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For simplicity, we call A a real rectangular tensor. If all entries of A are nonnegative
numbers, then A is called a nonnegative rectangular tensor and it is represented by A ∈
R[p;q;m;n]

+ . Furthermore, A is called a real partially symmetric rectangular tensor, if

aπ(i1,...,ip)τ(j1,...,jq) = ai1···ipj1···jq , ∀ π ∈ Sp, ∀ τ ∈ Sq,

where Sp (resp. Sq) is the permutation group of p (resp. q) indices and π (resp. τ) is any
permutation of indices among i1, . . . , ip (resp. j1, . . . , jq).

For any vector z = (z1, z2, . . . , zn)
⊤ ∈ Rn and any positive integer k, denote

z[k] :=(zk1 , . . . , z
k
n)

⊤,

∥z∥k :=(|z1|k + · · ·+ |zn|k)1/k,

φ
(n)
k (z) :=(sign(z1)|z1|k, . . . , sign(zn)|zn|k)⊤,

where

sign(z) =

 1, z > 0,
0, z = 0,

−1, z < 0.

Let x = (x1, x2, . . . , xm)⊤ ∈ Rm, y = (y1, y2, . . . , yn)
⊤ ∈ Rn, Axp−1yq be a vector in Rm,

whose ith component is

(Axp−1yq)i =
∑

i2,...,ip∈[m],j1,...,jq∈[n]

aii2···ipj1···jqxi2 · · ·xipyj1 · · · yjq ,

and Axpyq−1 be a vector in Rn, whose jth component is

(Axpyq−1)j =
∑

i1,...,ip∈[m],j2,...,jq∈[n]

ai1···ipjj2···jqxi1 · · ·xipyj2 · · · yjq .

Definition 1.1 ([11, Definition 2.1]). Let A ∈ R[p;q;m;n]. For the given integers k, s ∈
{2, . . . , p+ q, . . .}, if (λ, x, y) ∈ R× (Rm \ {0})× (Rn \ {0}) is a solution of the system

Axp−1yq = λφ
(m)
k−1(x), (1.1)

Axpyq−1 = λφ
(n)
s−1(y), (1.2)

∥x∥k = ∥y∥s = 1, (1.3)

then λ is called an lk,s-singular value of A and (x, y) is called a pair of lk,s-singular vectors
of A associated with λ.

For the existence of the lk,s-singular values/vectors pair of A, Ling and Qi in [11, Theorem
2.1] showed the fact:

Theorem 1.2 ([11, Theorem 2.1]). Let A ∈ R[p;q;m;n] be partially symmetric. Then for
every k, s ∈ {2, . . . , p+ q, . . .}, its lk,s-singular values and singular vectors pair always exist.

Based on Theorem 1.2, we in this paper assume that A ∈ R[p;q;m;n] always is a real
partially symmetric rectangular tensor, denote by σ(A) the set of all lk,s-singular values
of A, and call ρk,s(A) the lk,s-spectral radius of A [11, Definition 3.1] if it is the largest
absolute lk,s-singular values of A, i.e.,

ρk,s(A) = max{|λ| : λ ∈ σ(A)}.

Also in [11], Ling and Qi obtained bounds for the lk,s-spectral radius of A as follows:
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Lemma 1.3 ([11, Corollary 3.3]). Let A ∈ R[p;q;m;n]
+ be partially symmetric. If k ≤ p and

s ≤ q, then

ρk,s(A) ≤ max
i∈[m],j∈[n]

{Ri(A), Cj(A)} ,

where
Ri(A) =

∑
i2,...,ip∈[m],j1,...,jq∈[n]

|aii2···ipj1···jq |,

Cj(A) =
∑

i1,...,ip∈[m],j2,...,jq∈[n]

|ai1···ipjj2···jq |.
(1.4)

Due to the diversity of selection of p, q, k and s, many scholars have studied the properties
of lk,s-singular values when these parameters are taken as special values. For example, when
k = s = p + q, such lk,s-singular values of rectangular tensors are introduced by Chang et
al. and called singular value of rectangular tensors in [1]. Subsequently, properties, lower
and upper bounds of spectral radius and inclusion sets for singular values of rectangular
tensors are studied in [15, 18, 21, 22, 23, 24]. When k = p and s = q, such lk,s-singular
values of rectangular tensors are called V -singular values and studied in [7]. In this paper,
such lk,s-singular values are called lp,q-singular values as k = p and s = q.

Given a partially symmetric rectangular tensor A ∈ R[p;q;m;n], it determines a multivari-
ate polynomial

f(x, y) = Axpyq =
∑

i1,...,ip∈[m],j1,...,jq∈[n]

ai1···ipj1···jqxi1 · · ·xipyj1 · · · yjq . (1.5)

When both p and q are even, if f(x, y) > 0 for all x ∈ Rm \ {0} and y ∈ Rn \ {0}, then we
say that A is positive definite. When A is the elasticity tensor, which is a real rectangular
tensor with p = q = 2 and m = n = 2 or 3, the strong ellipticity condition holds if and
only if A is positive definite [14]. Since the strong ellipticity condition plays an important
role in nonlinear elasticity and materials, positive definiteness of such a partially symmetric
tensor has a sound application background. When k and s are even and k, s ≥ 2, Yao et
al. [19] proposed the following method to judge the positive definiteness of A by using its
lk,s-singular values.

Theorem 1.4 ([19, Theorem 2]). Let A ∈ R[p;q;m;n] be partially symmetric with p and q
being even, k and s be even and k, s ≥ 2. Then A is positive definite if and only if all of its
lk,s-singular values are positive.

There is another way to judge the positive definiteness of A: One can try to construct a
set which includes all lk,s-singular values of A in the complex plane, and furthermore if the
set lies in the right half complex plane, then we can conclude that all lk,s-singular values of
A are positive and, consequently, A is positive definite.

Although many researchers have constructed such sets [15, 20, 21, 22, 23, 24], unfortu-
nately, all these sets contain the origin, and hence they cannot be used to judge the positive
definiteness of a real partially symmetric rectangular tensor. Then, a question is naturally
raised: How to construct a singular value inclusion set that can be used to judge the positive
definiteness of a real partially symmetric rectangular tensor? We focus on this issue in this
paper.

The rest is arranged as follows. In Section 2, we construct an lp,q-singular value inclusion
set with parameter vectors α and β to locate all lp,q-singular values of a real rectangular
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tensor. Subsequently, by selecting appropriate parameter vectors α and β, we obtain the
optimal singular value inclusion interval and use it to judge the positive definiteness of a
real partially symmetric rectangular tensor. In other words, as an application of the set,
we present a sufficient condition of the positive definiteness of a real partially symmetric
rectangular tensor. As another application of the set, we obtain an upper bound of the
lp,q-spectral radius of a nonnegative rectangular tensor in Section 3. Also in Section 3, we
present a lower bound of the lp,q-spectral radius. In Section 4, we focus on calculation of all
lp,q-singular values/vectors of a real rectangular tensor A, derive the relationship between
all l2,2-singular values/vectors of A and Z-eigenpairs of the lifting square tensor CA of A,
and derive the relationship between all lp,q-singular values/vectors of A and generalized
eigenvalues/eigenvectors of CA and the lifting square tensor CI of the identity rectangular
tensor I, which provides an alternative method to find all lp,q-singular values/vectors of A.
In Section 5, we use two examples to verify the theoretical results. In the end, we give some
conclusions to end this paper.

2 Locations for lp,q-Singular Values of a Real Rectangular Tensor
with p and q Even

Taking k = p and s = q in Definition 1.1, then (1.1), (1.2) and (1.3) reduce to the following
equations: 

Axp−1yq = λφ
(m)
p−1(x), (2.1)

Axpyq−1 = λφ
(n)
q−1(y), (2.2)

∥x∥p = ∥y∥q = 1. (2.3)

Let both p and q be even, x = (x1, x2, . . . , xm)⊤ ∈ Rm and y = (y1, y2, . . . , yn)
⊤ ∈ Rn.

For any given xi, i ∈ [m], if xi > 0, then sign(xi) = 1 and hence sign(xi)|xi|p−1 = xp−1
i ; if

xi < 0, then sign(xi) = −1 and hence sign(xi)|xi|p−1 = (−1)(−xi)
p−1 = xp−1

i ; and if xi = 0,

then sign(xi)|xi|p−1 = xp−1
i . Consequently, sign(xi)|xi|p−1 = xp−1

i for any xi ∈ R, i ∈ [m],

which implies that φ
(m)
p−1(x) = x[p−1]. Similarly, it follows that φ

(n)
q−1(y) = y[q−1]. Then (2.1),

(2.2) and (2.3) are equivalent to 
Axp−1yq = λx[p−1], (2.4)

Axpyq−1 = λy[q−1], (2.5)

xp
1 + · · ·+ xp

m = 1, (2.6)

yq1 + · · ·+ yqn = 1, (2.7)

and then we call λ an lp,q-singular value of A and (x, y) a pair of lp,q-singular vectors of A
associated with λ. Here, σ(A) is the set of all lp,q-singular values of A.

Now, we construct a set with parameter vectors α and β to locate all lp,q-singular values
of a real rectangular tensor.

Theorem 2.1. Let A ∈ R[p;q;m;n] with both p and q even, α = (α1, . . . , αm)⊤ ∈ Rm and
β = (β1, . . . , βn)

⊤ ∈ Rn. Then

σ(A) ⊆ Γ(A, α, β) := Γ̃(A, α) ∩ Γ̂(A, β), (2.8)

where

Γ̃(A, α) :=
⋃

i∈[m]

Γ̃i(A, αi), Γ̂(A, β) :=
⋃

j∈[n]

Γ̂j(A, βj),
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Γ̃i(A, αi) :=

{
z ∈ R : |z − αi| ≤

∑
t∈[n]

|ai···it···t − αi|+ ri(A)

}
,

Γ̂j(A, βj) :=

{
z ∈ R : |z − βj | ≤

∑
t∈[m]

|at···tj···j − βj |+ cj(A)

}
,

ri(A) := Ri(A)−
∑
t∈[n]

|ai···it···t|, cj(A) := Cj(A)−
∑
t∈[m]

|at···tj···j |, i ∈ [m], j ∈ [n],

(2.9)

and Ri(A) and Cj(A) are defined in (1.4).

Proof. Let λ ∈ σ(A), x = (x1, x2, . . . , xm)⊤ ∈ Rm \ {0} and y = (y1, y2, . . . , yn)
⊤ ∈ Rn \ {0}

be an lp,q-singular vectors pair of A associated with λ. Let |xg| = max
i∈[m]

{|xi|} and |yh| =

max
j∈[n]

{|yj |}. Then 0 < |xg| ≤ 1 and 0 < |yh| ≤ 1. For any given real number αg, by the g-th

equation of (2.4), i.e.,

λxp−1
g =

∑
i2,...,ip∈[m],j1,...,jq∈[n]

agi2···ipj1···jqxi2 · · ·xipyj1 · · · yjq ,

and (2.7), we have

(λ− αg)x
p−1
g

= λxp−1
g − αgx

p−1
g (yq1 + · · ·+ yqn) (2.10)

=
∑

i2,...,ip∈[m],j1,...,jq∈[n]

agi2···ipj1···jqxi2 · · ·xipyj1 · · · yjq − αgx
p−1
g (yq1 + · · ·+ yqn)

=
∑

i2,...,ip∈[m],j1,...,jq∈[n],

(i2,...,ip,j1,...,jq) ̸=(g,...,g,1,...,1),...,(g,...,g,n,...,n)

agi2···ipj1···jqxi2 · · ·xipyj1 · · · yjq

+(ag···g1···1 − αg)x
p−1
g yq1 + · · ·+ (ag···gn···n − αg)x

p−1
g yqn. (2.11)

By (2.7) and q being even, we have 0 ≤ |yj | ≤ 1 for each j ∈ [n]. Taking modulus in (2.11)
and using the triangle inequality, we have

|λ− αg||xg|p−1

≤
∑

i2,...,ip∈[m],j1,...,jq∈[n],

(i2,...,ip,j1,...,jq) ̸=(g,...,g,1,...,1),...,(g,...,g,n,...,n)

|agi2···ipj1···jq ||xi2 | · · · |xip ||yj1 | · · · |yjq |

+ |ag···g1···1 − αg||xg|p−1|y1|q + · · ·+ |ag···gn···n − αg||xg|p−1|yn|q

≤
∑

i2,...,ip∈[m],j1,...,jq∈[n],

(i2,...,ip,j1,...,jq) ̸=(g,...,g,1,...,1),...,(g,...,g,n,...,n)

|agi2···ipj1···jq ||xg|p−1

+ |ag···g1···1 − αg||xg|p−1 + · · ·+ |ag···gn···n − αg||xg|p−1

=
(
Rg(A)−

∑
t∈[n]

|ag···gt···t|
)
|xg|p−1 +

∑
t∈[n]

|ag···gt···t − αg||xg|p−1,

which implies that

|λ− αg| ≤
∑
t∈[n]

|ag···gt···t − αg|+Rg(A)−
∑
t∈[n]

|ag···gt···t|,
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and, consequently,

λ ∈ Γ̃g(A, αg) ⊆
⋃

i∈[m]

Γ̃i(A, αi) = Γ̃(A, α). (2.12)

For any given real number βh, by the h-th equation of (2.5), i.e.,

λyq−1
h =

∑
i1,...,ip∈[m],j2,...,jq∈[n]

ai1···iphj2···jqxi1 · · ·xipyj2 · · · yjq ,

and (2.6), we have

(λ− βh)y
q−1
h

= λyq−1
h − βh(x

p
1 + · · ·+ xp

m)yq−1
h (2.13)

=
∑

i1,...,ip∈[m],j2,...,jq∈[n]

ai1···iphj2···jqxi1 · · ·xipyj2 · · · yjq − βh(x
p
1 + · · ·+ xp

m)yq−1
h

=
∑

i1,...,ip∈[m],j2,...,jq∈[n],

(i1,...,ip,j2,...,jq) ̸=(1,...,1,h,...,h),··· ,(m,...,m,h,...,h)

ai1...iphj2...jqxi1 · · ·xipyj2 · · · yjq

+(a1···1h···h − βh)x
p
1y

q−1
h + · · ·+ (am···mh···h − βh)x

p
myq−1

h . (2.14)

By (2.6) and p being even, we have 0 ≤ |xi| ≤ 1 for each i ∈ [m]. Taking modulus in (2.14)
and using the triangle inequality, we have

|λ− βh||yh|q−1

≤
∑

i1,...,ip∈[m],j2,...,jq∈[n],

(i1,...,ip,j2,...,jq) ̸=(1,...,1,h,...,h),...,(m,...,m,h,...,h)

|ai1···iphj2···jq ||xi1 | · · · |xip ||yj2 | · · · |yjq |

+ |a1···1h···h − βh||x1|p|yh|q−1 + · · ·+ |am···mh···h − βh||xm|p|yh|q−1

≤
∑

i1,...,ip∈[m],j2,...,jq∈[n],

(i1,...,ip,j2,...,jq) ̸=(1,...,1,h,...,h),...,(m,...,m,h,...,h)

|ai1···iphj2···jq ||yh|q−1

+ |a1···1h···h − βh||yh|q−1 + · · ·+ |am···mh···h − βh||yh|q−1

=
(
Ch(A)−

∑
t∈[m]

|at···th···h|
)
|yh|q−1 +

∑
t∈[m]

|at···th···h − βh||yh|q−1,

which implies that

|λ− βh| ≤
∑
t∈[m]

|at···th···h − βh|+ Ch(A)−
∑
t∈[m]

|at···th···h|,

and, consequently,

λ ∈ Γ̂h(A, βh) ⊆
⋃

j∈[n]

Γ̂j(A, βj) = Γ̂(A, β). (2.15)

Combining (2.12) and (2.15), we have λ ∈ [Γ̃(A, α) ∩ Γ̂(A, β)], i.e., λ ∈ Γ(A, α, β), which
implies that the conclusion (2.8) follows.
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Next, we consider a problem: How to choose appropriate parameter vectors α and β to
optimize the lp,q-singular value inclusion interval in Theorem 2.1? Before giving the optimal
inclusion interval for Γ(A, α, β) in Theorem 2.1, two lemmas are given by taking a = 1 in
Lemmas 4.1 and 4.2 of [16].

Lemma 2.2. Let

f(x) = x−
∑
i∈[n]

|x− bi| − c

be a real valued function about x, where bi ∈ R, b1 ≤ b2 ≤ · · · ≤ bn and c ∈ R.

(a) If n is odd, then

max
x∈R

f(x) =

n+1
2∑

i=1

bi −
n∑

i=n+3
2

bi − c,

and this takes place for every x ∈ [bn+1
2
, bn+3

2
] if bn+1

2
̸= bn+3

2
, and only for x = bn+1

2

if bn+1
2

= bn+3
2
. Note that let [bn+1

2
, bn+3

2
] be [bn+1

2
,+∞) if bn+3

2
does not exist.

(b) If n is even, then

max
x∈R

f(x) =

n
2∑

i=1

bi −
n∑

i=n
2 +2

bi − c,

and this maximum is reached when x = bn
2 +1.

Lemma 2.3. Let

g(x) = x+
∑
i∈[n]

|x− bi|+ c

be a real valued function about x, where bi ∈ R, b1 ≤ b2 ≤ · · · ≤ bn with n ≥ 2, and c ∈ R.

(a) If n is odd, then

min
x∈R

g(x) =

n∑
i=n+1

2

bi −

n−1
2∑

i=1

bi + c,

and this takes place for every x ∈ [bn−1
2

, bn+1
2
] if bn−1

2
̸= bn+1

2
, and only for x = bn−1

2

if bn−1
2

= bn+1
2
.

(b) If n is even, then

min
x∈R

g(x) =

n∑
i=n

2 +1

bi −
n
2 −1∑
i=1

bi + c,

and this minimum is reached when x = bn
2
.
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Theorem 2.4. Let A ∈ R[p;q;m;n] with both p and q even. Then

σ(A) ⊆ Γ(A) := Γ̃(A) ∩ Γ̂(A), (2.16)

where

Γ̃(A) :=
⋃

i∈[m]

(
Γ̃i(A) := [l̃i, ũi]

)
, Γ̂(A) :=

⋃
j∈[n]

(
Γ̂j(A) := [l̂j , ûj ]

)
,

and l̃i, ũi, l̂j and ûj are taken by the following methods:

(a) if n is odd, then

l̃i =

n+1
2∑

t=1

bi,t −
n∑

t=n+3
2

bi,t − ri(A), ũi =

n∑
t=n+1

2

bi,t −

n−1
2∑

t=1

bi,t + ri(A);

(b) if n is even, then

l̃i =

n
2∑

t=1

bi,t −
n∑

t=n
2 +2

bi,t − ri(A), ũi =

n∑
t=n

2 +1

bi,t −
n
2 −1∑
t=1

bi,t + ri(A);

(c) if m is odd, then

l̂j =

m+1
2∑

t=1

dt,j −
m∑

t=m+3
2

dt,j − cj(A), ûj =

m∑
t=m+1

2

dt,j −

m−1
2∑

t=1

dt,j + cj(A);

(d) if m is even, then

l̂j =

m
2∑

t=1

dt,j −
m∑

t=m
2 +2

dt,j − cj(A), ûj =

m∑
t=m

2 +1

dt,j −
m
2 −1∑
t=1

dt,j + cj(A).

Here, for each i ∈ [m], bi,1 ≤ bi,2 ≤ · · · ≤ bi,n is an arrangement in non-decreasing
order of ai···it···t for t ∈ [n]; for each j ∈ [n], d1,j ≤ d2,j ≤ · · · ≤ dm,j is an arrangement in
non-decreasing order of at···tj···j for t ∈ [m]; and ri(A) and cj(A) are defined in (2.9).

Proof. Let λ ∈ σ(A). By Theorem 2.1, we have λ ∈ Γ(A, α, β), which implies that there

exists an index i ∈ [m] and an index j ∈ [n] such that λ ∈ Γ̃i(A, αi) and λ ∈ Γ̂j(A, βj), that
is,

|λ− αi| ≤
∑
t∈[n]

|ai···it···t − αi|+ ri(A), i.e., λ ∈ [f̃(αi), g̃(αi)], (2.17)

and

|λ− βj | ≤
∑
t∈[m]

|at···tj···j − βj |+ cj(A), i.e., λ ∈ [f̂(βj), ĝ(βj)], (2.18)
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where

f̃(αi) = αi −
∑
t∈[n]

|αi − ai···it···t| − ri(A) = αi −
∑
t∈[n]

|αi − bi,t| − ri(A),

g̃(αi) = αi +
∑
t∈[n]

|αi − ai···it···t|+ ri(A) = αi +
∑
t∈[n]

|αi − bi,t|+ ri(A),

f̂(βj) = βj −
∑
t∈[m]

|βj − at···tj···j | − cj(A) = βj −
∑
t∈[m]

|βj − dt,j | − cj(A),

ĝ(βj) = βj +
∑
t∈[m]

|βj − at···tj···j |+ cj(A) = βj +
∑
t∈[m]

|βj − dt,j |+ cj(A).

Next, we consider a question: How to choose parameters αi and βj to minimize the

inclusion intervals [f̃(αi), g̃(αi)] in (2.17) and [f̂(αi), ĝ(αi)] in (2.18)?
(a) Assume that n is odd. By Lemma 2.2, we have

max
αi∈R

f̃(αi) =

n+1
2∑

t=1

bi,t −
n∑

t=n+3
2

bi,t − ri(A), (2.19)

and this maximum is reached for any αi ∈ [bi,n+1
2
, bi,n+3

2
]. By Lemma 2.3, we have

min
αi∈R

g̃(αi) =

n∑
t=n+1

2

bi,t −

n−1
2∑

t=1

bi,t + ri(A), (2.20)

and this minimum is reached for any αi ∈ [bi,n−1
2

, bi,n+1
2
]. Taking αi = bi,n+1

2
in (2.17) and

using (2.19) and (2.20), we have

λ ∈

[ n+1
2∑

t=1

bi,t −
n∑

t=n+3
2

bi,t − ri(A),

n∑
t=n+1

2

bi,t −

n−1
2∑

t=1

bi,t + ri(A)

]
,

i.e., λ ∈ [l̃i, ũi], which implies that λ ∈ Γ̃i(A) ⊆ Γ̃(A) and, consequently, σ(A) ⊆ Γ̃(A).
(b) Assume that n is even. By Lemma 2.2, we have

max
αi∈R

f̃(αi) = f̃(bi,n2 +1) =

n
2∑

t=1

bi,t −
n∑

t=n
2 +2

bi,t − ri(A) ≥ f̃(bi,n2 ). (2.21)

By Lemma 2.3, we have

min
αi∈R

g̃(αi) = g̃(bi,n2 ) =

n∑
t=n

2 +1

bi,t −
n
2 −1∑
t=1

bi,t + ri(A) ≤ g̃(bi,n2 +1). (2.22)

Taking αi = bi,n2 and αi = bi,n2 +1 in (2.17), respectively, we have

λ ∈
[
f̃(bi,n2 ), g̃(bi,

n
2
)
]

and λ ∈
[
f̃(bi,n2 +1), g̃(bi,n2 +1)

]
.
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By (2.21), (2.22) and the existence of λ, we have λ ∈
[
f̃(bi,n2 +1), g̃(bi,n2 )

]
, i.e., λ ∈ [l̃i, ũi],

which implies that λ ∈ Γ̃i(A) ⊆ Γ̃(A) and, consequently, σ(A) ⊆ Γ̃(A).
(c) Assume that m is odd. For the interval (2.18), by using the similar method as (a) to

derive the maximum of f̂(βj) and the minimum of ĝ(βj), we have

λ ∈

[ m+1
2∑

t=1

dt,j −
m∑

t=m+3
2

dt,j − cj(A),

m∑
t=m+1

2

dt,j −

m−1
2∑

t=1

dt,j + cj(A)

]
,

i.e., λ ∈ [l̂j , ûj ], which implies that λ ∈ Γ̂j(A) ⊆ Γ̂(A), and, consequently, σ(A) ⊆ Γ̂(A).
(d) Assume that m is even. Similar to the proof of (b), we have

λ ∈

[ m
2∑

t=1

dt,j −
m∑

t=m
2 +2

dt,j − cj(A),

m∑
t=m

2 +1

dt,j −
m
2 −1∑
t=1

dt,j + cj(A)

]
,

i.e., λ ∈ [l̂j , ûj ], which implies that λ ∈ Γ̂j(A) ⊆ Γ̂(A), and, consequently, σ(A) ⊆ Γ̂(A).
In combination with (a), (b), (c) and (d), (2.16) follows.

Based on the interval Γ(A) in Theorem 2.4, a sufficient condition for the positive defi-
niteness of a partially symmetric rectangular tensor is derived.

Theorem 2.5. Let A ∈ R[p;q;m;n] with both p and q even, and λ be an lp,q-singular value of
A. If

min
i∈[m]

l̃i > 0 or min
j∈[n]

l̂j > 0, (2.23)

where l̃i and l̂j are defined in Theorem 2.4, then λ > 0. Furthermore, if A is also partially
symmetric, then A is positive definite, consequently, f(x) defined in (1.5) is positive definite.

Proof. Suppose on the contrary that λ ≤ 0. By Theorem 2.4, we have λ ∈ Γ(A), which

implies that there is an i0 ∈ [m] and a j0 ∈ [n] such that λ ∈ [l̃i0 , ũi0 ] and λ ∈ [l̂j0 , ûj0 ],
which conflicts with the assumption λ ≤ 0 from (2.23). Hence, λ > 0. By Theorem 1.4, the
conclusion follows.

3 Bounds for the lp,q-Spectral Radius of Nonnegative Rectangular
Tensors

In this section, we present a lower bound and an upper bound for the lp,q-spectral radius
ρp,q(A) of a nonnegative rectangular tensor A, and prove that the upper bound is smaller
than that in Lemma 1.3, that is, Corollary 3.3 in [11].

Lemma 3.1 ([11, Theorem 3.1]). Let A ∈ R[p;q;m;n]
+ be partially symmetric. If there exist

ω > 0, x ∈ Rm
+ \ {0} and y ∈ Rn

+ \ {0} such that

Axp−1yq ≥ ωx[k−1], Axpyq−1 ≥ ωy[s−1],

where k, s ∈ {2, . . . , p+ q, . . .}, then

ρk,s(A) ≥ ωmax

{
∥y∥s−q

s

∥x∥pk
,
∥x∥k−p

k

∥y∥qs

}
.
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Lemma 3.2 ([12, Lemma 2.1]). Consider the real function of the real variable

ϕ(x) =
∑
i∈[n]

|x− bi|,

for which b1 ≤ b2 · · · ≤ bn are real numbers.

(i) If n is odd, then

min
x∈R

ϕ(x) = (bn + · · ·+ bn+3
2
)− (bn−1

2
+ · · ·+ b1).

This minimum is reached when x = bn+1
2
.

(ii) If n is even, then

min
x∈R

ϕ(x) = (bn + · · ·+ bn
2 +1)− (bn

2
+ · · ·+ b1).

This takes place for every x ∈ [bn
2
, bn

2 +1] if bn
2
̸= bn

2 +1 and only for x = bn
2
if bn

2
=

bn
2 +1.

Theorem 3.3. Let A ∈ R[p;q;m;n]
+ be partially symmetric with both p and q even. Then

max
{ 1

m
,
1

n

}
min

i∈[m],j∈[n]
{Ri(A), Cj(A)} ≤ ρp,q(A) ≤ ρ∗(A), (3.1)

where

ρ∗(A) =


min{η1, η3}, if m and n are odd,
min{η2, η4}, if m and n are even,
min{η1, η4}, if m is even and n is odd,
min{η2, η3}, if m is odd and n is even,

η1 = max
i∈[m]

{
n+1∑

t=n+3
2

b̂i,t −
n+1
2∑

t=1
b̂i,t + ri(A)

}
, η2 = max

i∈[m]

{
n+1∑

t=n
2 +2

b̂i,t −
n
2∑

t=1
b̂i,t + ri(A)

}
,

η3 = max
j∈[n]

{
m+1∑

t=m+3
2

d̂t,j −
m+1

2∑
t=1

d̂t,j + cj(A)

}
, η4 = max

j∈[n]

{
m+1∑

t=m
2 +2

d̂t,j −
m
2∑

t=1
d̂t,j + cj(A)

}
,

and Ri(A) and Cj(A) are defined in (1.4), ri(A) and cj(A) are defined in (2.9). Further-
more, ρ∗(A) ≤ max

i∈[m],j∈[n]
{Ri(A), Cj(A)}.

Here, for each i ∈ [m], b̂i,1 ≤ b̂i,2 ≤ · · · ≤ b̂i,n+1 is an arrangement in non-decreasing

order of 0 and ai···it···t for t ∈ [n], and for each j ∈ [n], d̂1,j ≤ d̂2,j ≤ · · · ≤ d̂m+1,j is an
arrangement in non-decreasing order of 0 and at···tj···j for t ∈ [m].

Proof. Let ω = min
i∈[m],j∈[n]

{Ri(A), Cj(A)}. If ω > 0, taking x = (1, . . . , 1)⊤ ∈ Rm
+ and

y = (1, . . . , 1)⊤ ∈ Rn
+, it follows that{

Axp−1yq = (R1(A), . . . , Rm(A))⊤ ≥ ωx[p−1],

Axpyq−1 = (C1(A), . . . , Cn(A))⊤ ≥ ωy[q−1].

By Lemma 3.1, we have

ρp,q(A) ≥ ωmax

{
1

∥x∥pp
,

1

∥y∥qq

}
= ωmax

{
1

m
,
1

n

}
. (3.2)
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If ω = 0, then (3.2) also holds. Hence, the left inequality in (3.1) follows.

Next, we prove the second inequality in (3.1). Let λ be the lp,q-singular value with

|λ| = ρp,q(A). By Theorem 2.1, we have λ ∈ Γ̃(A, α) ∩ Γ̂(A, β), that is, there exists an

i ∈ [m] and a j ∈ [n] such that λ ∈ Γ̃i(A, αi) and λ ∈ Γ̂j(A, βj), i.e.,

|λ− αi| ≤
∑
t∈[n]

|ai···it···t − αi|+ ri(A)

and

|λ− βj | ≤
∑
t∈[m]

|at···tj···j − βj |+ cj(A),

which implies that

ρp,q(A) = |λ| ≤ |αi − 0|+
∑
t∈[n]

|αi − ai···it···t|+ ri(A) =
∑

t∈[n+1]

|αi − b̂i,t|+ ri(A) (3.3)

and

ρp,q(A) = |λ| ≤ |βj − 0|+
∑
t∈[m]

|βj − at···tj···j |+ cj(A) =
∑

t∈[m+1]

|βj − d̂t,j |+ cj(A). (3.4)

If n is odd, then n+ 1 is even, and by (3.3) and Lemma 3.2, we have

ρp,q(A) ≤
n+1∑

t=n+3
2

b̂i,t −

n+1
2∑

t=1

b̂i,t + ri(A) ≤ max
i∈[m]

{
n+1∑

t=n+3
2

b̂i,t −

n+1
2∑

t=1

b̂i,t + ri(A)

}
= η1.

If n is even, then n+ 1 is odd, and by (3.3) and Lemma 3.2, we have

ρp,q(A) ≤
n+1∑

t=n
2 +2

b̂i,t −
n
2∑

t=1

b̂i,t + ri(A) ≤ max
i∈[m]

{
n+1∑

t=n
2 +2

b̂i,t −
n
2∑

t=1

b̂i,t + ri(A)

}
= η2.

If m is odd, then m+ 1 is even, and by (3.4) and Lemma 3.2, we have

ρp,q(A) ≤
m+1∑

t=m+3
2

d̂t,j −

m+1
2∑

t=1

d̂t,j + cj(A) ≤ max
j∈[n]

{
m+1∑

t=m+3
2

d̂t,j −

m+1
2∑

t=1

d̂t,j + cj(A)

}
= η3.

If m is even, then m+ 1 is odd, and by (3.4) and Lemma 3.2, we have

ρp,q(A) ≤
m+1∑

t=m
2 +2

d̂t,j −
m
2∑

t=1

d̂t,j + cj(A) ≤ max
j∈[n]

{
m+1∑

t=m
2 +2

d̂t,j −
m
2∑

t=1

d̂t,j + cj(A)

}
= η4.

Apparently, if m and n are odd, then ρp,q(A) ≤ min{η1, η3}; if m and n are even, then
ρp,q(A) ≤ min{η2, η4}; if m is even and n is odd, then ρp,q(A) ≤ min{η1, η4}; if m is odd
and n is even, then ρp,q(A) ≤ min{η2, η3}.
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Finally, we prove that ρ∗(A) ≤ max
i∈[m],j∈[n]

{Ri(A), Cj(A)}. By A ∈ R[p;q;m;n]
+ , we have

ai1···ipj1···jq ≥ 0 for i1, . . . , ip ∈ [m], j1, . . . , jq ∈ [n]. Hence,

η1 ≤ max
i∈[m]

{
n+1∑

t=n+3
2

b̂i,t +

n+1
2∑

t=1

b̂i,t + ri(A)

}
= max

i∈[m]
Ri(A) ≤ max

i∈[m],j∈[n]
{Ri(A), Cj(A)},

η2 ≤ max
i∈[m]

{
n+1∑

t=n
2 +2

b̂i,t +

n
2∑

t=1

b̂i,t + ri(A)

}
≤ max

i∈[m]
Ri(A) ≤ max

i∈[m],j∈[n]
{Ri(A), Cj(A)},

η3 ≤ max
j∈[n]

{
m+1∑

t=m+3
2

d̂t,j +

m+1
2∑

t=1

d̂t,j + cj(A)

}
= max

j∈[n]
Cj(A) ≤ max

i∈[m],j∈[n]
{Ri(A), Cj(A)},

η4 ≤ max
j∈[n]

{
m+1∑

t=m
2 +2

d̂t,j +

m
2∑

t=1

d̂t,j + cj(A)

}
≤ max

j∈[n]
Cj(A) ≤ max

i∈[m],j∈[n]
{Ri(A), Cj(A)},

and, consequently, the conclusion ρ∗(A) ≤ max
i∈[m],j∈[n]

{Ri(A), Cj(A)} follows.

4 Calculation of lp,q-Singular Values via the Lifting Square Tensors

In this section, we considered a question: How to calculate all lp,q-singular values of a given
real rectangular tensor A? We first derive the relationship between the l2,2-singular values
of A and the Z-eigenvalues of its lifting square tensor CA, which provide a way to find all
l2,2-singular values of A. Subsequently, we derive the relationship between the lp,q-singular
values of A and the generalized eigenvalues of CA and CI , which provide a way to find all
lp,q-singular values of A. The idea of converting the singular value problem to an eigenvalue
problem comes from Chen, Qi, Yang and Yang’s work in [2, pp. 3725], in which the concept
of the lifting square tensor CA of a real rectangular tensor A is introduced.

For a rectangular tensor A = (ai1···ipj1···jq ) ∈ R[p;q;m;n], its lifting square tensor CA =
(ct1t2···tp+q

) is an order p+ q dimension m+ n tensor which is defined as follows:

ct1t2···tp+q

=


at1,··· ,tp,tp+1−m,··· ,tp+q−m, if 1 ≤ t1, . . . , tp ≤ m, m+ 1 ≤ tp+1, . . . , tp+q ≤ m+ n,

atq+1,··· ,tq+p,t1−m,··· ,tq−m, if m+ 1 ≤ t1, . . . , tq ≤ m+ n, 1 ≤ tq+1, . . . , tq+p ≤ m,

0, otherwise.

Let x = (x1, . . . , xm)⊤ ∈ Rm, y = (y1, . . . , yn)
⊤ ∈ Rn and z = (x⊤, y⊤)⊤ ∈ Rm+n. Then

CAzp+q−1 =

(
Axp−1yq

Axpyq−1

)
. (4.1)

Now, let us recall the concept of an order m dimension n square tensor B and the
definition of Z-eigenvalues of B, which is introduced by Qi in [13]. We call B a real order
m dimension n square tensor and denote by B = (bi1i2···im) ∈ R[m,n], if bi1i2···im ∈ R for
i1, . . . , im ∈ [n].
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Definition 4.1 ([13]). Let B = (bi1i2···im) ∈ R[m,n]. If there are λ ∈ R and a nonzero vector
x ∈ Rn \ {0} such that

Bxm−1 = λx and x⊤x = 1,

where Bxm−1 ∈ Rn, whose ith component is

(Bxm−1)i =
∑

i2,...,im∈[n]

bii2···imxi2 · · ·xim ,

then λ is called a Z-eigenvalue of B and x is called a Z-eigenvector of B associated with λ.
For simplicity, we call (λ, x) a Z-eigenpair of B.

4.1 Calculation of l2,2-Singular Values via a Lifting Square Tensor

Taking k = s = 2 in Definition 1.1 and using sign(a)|a| = a for any a ∈ R, then (1.1), (1.2)
and (1.3) are equivalent to the following system

Axp−1yq = λx,

Axpyq−1 = λy,

∥x∥2 = ∥y∥2 = 1,

and then we call λ an l2,2-singular value of A and (x, y) a pair of l2,2-singular vectors of A
associated with λ.

Next, the relationship between the l2,2-singular values/vectors ofA and the Z-eigenvalues/
vectors of its lifting square tensor CA is given.

Theorem 4.2. Let A ∈ R[p;q;m;n] be partially symmetric.

(a) If λ is an l2,2-singular value of A with corresponding singular vectors pair (x, y), then

λ/
√
2
p+q−2

is the Z-eigenvalue of CA and z = (x⊤/
√
2, y⊤/

√
2)⊤ is its Z-eigenvector.

(b) If λ ( ̸= 0) is a Z-eigenvalue of CA with corresponding Z-eigenvector z =

(z1, . . . , zm, zm+1, . . . , zm+n)
⊤, then

√
2
p+q−2

λ is the l2,2-singular value of A with cor-
responding singular vectors pair (

√
2zx,

√
2zy), where zx = (z1, . . . , zm)⊤ and zy =

(zm+1, . . . , zm+n)
⊤.

(c) Assume that 0 is a Z-eigenvalue of CA with corresponding Z-eigenvector z =
(z1, . . . , zm, zm+1, . . . , zm+n)

⊤. Let zx = (z1, . . . , zm)⊤ and zy = (zm+1, . . . , zm+n)
⊤.

If zx ̸= 0 and zy ̸= 0, then 0 is an l2,2-singular values of A with corresponding singular
vector pair (zx/∥zx∥2, zy/∥zy∥2). If zx = 0 or zy = 0, then 0 is not an l2,2-singular
value of A.

Proof. (a) Let λ be an l2,2-singular value of A with corresponding singular vectors pair (x, y).
Then Axp−1yq = λx, Axpyq−1 = λy and ∥x∥2 = ∥y∥2 = 1. Let z = (x⊤/

√
2, y⊤/

√
2)⊤.

Then ∥z∥2 = 1. By (4.1), we have

CAzp+q−1 =

 Axp−1yq

√
2
p+q−1

Axpyq−1

√
2
p+q−1

 =

(
λx√

2
p+q−1

λy√
2
p+q−1

)
=

(
λ√

2
p+q−2

x√
2

λ√
2
p+q−2

y√
2

)

=
λ

√
2
p+q−2

(
x√
2
y√
2

)
=

λ
√
2
p+q−2 z,
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which implies that λ/
√
2
p+q−2

is a Z-eigenvalue of CA and z is its Z-eigenvector.
(b) Let λ ( ̸= 0) be a Z-eigenvalue of CA and z = (z1, . . . , zm, zm+1, . . . , zm+n)

⊤ ̸= 0 be its
a Z-eigenvector. Let zx = (z1, . . . , zm)⊤ and zy = (zm+1, . . . , zm+n)

⊤. Then z = (z⊤x , z⊤y )⊤.
By (4.1), we have

λ

(
zx
zy

)
= λz = CAzp+q−1 =

(
Azp−1

x zqy
Azpxz

q−1
y

)
. (4.2)

Now, we prove the fact: zx ̸= 0 and zy ̸= 0. Suppose that zy = 0 (Similarly, we can also
assume that zx = 0. Here, we omit the proof for this case). By z ̸= 0, we have zx ̸= 0,
which implies that there is an i ∈ [m] such that zi ̸= 0. By λ ̸= 0, zy = 0 and

λzi = (CAzp+q−1)i

=
∑

t2,...,tp+q∈[m+n]

cit2···tptp+1···tp+q
zt2 · · · ztpztp+1

· · · ztp+q

=
∑

1≤t2,...,tp≤m,

m+1≤tp+1,...,tp+q≤m+n

ai,t2,··· ,tp,tp+1−m,··· ,tp+q−mzt2 · · · ztpztp+1
· · · ztp+q

= 0,

we have zi = 0, which conflicts with that zi ̸= 0. Hence, both zx and zy must be not zero.
Next, we prove that ∥zx∥2 = ∥zy∥2 = 1/

√
2. For any g ∈ [m], by

λzg = (CAzp+q−1)g

=
∑

t2,...,tp+q∈[m+n]

cgt2···tptp+1···tp+q
zt2 · · · ztpztp+1

· · · ztp+q

=
∑

1≤t2,...,tp≤m,

m+1≤tp+1,...,tp+q≤m+n

ag,t2,··· ,tp,tp+1−m,··· ,tp+q−mzt2 · · · ztpztp+1
· · · ztp+q

,

we have

λz2g =
∑

1≤t2,...,tp≤m,

m+1≤tp+1,...,tp+q≤m+n

ag,t2,··· ,tp,tp+1−m,··· ,tp+q−mzgzt2 · · · ztpztp+1
· · · ztp+q

,

and, consequently,

λ(z21 + · · ·+ z2m)

=
∑
g∈[m]

∑
1≤t2,...,tp≤m,

m+1≤tp+1,...,tp+q≤m+n

ag,t2,··· ,tp,tp+1−m,··· ,tp+q−mzgzt2 · · · ztpztp+1
· · · ztp+q

=
∑

1≤t1,t2,...,tp≤m,

m+1≤tp+1,...,tp+q≤m+n

at1,t2,··· ,tp,tp+1−m,··· ,tp+q−mzt1zt2 · · · ztpztp+1
· · · ztp+q

=
∑

1≤t1,t2,...,tp≤m,

1≤tp+1−m,...,tp+q−m≤n

at1,t2,··· ,tp,tp+1−m,··· ,tp+q−m(zx)t1(zx)t2

· · · (zx)tp(zy)tp+1−m · · · (zy)tp+q−m

=
∑

1≤i1,...,ip≤m,

1≤j1,...,jq≤n

ai1···ipj1···jq (zx)i1 · · · (zx)ip(zy)j1 · · · (zy)jq . (4.3)
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For any m+ 1 ≤ h ≤ m+ n, by

λzh = (CAzp+q−1)h

=
∑

t2,...,tp+q∈[m+n]

cht2···tqtq+1···tq+pzt2 · · · ztqztq+1 · · · ztq+p

=
∑

m+1≤t2,...,tq≤m+n,

1≤tq+1,...,tq+p≤m

atq+1,··· ,tq+p,h−m,t2−m,··· ,tq−mzt2 · · · ztqztq+1
· · · ztq+p

,

we have

λz2h =
∑

m+1≤t2,...,tq≤m+n,

1≤tq+1,...,tq+p≤m

atq+1,··· ,tq+p,h−m,t2−m,··· ,tq−mzhzt2 · · · ztqztq+1
· · · ztq+p

,

and, consequently,

λ(z2m+1 + · · ·+ z2m+n)

=
∑

m+1≤h≤m+n

∑
m+1≤t2,...,tq≤m+n,

1≤tq+1,...,tq+p≤m

atq+1,··· ,tq+p,h−m,t2−m,··· ,tq−mzhzt2 · · · ztqztq+1 · · · ztq+p

=
∑

m+1≤t1,t2,...,tq≤m+n,

1≤tq+1,...,tq+p≤m

atq+1,··· ,tq+p,t1−m,t2−m,··· ,tq−mzt1zt2 · · · ztqztq+1 · · · ztq+p

=
∑

1≤t1−m,t2−m,...,tq−m≤n,

1≤tq+1,...,tq+p≤m

atq+1,··· ,tq+p,t1−m,t2−m,··· ,tq−m(zy)t1−m(zy)t2−m

· · · (zy)tq−m(zx)tq+1
· · · (zx)tq+p

=
∑

1≤i1,...,ip≤m,

1≤j1,...,jq≤n

ai1···ipj1···jq (zx)i1 · · · (zx)ip(zy)j1 · · · (zy)jq . (4.4)

From (4.3), (4.4) and λ ̸= 0, we have z21 + · · ·+ z2m = z2m+1 + · · ·+ z2m+n. Furthermore, by

∥z∥2 = 1, we have z21 + · · ·+ z2m = z2m+1 + · · ·+ z2m+n = 1/2, i.e., ∥zx∥2 = ∥zy∥2 = 1/
√
2.

Let x = zx/∥zx∥2 and y = zy/∥zy∥2. Then x =
√
2zx, y =

√
2zy and ∥x∥2 = ∥y∥2 = 1.

By (4.2), we have(
Axp−1yq

Axpyq−1

)
=

( √
2
p+q−1Azp−1

x zqy√
2
p+q−1Azpxz

q−1
y

)
=

√
2
p+q−1

(
Azp−1

x zqy
Azpxz

q−1
y

)
=

√
2
p+q−1

CAzp+q−1

=
√
2
p+q−1

λz =
√
2
p+q−2

λ

( √
2zx√
2zy

)
=

√
2
p+q−2

λ

(
x
y

)
,

which implies that
√
2
p+q−2

λ is an l2,2-singular values of A with the singular vector pair
(x, y).

(c) Let λ = 0 be a Z-eigenvalue of CA and z = (z1, . . . , zm, zm+1, . . . , zm+n)
⊤ ̸= 0 be its

a Z-eigenvector. Let zx = (z1, . . . , zm)⊤ and zy = (zm+1, . . . , zm+n)
⊤. Then z = (z⊤x , z⊤y )⊤

and (4.2) also holds. Suppose that zx ̸= 0 and zy ̸= 0. Let x = zx/∥zx∥2 and y = zy/∥zy∥2.
Then ∥x∥2 = ∥y∥2 = 1 and(

Axp−1yq

Axpyq−1

)
=

 Azp−1
x zq

y

∥zx∥p−1
2 ∥zy∥q

2

Azp
xy

q−1

∥zx∥p
2∥zy∥

q−1
2

 =

(
λzx

∥zx∥p−1
2 ∥zy∥q

2
λzx

∥zx∥p
2∥zy∥

q−1
2

)
=

(
0
0

)
= 0

(
x
y

)
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show that 0 is an l2,2-singular value of A with corresponding singular vectors pair (x, y).
Suppose that either zx or zy is a zero vector. If zx = 0, then by z ̸= 0, we have zy ̸= 0.

From (4.2), it can be seen that if (x, y) is a singular vector pair of A associated with the
singular value 0, then ∥x∥2 = ∥y∥2 = 1, x = αzx and y = βzy, where α ∈ R and β ∈ R.
By ∥zx∥2 = 0, we have ∥x∥2 = 0, which implies that 0 cannot be a singular value of A.
Similarly, one can prove that 0 cannot be a singular value of A if zy = 0. Hence, the proof
is completed.

Based on Theorem 4.2, one can find all l2,2-singular values of a rectangular tensor A by
calculating all Z-eigenvalues of its lifting square tensor CA.

4.2 Calculation of lp,q-Singular Values via Two Lifting Square Tensors

Let I = (ei1···ipj1···jq ) ∈ R[p;q;m;n] be the identity rectangular tensor whose entries are defined
as follows:

ei1···ipj1···jq =

{
1, i1 = · · · = ip, j1 = · · · = jq,

0, otherwise.

It is easy to verify that if both p and q are even, then

Ixp−1yq = x[p−1] and Ixpyq−1 = y[q−1] (4.5)

for any x ∈ Rm with ∥x∥p = 1 and y ∈ Rn with ∥y∥q = 1.
Similarly, the lifting square tensor CI = (ct1t2···tp+q

) of I is an order p + q dimension
m+ n real tensor which is defined as follows:

ct1t2···tp+q =


1, if 1 ≤ t1 = · · · = tp ≤ m, m+ 1 ≤ tp+1 = · · · = tp+q ≤ m+ n,

1, if m+ 1 ≤ t1 = · · · = tq ≤ m+ n, 1 ≤ tq+1 = · · · = tq+p ≤ m,

0, otherwise.

Let x = (x1, . . . , xm)⊤ ∈ Rm, y = (y1, . . . , yn)
⊤ ∈ Rn and z = (x⊤, y⊤)⊤ ∈ Rm+n. Then

CIzp+q−1 =

(
Ixp−1yq

Ixpyq−1

)
. (4.6)

The determinant det(A) of an order m dimension n tensor A is the resultant [3] of the
system of homogeneous equations Axm−1 = 0, which is the unique polynomial on the entries
of A satisfying that det(A) = 0 if and only if Axm−1 = 0 has a nonzero solution. In view of
this, we call A a singular tensor if det(A) = 0 and a nonsingular tensor if det(A) ̸= 0. From
(4.6), it is easy to verify that det(CI) = 0 only when both x and y are zero vectors. Hence,
det(CI) ̸= 0.

Next, let us recall the generalized eigenvalue problem of tensor pairs which is introduced
by Ding and Wei in [5]. Let C1,2 be the projective plane in which (α1, β1) ∈ C × C and
(α2, β2) ∈ C×C are regarded as the same point, if there is a nonzero scalar t ∈ C such that
(α1, β1) = (tα2, tβ2). Let A and B be two order m dimension n complex tensors. We call
{A,B} a regular tensor pair if det(βA− αB) ̸= 0 for some (α, β) ∈ C1,2, and call {A,B} a
singular tensor pair if det(βA− αB) = 0 for all (α, β) ∈ C1,2.

Let {A,B} be a regular tensor pair. If there are (α, β) ∈ C1,2 and x ∈ Cn \{0} such that

βAxm−1 = αBxm−1,



168 JIANXING ZHAO

then (α, β) is called an eigenvalue of {A,B} and x is called an eigenvector associated with
(α, β). It is proved in [8, Theorem 3.1] that when B is nonsingular, i.e., det(B) ̸= 0, there
is not a vector x ∈ Cn \ {0} such that Bxm−1 = 0. This implies that β ̸= 0 if (α, β) is
an eigenvalue of {A,B}. Hence, when det(B) ̸= 0, λ = α/β ∈ C is called an eigenvalue of
{A,B}, and

λ(A,B) = {λ ∈ C : det(A− λB) = 0}

is called the spectrum, i.e., the set of all eigenvalues, of {A,B}. Furthermore, if λ ∈ R and
x ∈ Rn \ {0}, then λ is called an H-eigenvalue of {A,B} and x is called its corresponding
H-eigenvector [5].

Theorem 4.3. Let A ∈ R[p;q;m;n] be partially symmetric with both p and q even.

(a) If λ is an lp,q-singular value of A with corresponding singular vectors pair (x, y), then
λ is an H-eigenvalue of the regular tensor pair {CA, CI} and z = (x⊤, y⊤)⊤ is its
corresponding H-eigenvector.

(b) Assume that λ is an H-eigenvalue of the regular tensor pair {CA, CI} with correspond-
ing H-eigenvector z = (z1, . . . , zm, zm+1, . . . , zm+n)

⊤. If zx := (z1, . . . , zm)⊤ ̸= 0 and
zy := (zm+1, . . . , zm+n)

⊤ ̸= 0, then λ is an lp,q-singular value of A with corresponding
singular vectors pair (zx/∥zx∥p, zy/∥zy∥q). If zx = 0 or zy = 0, then λ is not an
lp,q-singular value of A.

Proof. (a) If λ is an lp,q-singular value of A with corresponding singular vectors pair (x, y),
then x ̸= 0, y ̸= 0, and hence z = (x⊤, y⊤)⊤ ̸= 0. By (4.1), (4.5) and (4.6), we have

CAzp+q−1 =

(
Axp−1yq

Axpyq−1

)
=

(
λx[p−1]

λy[q−1]

)
=

(
λIxp−1yq

λIxpyq−1

)
= λ CIzp+q−1,

which implies that λ is anH-eigenvalue of the regular tensor pair {CA, CI} and z = (x⊤, y⊤)⊤

is an H-eigenvector associated with λ. Here, {CA, CI} is a regular tensor pair because
det(CI) = det(0CA − (−1)CI) ̸= 0 for (0,−1) ∈ C1,2.

(b) Let λ be an H-eigenvalue of {CA, CI} and z = (z⊤x , z⊤y )⊤ be its corresponding H-

eigenvector, where zx = (z1, . . . , zm)⊤ and zy = (zm+1, . . . , zm+n)
⊤. By (4.1), (4.5) and

(4.6), we have(
Azp−1

x zqy
Azpxz

q−1
y

)
= CAzp+q−1 = λCIzp+q−1 = λ

(
Izp−1

x zqy
Izpxzq−1

y

)
=

(
λzp−1

x

λzq−1
y

)
. (4.7)

Assume that zx ̸= 0 and zy ̸= 0. Let x = zx/∥zx∥p and y = zy/∥zy∥q. Then ∥x∥p = 1 and
∥y∥q = 1. Furthermore, by (4.5) and (4.7), we have

(
Axp−1yq

Axpyq−1

)
=

 Azp−1
x zq

y

∥zx∥p−1
p ∥zy∥q

q

Azp
xz

q−1
y

∥zx∥p
p∥zy∥q−1

q

 =

 λIzp−1
x zq

y

∥zx∥p−1
p ∥zy∥q

q

λIzp
xz

q−1
y

∥zx∥p
p∥zy∥q−1

q


=

(
λIxp−1yq

λIxpyq−1

)
=

(
λx[p−1]

λy[q−1]

)
,

which implies that λ is an lp,q-singular value of A with the singular vectors pair
(zx/∥zx∥p, zy/∥zy∥q).
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Assume that either zx or zy is a zero vector. If zx = 0, then by z ̸= 0, we have zy ̸= 0.
From (4.7), it can be seen that if (x, y) is an lp,q-singular vectors pair of A associated with
λ, then ∥x∥p = ∥y∥q = 1, x = η1zx and y = η2zy, where η1 ∈ R and η2 ∈ R. By zx = 0, we
have ∥x∥p = 0, which implies that λ cannot be an lp,q-singular value of A. Similarly, one can
prove that λ cannot be a singular value of A if zy = 0. Hence, the proof is completed.

Based on Theorem 4.3, one can find all lp,q-singular values of a rectangular tensor A by
calculating all H-eigenvalues of its lifting square tensor pair {CA, CI}.

5 Numerical Examples

In this section, two numerical examples are given to verify the theoretical results.

Example 5.1. Let A = (ai1i2j1j2) ∈ R[2;2;2;2] be a partially symmetric rectangular tensor
with entries defined as follows:

a1111 = a2222 = 10, a1112 = a1121 = −1, a1122 = a2211 = 9, a1211 = a2111 = −1,

a1212 = a1221 = a2112 = a2121 = −2, a1222 = a2122 = −1, a2212 = a2221 = −1.

Obviously, p = q = m = n = 2.

I. Localization for all l2,2-singular values of A.

We first consider the localization of all l2,2-singular values of A. By Theorem 2.4, we
have

l̃1 = l̃2 = l̂1 = l̂2 = 1 and ũ1 = ũ2 = û1 = û2 = 18, (5.1)

and hence

Γ(A) = [1, 18].

II. Secondly, the positive definiteness of A is considered.

By (5.1) and Theorem 2.5, one can judge that A is positive definite.

III. Finally, we find all l2,2-singular values of A.

By computation, all entries of the lifting square tensor CA = (cijkl) ∈ R[4,4] are as follows:

c1133 = c2244 = c3311 = c4422 = 10,

c1134 = c1143 = c1233 = c1244 = c2133 = c2144 = c2234 = c2243

= c3312 = c3321 = c3411 = c3422 = c4311 = c4322 = c4412 = c4421 = −1,

c1144 = c2233 = c3322 = c4411 = 9,

c1234 = c1243 = c2134 = c2143 = c3412 = c3421 = c4312 = c4321 = −2,

and other cijkl = 0. Calculating all Z-eigenvalues of CA by using zeig from the MATLAB
toolbox ‘TenEig’, we get 80 Z-eigenvalues counting multiplicity and their corresponding Z-
eigenvectors. The 80 Z-eigenvalues are 0 (multiplicity 48), 2.7500 (multiplicity 4), 4.7500
(multiplicity 4), 4.8333 (multiplicity 8), 5.2000 (multiplicity 8) and 5.7500 (multiplicity 8).
All different Z-eigenvalues and their parts of Z-eigenvectors of CA are listed in Table 1:
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Table 1
Z-eigenvalues λz and their parts of Z-eigenvectors z = (z1, z2, z3, z4)

⊤ of CA.
λz z1 z2 z3 z4
0 0.0040 1.0000 0 0

2.7500 0.5000 0.5000 0.5000 0.5000
4.7500 0.5000 −0.5000 0.5000 −0.5000
4.8333 0.6606 −0.2523 0.2523 −0.6606
5.2000 0.1445 −0.6922 0.1445 −0.6922
5.7500 0.5000 0.5000 0.5000 −0.5000

Table 1 shows that z = (0.0040, 1.0000, 0, 0)⊤ is a Z-eigenvector associated with the Z-
eigenvalue λz = 0. Let zx = (z1, z2)

⊤ and zy = (z3, z4)
⊤. Then zx = (0.0040, 1.0000)⊤ ̸= 0

and zy = (0, 0)⊤ = 0. In fact, all Z-eigenvectors z = (z1, z2, z3, z4)
⊤ associated with the

Z-eigenvalue 0 have the characteristic: either zx = 0 or zy = 0. By Theorem 4.2, it follows
that 0 is not an l2,2-singular value of A.

Let λ be an l2,2-singular value of A and (x, y) be its a singular vectors pair. By Theorem
4.2, λ = 2λz, x =

√
2zx and y =

√
2zy. From this, we can get all l2,2-singular values of

A and their corresponding singular vectors pairs. All different l2,2-singular values of A and
parts of their singular vector pairs (corresponding to those data in Table 1) are listed in
Table 2:

Table 2
All l2,2-singular values λ and their parts of singular vectors pairs (x, y) of A.

λ x1 x2 y1 y2
5.5000 0.7071 0.7071 0.7071 0.7071
9.5000 0.7071 −0.7071 0.7071 −0.7071
9.6667 0.9342 −0.3568 0.3568 −0.9342
10.4000 0.2043 −0.9789 0.2043 −0.9789
11.5000 0.7071 0.7071 0.7071 −0.7071

Table 2 shows that all different l2,2-singular values of A are 5.5000, 9.5000, 9.6667,
10.4000, 11.5000, which verifies Theorem 2.4, that is, σ(A) ⊆ Γ(A).

Example 5.2. Consider the nonnegative rectangular tensor A = (ai1i2j1j2) ∈ R[2;2;2;2]
+ ,

where

a1111 = a2222 = 2, a1112 = a1121 = 1, a1122 = a2211 = 2, a1211 = a2111 = 1,

a1212 = a1221 = a2112 = a2121 = 1, a1222 = a2122 = 1, a2212 = a2221 = 1.

I. Calculation of all l2,2-singular values of A.
By computation, all entries of the lifting square tensor CA = (cijkl) ∈ R[4,4] are as follows:

c1133 = c1144 = c2233 = c2244 = c3311 = c3322 = c4411 = c4422 = 2,

c1134 = c1143 = c1233 = c1234 = c1243 = c1244 = c2133 = c2134 = c2143 = c2144 = c2234 = c2243

= c3312 = c3321 = c3411 = c3412 = c3421 = c3422 = c4311 = c4312 = c4321 = c4322 = c4412

= c4421 = 1.

and other cijkl = 0. Calculating all Z-eigenvalues of CA by using zeig from the MATLAB
toolbox ‘TenEig’, we get 48 Z-eigenvalues counting multiplicity, which are 0 (multiplicity
32), 0.5000 (multiplicity 12) and 2.5000 (multiplicity 4). All different Z-eigenvalues and
their parts of Z-eigenvectors of CA are listed in Table 3:
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Table 3
Z-eigenvalues λz and their parts of Z-eigenvectors z = (z1, z2, z3, z4)

⊤ of CA.
λz z1 z2 z3 z4
0 0.7071 −0.7071 0 0

0.5000 0.5000 −0.5000 0.5000 −0.5000
2.5000 0.5000 0.5000 0.5000 0.5000

Table 3 shows that z = (0.7071,−0.7071, 0, 0)⊤ is a Z-eigenvector associated with the Z-
eigenvalue λz = 0. Let zx = (z1, z2)

⊤ and zy = (z3, z4)
⊤. Then zx = (0.7071,−0.7071)⊤ ̸= 0

and zy = (0, 0)⊤ = 0. In fact, all Z-eigenvectors z = (z1, z2, z3, z4)
⊤ associated with the

Z-eigenvalue 0 have the characteristic: either zx = 0 or zy = 0. By Theorem 4.2, it follows
that 0 is not an l2,2-singular value of A.

Let λ be an l2,2-singular value of A and (x, y) be its a singular vectors pair. By Theorem
4.2, λ = 2λz, x =

√
2zx and y =

√
2zy. From this, we can get all l2,2-singular values of

A and their corresponding singular vectors pairs. All different l2,2-singular values of A and
parts of their singular vector pairs (corresponding to those data in Table 3) are listed in
Table 4:

Table 4
All l2,2-singular values λ and their parts of singular vectors pairs (x, y) of A.

λ x1 x2 y1 y2
1.0000 0.7071 −0.7071 0.7071 −0.7071
5.0000 0.7071 0.7071 0.7071 0.7071

Table 4 shows that by calculating all Z-eigenvalues of its lifting square tensor CA ∈ R[4,4],
we find all different l2,2-singular values of A, they are 1.0000 and 5.0000.

II. Bounds for the l2,2-spectral radius of A.
By Lemma 1.3, i.e., Corollary 3.3 of [11], we have

ρ2,2(A) ≤ 10.

By Theorem 3.3, we have

5 ≤ ρ2,2(A) ≤ 8,

which shows that the upper bound is smaller than that in Corollary 3.3 of [11] and that the
lower bound can reach the exact value of l2,2-spectral radius of A in some case.

6 Conclusion

In this paper, we first in Theorem 2.1 constructed an lp,q-singular value inclusion interval
Γ(A, α, β) with two parameter vectors α and β for a real rectangular tensor A. Subse-
quently, by selecting appropriate parameters α and β, we derived the optimal singular value
inclusion interval Γ(A) in Theorem 2.4, which provides a sufficient condition for the positive
definiteness of a real partially symmetric rectangular tensor in Theorem 2.5. Based on the
intervals in Theorem 2.1 and Theorem 3.1 of [11], we in Theorem 3.3 gave the lower and
upper bounds for the lp,q-spectral radius ρp,q(A) of a nonnegative rectangular tensor A. In
order to find all l2,2-singular values/vectors of A, we in Theorem 4.2 derived the relation-
ship between l2,2-singular values/vectors of A and Z-eigenpairs of its lifting square tensor
CA and used the relationship to find all l2,2-singular values/vectors of A, which is verified to
be feasible by Example 5.1. Similarly, in order to find all lp,q-singular values/vectors of A,
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we converted the lp,q-singular value problem of A to generalized eigenvalue problem of CA
and CI , and in Theorem 4.3 derived the relationship between lp,q-singular values/vectors of
A and H-eigenvalues/eigenvectors of its lifting square tensor pair {CA, CI}, which provides
an alternative method to find all lp,q-singular values/vectors of A.
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