min
(µ1,µ2)∈Mµ

µ1 +
1

3
µ2,

yields TSP(d) = − 1
6 . It implies that if the material A and B are increased proportionally

with d = (1, 1
3 ), the production cost of medicines I and II can be reduced by 1

6 . Recall that

the cost of producing 1 unit of A and 1
3 unit of B is 1

10 , therefore Medicare should expand

their production level by producing the material A and B themselves.

7 Conclusion

The major insights from our analysis are

(1) We extend the notion of shadow prices to the generalized shadow price, which is defined

as the directional derivative of the value function.

(2) We propose the sufficient condition to guarantee the existence of shadow price from

a new point of view. Our proposed condition is weaker than the classical constraint

qualifications.

(3) The shadow price mapping is proposed to build a close relationship between the set of

Lagrange multipliers and the set of shadow prices.

(4) Based on the shadow price mapping, a unified framework is proposed to analyze the

property of the set of shadow price. Our framework offers advantages that the Lagrange

multipliers with nice theoretical properties can be identified as the shadow prices.

Future studies can be focused on identifying and computing generalized shadow prices

when the perturbations of the optimization model are not only on the right - hand side of

the constraints.
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