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for all x, y ∈ C, where R is the set of real numbers. Such a mapping U is called (α, β)-

generalized hybrid. If U is (α, β)-generalized hybrid and F (U) ̸= ∅, then we have that, for

x ∈ C and q ∈ F (U),

α∥q − Ux∥2 + (1− α)∥q − Ux∥2 ≤ β∥q − x∥2 + (1− β)∥q − x∥2

and hence ∥Ux− q∥2 ≤ ∥x− q∥2. From this, we have that

2⟨x− q, x− Ux⟩ ≥ ∥x− Ux∥2. (1.2)

On the other hand, there exists such a mapping in a Banach space. Let E be a smooth

Banach space and let B be a maximal monotone operator with B−10 ̸= ∅. If Jλ is the metric

resolvent of B for λ > 0, then we have from [1, 16] that, for any x ∈ E and q ∈ B−10,

⟨Jλx− q, J(x− Jλx)⟩ ≥ 0.

Then we get ⟨Jλx− x+ x− q, J(x− Jλx)⟩ ≥ 0 and hence

⟨x− q, J(x− Jλx)⟩ ≥ ⟨x− Jλx, J(x− Jλx)⟩
= ∥x− Jλx∥2, (1.3)

where J is the duality mapping on E. Motivated by (1.1) (1.2) and (1.3) Takahashi [20]

defined a nonlinear mapping as follows: Let E be a smooth Banach space, let C be a

nonempty, closed and convex subset of E and let η be a real number with η ∈ (−∞, 1). A

mapping U : C → E with F (U) ̸= ∅ is called η-demimetric if, for any x ∈ C and q ∈ F (U),

2⟨x− q, J(x− Ux)⟩ ≥ (1− η)∥x− Ux∥2. (1.4)

According to this definition, we have that a k-strict pseud-contraction U with F (U) ̸= ∅ is k-

demimetric, a generalized hybrid mapping U with F (U) ̸= ∅ is 0-demimetric and the metric

resolvent Jλ with B−10 ̸= ∅ is (−1)-demimetric. On the other hand, we know the following

strong convergence theorem by the shrinking projection method which was introduced by

Takahashi, Takeuchi and Kubota [21] for finding a fixed point of a nonexpansive mapping

in a Hilbert space.

Theorem 1.1 ([21]). Let H be a Hilbert space and let C be a nonempty, closed and convex

subset of H. Let T be a nonexpansive mapping of C into H. Assume that F (T ) ̸= ∅. Let

x1 ∈ C and C1 = C. Let {xn} be a sequence generated by
yn = (1− λn)xn + λnTxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1

x1, ∀n ∈ N,

where a ∈ R and {λn} ⊂ (0,∞) satisfy the following:

0 < a ≤ λn ≤ 1, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ F (T ), where z0 = PF (T )x1 and PF (T ) is the

metric projection of H onto F (T ).
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In this paper, using a new shrinking projection method, we establish a strong convergence

theorem for finding a common element of the set of zero points of a maximal monotone

operator and the set of common fixed points of two demimetric mappings in a Banach

space. Moreover we apply our result to obtain well-known and new strong convergence

theorems in a Hilbert space and a Banach space.

2 Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of E. We denote

the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence in E, we denote the

strong convergence of {xn} to x ∈ E by xn → x and the weak convergence by xn ⇀ x. The

modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if δ(ϵ) > 0 for

every ϵ > 0. It is known that a Banach space E is uniformly convex if and only if for any

two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex and

reflexive. We also know that a uniformly convex Banach space has the Kadec-Klee property,

i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [4, 11].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux

differentiable if for each x, y ∈ U , the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

exists. In the case, E is called smooth. We know that E is smooth if and only if J is

a single-valued mapping of E into E∗. We also know that E is reflexive if and only if J

is surjective, and E is strictly convex if and only if J is one-to-one. Therefore, if E is a

smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection and

in this case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗. For

more details, see [15] and [16]. Let C be a nonempty, closed and convex subset of a strictly

convex and reflexive Banach space E. Then we know that for any x ∈ E, there exists a

unique element z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call

PC the metric projection of E onto C.

Lemma 2.1 ([15]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be

a nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C. Then, the following

conditions are equivalent:
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(1) z = PCx1;

(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.

Let E be a Banach space and let B be a mapping of E into 2E
∗
. The effective domain

of B is denoted by dom(B), that is, dom(B) = {x ∈ E : Bx ̸= ∅}. A multi-valued mapping

B on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all x, y ∈ dom(B), u∗ ∈ Bx, and

v∗ ∈ By. A monotone operator B on E is said to be maximal if its graph is not properly

contained in the graph of any other monotone operator on E. The following theorem is due

to Browder [2]; see also [16, Theorem 3.5.4].

Theorem 2.2 ([2]). Let E be a uniformly convex and smooth Banach space and let J be

the duality mapping of E into E∗. Let B be a monotone operator of E into 2E
∗
. Then B is

maximal if and only if for any r > 0,

R(J + rB) = E∗,

where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm and let

B be a maximal monotone operator of E into 2E
∗
. For all x ∈ E and r > 0, we consider

the following equation

0 ∈ J(xr − x) + rBxr.

This equation has a unique solution xr. In fact, for x ∈ E, define

Gy = B(y + x) ∀y ∈ E.

Since 0 ∈ E∗ = R(J + rG) for all r > 0, there exists w ∈ D(G) such that

0 ∈ Jw + rGw = Jw +B(w + x).

Putting xr = w + x, we have 0 ∈ J(xr − x) + rBxr. We show that such a solution xr is

unique. Take z1, z2 ∈ D(B) such that 0 ∈ J(z1 − x) + rBz1 and 0 ∈ J(z2 − x) + rBz2. We

have − 1
rJ(z1 − x) ∈ Bz1 and − 1

rJ(z2 − x) ∈ Bz2. Since B and J are monotone, we have

0 ≤
⟨
z1 − z2,−

1

r
J(z1 − x) +

1

r
J(z2 − x)

⟩
= −1

r
⟨z1 − x− (z2 − x)J(z1 − x)− J(z2 − x)⟩ ≤ 0

and hence

⟨z1 − x− (z2 − x)J(z1 − x)− J(z2 − x)⟩ = 0.

Since E is strictly convex, we have z1 − x = z2 − x and hence z1 = z2. We define Jr by

xr = Jrx. Such a Jr is denoted by

Jr = (I + rJ−1A)−1

and is called the metric resolvent of B. For r > 0, the Yosida approximation Ar : E → E∗

is defined by

Arx =
J(x− Jrx)

r
, ∀x ∈ E.
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We have that Arx ∈ BJrx for all x ∈ E. The set of null points of B is defined by B−10 =

{z ∈ E : 0 ∈ Bz}. We know that B−10 is closed and convex; see [16].

Let E be a smooth Banach space and let J be the duality mapping on E. Let η be

a real number with η ∈ (−∞, 1). Then a mapping U : C → E with F (U) ̸= ∅ is called

η-demimetric [20] if it satisfies (1.4) that is, for any x ∈ C and q ∈ F (U),

2⟨x− q, J(x− Ux)⟩ ≥ (1− η)∥x− Ux∥2, (2.2)

where F (U) is the set of fixed points of U .

Examples.

(1) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H.

Let k be a real number with 0 ≤ k < 1. If U is a k-strict pseud-contraction and F (U) ̸= ∅,
then U is k-demimetric; see [20].

(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H.

If U is generalized hybrid and F (U) ̸= ∅, then U is 0-demimetric; see [20]. Notice that

the class of generalized hybrid mappings covers several well-known classes of mappings. For

example, a (1,0)-generalized hybrid mapping is nonexpansive. It is nonspreading [7, 8] for

α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [17] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [5].

(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be a

nonempty, closed and convex subset of E. Let PC be the metric projection of E onto C.

Then PC is (−1)-demimetric. In fact, since PC is the metric projection of E onto C, we

have that, for any x ∈ E and q ∈ C,

⟨PCx− q, J(x− PCx)⟩ ≥ 0.

Then we get

⟨PCx− x+ x− q, J(x− PCx)⟩ ≥ 0

and hence

⟨x− q, J(x− PCx)⟩ ≥ ⟨x− PCx, J(x− PCx)⟩
= ∥x− PCx∥2.

This means that PC is (−1)-demimetric; see [20].

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal

monotone operator with B−10 ̸= ∅. Let λ > 0. Then the metric resolvent Jλ is (−1)-

demimetric; see [20].

The following lemma which was proved by Takahashi [20] is important and crucial in the

proof of our main result.



104 M. HOJO AND W. TAKAHASHI

Lemma 2.3 ([20]). Let E be a smooth and strictly convex Banach space and let C be a

nonempty, closed and convex subset of E. Let η be a real number with η ∈ (−∞, 1). Let U

be a η-demimetric mapping of C into E. Then F (U) is closed and convex.

For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space E, define

s-Lin Cn and w-Lsn Cn as follows: x ∈ s-Lin Cn if and only if there exists {xn} ⊂ E such

that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N. Similarly, y ∈ w-Lsn Cn if

and only if there exist a subsequence {Cni
} of {Cn} and a sequence {yi} ⊂ E such that {yi}

converges weakly to y and yi ∈ Cni for all i ∈ N. If C0 satisfies

C0 = s-Li
n
Cn = w-Ls

n
Cn, (2.3)

it is said that {Cn} converges to C0 in the sense of Mosco [10] and we write C0 = M-limn→∞ Cn.

It is easy to show that if {Cn} is nonincreasing with respect to inclusion, then {Cn} con-

verges to
∩∞

n=1 Cn in the sense of Mosco. For more details, see [10]. The following lemma

was proved by Tsukada [26].

Lemma 2.4 ([26]). Let E be a uniformly convex Banach space. Let {Cn} be a sequence

of nonempty, closed and convex subsets of E. If C0 =M-limn→∞ Cn exists and nonempty,

then for each x ∈ E, {PCnx} converges strongly to PC0x, where PCn and PC0 are the metric

projections of E onto Cn and C0, respectively.

3 Main result

In this section, using a new shrinking projection method, we prove a strong convergence

theorem for finding a common element of the set of zero points of a maximal monotone

operator and the set of common fixed points of two demimetric mappings in a Banach

space. For the proof of the theorem, we use the ideas of [13, 14, 19]. Let E be a Banach

space and let D be a nonempty, closed and convex subset of E. A mapping U : D → E is

called demiclosed if for a sequence {xn} in D such that xn ⇀ p and xn −Uxn → 0, p = Up

holds.

Theorem 3.1. Let E be a uniformly convex and smooth Banach space and let C be a

nonempty, closed and convex subset of E. Let A ⊂ E×E∗ be a maximal monotone operator

and let Jr = (I + rJ−1A)−1 be the metric resolvent of A for all r > 0. Let η, τ ∈ (−∞, 1)

and let S and T be η and τ -demimetric mappings from C into itself, respectively, such that

they are demiclosed. Suppose that

Ω = F (S) ∩ F (T ) ∩A−10 ̸= ∅.
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For x1 ∈ C and C1 = C, let {xn} be a sequence generated by

un = Jrnzn,

zn = βnvn + (1− βn)Tvn,

vn = αnxn + (1− αn)Sxn,

Cn+1 =
{
z ∈ Cn : ⟨zn − z, J(zn − un)⟩ ≥ ∥zn − un∥2,

2⟨vn − z, J(vn − zn)⟩ ≥ (1− τ)∥vn − zn∥2

and 2⟨xn − z, J(xn − vn)⟩ ≥ (1− η)∥xn − vn∥2
}
,

xn+1 = PCn+1
x1, ∀n ∈ N,

where J is the duality mapping on E, {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0.

If 1− αn ≥ b > 0 and 1− βn ≥ c > 0 for some b, c ∈ (0, 1), then {xn} converges strongly to

PΩx1, where PΩ is the metric projection of E onto Ω.

Proof. It follows that Cn are closed and convex for all n ∈ N. We show that Ω ⊂ Cn for all

n ∈ N. It is obvious that Ω ⊂ C1 = C. Suppose that Ω ⊂ Ck for some k ∈ N. To show

Ω ⊂ Ck+1, let us show that ⟨zk − z, J(zk − uk)⟩ ≥ ∥zk − uk∥2,

⟨vk − z, J(vk − zk)⟩ ≥ (1− τ)∥vk − zk∥2

and 2⟨xk − z, J(xk − vk)⟩ ≥ (1 − η)∥xk − vk∥2 for all z ∈ Ω. Let z ∈ Ω. Since Jrk is the

metric resolvent, we have from [1, 16] that

⟨Jrkzk − z, J(zk − Jrkzk)⟩ ≥ 0

for all z ∈ Ω ⊂ A−10. From this, we get that

⟨Jrkzk − zk + zk − z, J(zk − Jrkzk)⟩ ≥ 0

and hence

⟨zk − z, J(zk − Jrkzk)⟩ ≥ ∥zk − Jrkzk∥2.

This implies that

⟨zk − z, J(zk − uk)⟩ ≥ ∥zk − uk∥2.

Since T is τ -demimetric, we also have that for any z ∈ Ω,

2⟨vk − z, J(vk − zk)⟩ = 2(1− βk)⟨vk − z, J(vk − Tvk)⟩
≥ (1− βk)(1− τ)∥vk − Tvk∥2

≥ (1− βk)
2(1− τ)∥vk − Tvk∥2

= (1− τ)∥vk − zk∥2.

Similarly, we have that

2⟨xk − z, J(xk − vk)⟩ ≥ (1− η)∥xk − vk∥2.

Then Ω ⊂ Ck+1. We have by mathematical induction that Ω ⊂ Cn for all n ∈ N. This

implies that {xn} is well defined.



106 M. HOJO AND W. TAKAHASHI

We have that F (S) and F (T ) are closed and convex from Lemma 2.3. We also have

that A−10 is closed and convex. Thus Ω is nonempty, closed and convex. Then there exists

w1 ∈ Ω such that w1 = PΩx1. From xn = PCnx1, we have that

∥x1 − xn∥ ≤ ∥x1 − y∥

for all y ∈ Cn. Since w1 ∈ Ω ⊂ Cn, we have that

∥x1 − xn∥ ≤ ∥x1 − w1∥. (3.1)

Let C0 =
∩∞

n=1 Cn. Since ∅ ̸= Ω ⊂ C0, we have that C0 is nonempty. Since C0 =

M-limn→∞ Cn and xn = PCn
x1 for all n ∈ N, by Lemma 2.4 we have that

xn → z0 = PC0
x1. (3.2)

We have from xn+1 ∈ Cn+1 that

2⟨xn − xn+1, J(xn − vn)⟩ ≥ (1− η)∥xn − vn∥2

and hence

2∥xn − xn+1∥ ≥ (1− η)∥xn − vn∥.

Since ∥xn − xn+1∥ → 0 from (3.2) we get that xn − vn → 0. On the other hand, from

∥xn − vn∥ = (1− αn)∥xn − Sxn∥ ≥ b∥xn − Sxn∥,

we have that

lim
n→∞

∥xn − Sxn∥ = 0. (3.3)

Furthermore, we have from xn+1 ∈ Cn+1 that

2⟨vn − xn+1, J(vn − zn)⟩ ≥ (1− τ)∥vn − zn∥2.

From this, we have that

2∥vn − xn+1∥ ≥ (1− τ)∥vn − zn∥

and hence

2∥vn − xn + xn − xn+1∥ ≥ (1− τ)∥vn − zn∥.

From ∥vn − xn∥ → 0 and ∥xn − xn+1∥ → 0, we have that limn→∞ ∥vn − zn∥ = 0. From

∥vn − zn∥ = (1− βn)∥vn − Tvn∥ ≥ c∥vn − Tvn∥,

we get that

lim
n→∞

∥vn − Tvn∥ = 0. (3.4)

We also have from xn+1 ∈ Cn+1 that

⟨zn − xn+1, J(zn − un)⟩ ≥ ∥zn − un∥2

and hence

∥zn − xn+1∥ ≥ ∥zn − un∥.
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From ∥zn − xn+1∥ ≤ ∥zn − vn∥+ ∥vn − xn∥+ ∥xn − xn+1∥, zn − vn → 0, vn − xn → 0 and

xn − xn+1 → 0, we have ∥zn − xn+1∥ → 0. Then we get that

lim
n→∞

∥zn − un∥ = 0

and hence

lim
n→∞

∥zn − Jrnzn∥ = 0. (3.5)

Since xn → z0 and S is demiclosed, we have from (3.3) that z0 ∈ F (S). Similarly, from

xn − vn → 0, we get vn → z0. Since T is demiclosed, we have from (3.4) that z0 ∈ F (T ).

We show z0 ∈ A−10. From rn ≥ a and (3.5) we have

lim
n→∞

1

rn
∥J(zn − Jrnzn)∥ = 0.

Therefore, we have

lim
n→∞

∥Arnzn∥ = lim
n→∞

1

rn
∥J(zn − Jrnzn)∥ = 0. (3.6)

For (p, p∗) ∈ A, from the monotonicity of A, we have

⟨p− Jrnzn, p
∗ −Arnzn⟩ ≥ 0 (3.7)

for all n ∈ N. From vn − zn → 0 and vn → z0, we get zn → z0. Furthermore, from (3.5)

we have Jrnzn → 0. From Jrnzn → 0, (3.7) and (3.6), we get ⟨p − z0, p
∗⟩ ≥ 0. From the

maximality of A, we have z0 ∈ A−10. Therefore, we have z0 ∈ Ω.

From w1 = PΩx1, z0 ∈ Ω and (3.1) we have that

∥x1 − w1∥ ≤ ∥x1 − z0∥ = lim
n→∞

∥x1 − xn∥ ≤ ∥x1 − w1∥.

Then we get that ∥x1 −w1∥ = ∥x1 − z0∥ and hence z0 = w1. Therefore, we have xn → z0 =

w1. This completes the proof.

4 Applications

In this section, using Theorem 3.1, we get well-known and new strong convergence theorems

in Hilbert spaces and Banach spaces. We know the following result obtained by Marino and

Xu [9]; see also [23].

Lemma 4.1 ([9]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset

of H and let k be a real number with 0 ≤ k < 1. Let U : C → H be a k-strict pseudo-

contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

We also know the following result from Kocourek, Takahashi and Yao [6]; see also [24].

Lemma 4.2 ([6]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset

of H and let U : C → H be generalized hybrid. If xn ⇀ z and xn−Uxn → 0, then z ∈ F (U).

Using Theorem 3.1 and Lemmas 4.1 and 4.2, we have the following theorem.
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Theorem 4.3. Let H be a Hilbert space and let C be a nonempty, closed and convex subset

of H. Let A ⊂ H × H be a maximal monotone operator and let Jr = (I + rA)−1 for all

r > 0. Let k be a real number with k ∈ [0, 1). Let S : C → C be a nonexpansive mapping

with F (S) ̸= ∅ and let T : C → C be a k-strict pseud-contraction such that F (T ) ̸= ∅.
Suppose that Ω = F (S) ∩ F (T ) ∩ A−10 ̸= ∅. Let {xn} be a sequence generated by x1 ∈ C

and C1 = C

un = Jrnzn,

zn = βnvn + (1− βn)Tvn,

vn = Sxn,

Cn∗1 =
{
z ∈ Cn : ⟨zn − z, zn − un⟩ ≥ ∥zn − un∥2,

2⟨vn − z, vn − zn⟩ ≥ (1− k)∥vn − zn∥2

and 2⟨xn − z, xn − vn⟩ ≥ ∥xn − vn∥2
}
,

xn+1 = PCn+1x1, ∀n ∈ N,

where {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for some a > 0. If 1−βn ≥ c > 0 for some c ∈ (0, 1),

then {xn} converges strongly to PΩx1, where PΩ is the metric projection of H onto Ω.

Proof. Since T is a k-strict pseud-contraction of C into itself such that F (T ) ̸= ∅, from (1) in

Examples, T is k-demimetric. Furthermore, from Lemma 4.1, T is demiclosed. Furthermore,

we know that a nonexpansive maping S is 0-demimetric and demiclosed. We also know that

the resolvent Jr of A for r > 0 is (-1)-demimetric and demiclosed. Therefore, we have the

desired result from Theorem 3.1.

The following is a strong convergence theorem for nonexpansive mappings and general-

ized hybrid mappings in a Hilbert space.

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convex subset

of H. Let A ⊂ H × H be a maximal monotone operator and let Jr = (I + rA)−1 for all

r > 0. Let S : C → C be a nonexpansive mapping with F (S) ̸= ∅ and let T : C → C be a

generalized hybrid mapping with F (T ) ̸= ∅. Suppose that Ω = F (S)∩F (T )∩A−10 ̸= ∅. For

x1 ∈ C and C1 = C, let {xn} be a sequence generated by

un = Jrnzn,

zn = Tvn,

vn = Sxn,

Cn+1 =
{
z ∈ Cn : ⟨zn − z, zn − un⟩ ≥ ∥zn − un∥2,

2⟨vn − z, vn − zn⟩ ≥ ∥vn − zn∥2

and 2⟨xn − z, xn − vn⟩ ≥ ∥xn − vn∥2
}
,

xn+1 = PCn+1x1, ∀n ∈ N,

where {rn} ⊂ [a,∞) for some a > 0. Then {xn} converges strongly to PΩx1, where PΩ is

the metric projection of H onto Ω.
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Proof. Since T is a generalized hybrid mapping of C into itself such that F (T ) ̸= ∅, from
(2) in Examples, T is 0-demimetric. Furthermore, from Lemma 4.2, T is demiclosed. A

nonexpansive maping S and the resolvent Jr are as in the proof of Theorem 4.3. Therefore,

we have the desired result from Theorem 3.1.

Let E be a Banach space and let f : E → (−∞,∞] be a proper, lower semicontinuous

and convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ ⟨y − x, x∗⟩+ f(x), ∀y ∈ E}

for each x ∈ E. Then, we know that ∂f is a maximal monotone operator; see [12] for more

details. The following is a strong convergence theorem for three metric projections in a

Banach space.

Theorem 4.5. Let E be a uniformly convex and smooth Banach space and let J be the

duality mapping on E. Let B, C and D be nonempty, closed and convex subsets of E. Let

PB, PC and PD be the metric projections of E onto B, C and D, respectively. Suppose that

Ω = B ∩ C ∩D ̸= ∅. For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

un = PBzn,

zn = PCvn,

vn = PDxn,

Cn+1 =
{
z ∈ Cn : ⟨zn − z, J(zn − un)⟩ ≥ ∥zn − un∥2,

⟨vn − z, J(vn − zn)⟩ ≥ ∥vn − zn∥2}
and ⟨xn − z, J(xn − vn)⟩ ≥ ∥xn − vn∥2

}
,

xn+1 = PCn+1
x1, ∀n ∈ N.

Then {xn} converges strongly to a point PΩx1, where PΩ is the metric projection of E onto

Ω.

Proof. Set A = ∂iB in Theorem 3.1, where iB is the indicator function, that is,

iB =

{
0, x ∈ B,

∞, x /∈ B.

Then, we have that ∂iB is a maximal monotone operator and Jr = PB for r > 0. In fact,

for any x ∈ E and r > 0, we have that

z = Jrx ⇔ J(z − x) + r∂iB(z) ∋ 0

⇔ J(x− z) ∈ r∂iB(z)

⇔ iB(y) ≥ ⟨y − z,
J(x− z)

r
⟩+ iB(z), ∀y ∈ E

⇔ 0 ≥ ⟨y − z, J(x− z)⟩, ∀y ∈ B

⇔ z = PBx.

Since PB is the metric projection of E onto B, from (3) in Examples, PB is (−1)-demimetric.

We also have that if {xn} is a sequence in E such that xn ⇀ p and xn − PBxn → 0, then



110 M. HOJO AND W. TAKAHASHI

p = PBp. In fact, assume that xn ⇀ p and xn − PBxn → 0. It is clear that PBxn ⇀ p and

∥J(xn − PBxn)∥ = ∥xn − PBxn∥ → 0. Since PB is the metric projection of E onto B, we

have that

⟨PBxn − PBp, J(xn − PBxn)− J(p− PBp)⟩ ≥ 0.

This implies that −∥p−PBp∥2 = ⟨p−PBp,−J(p−PBp)⟩ ≥ 0 and hence p = PBp. Similarly,

PC and PD are (−1)-demimetric and demiclosed. Therefore, we have the desired result from

Theorem 3.1.

The following is a strong convergence theorem for three metric resolvents in a Banach

space.

Theorem 4.6. Let E be a uniformly convex and smooth Banach space and let J be the

duality mapping on E. Let A, B and G be maximal monotone operators of E × E∗ and let

Jr = (I + rJ−1A)−1, Qλ = (I + λJ−1B)−1 and Rµ = (I + µJ−1G)−1, for all r > 0, λ > 0

and µ > 0, respectively. Suppose that

Ω = A−10 ∩B−10 ∩G−10 ̸= ∅.

For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

un = Jrzn,

zn = Qλvn,

vn = Rµxn,

Cn+1 =
{
z ∈ Cn : ⟨zn − z, J(zn − un)⟩ ≥ ∥zn − un∥2,

⟨vn − z, J(vn − zn)⟩ ≥ ∥vn − zn∥2

and ⟨xn − z, J(xn − vn)⟩ ≥ ∥xn − vn∥2
}
,

xn+1 = PCn+1
x1, ∀n ∈ N.

Then {xn} converges strongly to a point PΩx1, where PΩ is the metric projection of E onto

Ω.

Proof. Since Qλ is the metric resolvent of B for λ > 0, from (4) in Examples, Qλ is (−1)-

demimetric. We also have that if {xn} is a sequence in E such that xn ⇀ p and xn−Qλxn →
0, then p = Qλp. In fact, assume that xn ⇀ p and xn−Qλxn → 0. It is clear that Qλxn ⇀ p

and ∥J(xn − Qλxn)∥ = ∥xn − Qλxn∥ → 0. Since Qλ is the metric resolvent of B, we have

from [1] that

⟨Qλxn −Qλp, J(xn −Qλxn)− J(p−Qλp)⟩ ≥ 0.

This implies that −∥p−Qλp∥2 = ⟨p−Qλp,−J(p−Qλp)⟩ ≥ 0 and hence p = Qλp. Similarly,

Jr and Rµ are (−1)-demimetric and demiclosed. Therefore, we have the desired result from

Theorem 3.1.
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