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[P9-SINGULAR VALUES OF A PARTIALLY SYMMETRIC
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Abstract: Let A be a real partially symmetric rectangular tensor. In order to judge the positive definiteness
of A, an [P>%-singular value inclusion set with parameters is first constructed. Subsequently, by selecting
appropriate parameters, the optimal singular value inclusion interval is derived, which provides a sufficient
condition for the positive definiteness of A. Secondly, lower and upper bounds for the {P-%-spectral radius
of a nonnegative rectangular tensor are given. Thirdly, the relationship between [2-2-singular values/vectors
of A and Z-eigenpairs of the lifting square tensor of A is derived, which provides an alternative method to
find all /2-2-singular values/vectors of A. Moreover, the relationship between [P-9-singular values/vectors of
A and generalized eigenvalues/eigenvectors of the lifting square tensor of A and the lifting square tensor
of the identity rectangular tensor is derived, which provides an alternative method to find all IP>%-singular
values/vectors of A. Finally, numerical examples are given to verify the theoretical results.
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definiteness
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Introduction

Real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics
[9, 17] and the entanglement problem in quantum physics [4, 6]. The definition of singular
values of a real rectangular tensor is introduced by Lim [10] and Chang et al. [1]. Recently,
Ling and Qi [11] extended the concept of singular values of a rectangular tensor in [1] to [¥*-
singular value of a rectangular tensor and yielded many properties on [¥*-singular values.
Subsequently, Yao et al. [19] made further research on [¥:*-singular values of a rectangular
tensor. Now, let us recall the concept of [**-singular values of a real rectangular tensor.

Let p, ¢, m and n be positive integers, m,n > 2, [n] := {1,2,...,n}, C (resp. R) be
the set of all complex (resp. real) numbers, R™ (resp. R’.) be the set of all dimension n
real (resp. mnonnegative) vectors. We call A = (a;,...i,j,-..5,) a real (p,q)-th order m x n
dimensional rectangular tensor, denoted by A e RIP:aminl if

iy i1 S ]R, D1y ,ip € [m], Jlye - ,jq S [n]
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For simplicity, we call A a real rectangular tensor. If all entries of A are nonnegative
numbers, then A is called a nonnegative rectangular tensor and it is represented by A €

R[f;q;mm]. Furthermore, A is called a real partially symmetric rectangular tensor, if

= Gy evig i Vre Sp, Vr1e Sq7

where S, (resp. S;) is the permutation group of p (resp. ¢) indices and 7 (resp. 7) is any

permutation of indices among 41, ...,4, (resp. ji,...,Jq)-
For any vector z = (21,22,...,2,) € R" and any positive integer k, denote
k T
Z[k] ::(Zl IR ZfL) ’

l2lli =zl + -+ Jzal )HE,

o\ () =(sign(z1) |21 ¥, . sign(zn)| 20 ]) T,
where
1, z2>0,
sign(z) = 0, z=0,
-1, z<0.

Let © = (z1,%2,...,%m) | € R™ y = (y1,92,---,yn) € R?, AzP~1y? be a vector in R™,
whose ith component is

p—1,4). — E e U e U
(.A.T Yy )z = QjjgeevipgreejqLio Li, Y5, Yjqs
i2>~~:7;p€[m]).jlv"»jqe[n]
and AzPy?~! be a vector in R”, whose jth component is
P =1y . _ e Ui e U
(AzPy?7); = E @iy -ipgga--jqLin = TipYja * " Yjg-
i1,...,0p €[M],J2,...,5¢ €[]

Definition 1.1 ([11, Definition 2.1]). Let A € RP@™nl For the given integers k,s €
{2,...,p+q,...}, if (N z,y) e Rx (R™\ {0}) x (R™\ {0}) is a solution of the system

AzP~ty? = )‘901(;3)1(55)7 (1.1)
AzPyt=t = 2o, (y), (1.2)
lzlle = llylls =1, (1.3)

then ) is called an I**-singular value of A and (z,y) is called a pair of [¥:*-singular vectors

of A associated with .
For the existence of the [¥-

2.1] showed the fact:

Theorem 1.2 ([11, Theorem 2.1])). Let A € RP:%™) be partially symmetric. Then for
every k,s € {2,...,p+q,...}, its " -singular values and singular vectors pair always exist.

-singular values/vectors pair of A, Ling and Qi in [11, Theorem

Based on Theorem 1.2, we in this paper assume that A € R[P%7™7 always is a real
partially symmetric rectangular tensor, denote by o(A) the set of all I**-singular values
of A, and call p s(A) the I**-spectral radius of A [11, Definition 3.1] if it is the largest
absolute 1¥:5-singular values of A, i.e.,

pi,s(A) = max{|\| : X € o(A)}.
Also in [11], Ling and Qi obtained bounds for the [*:*-spectral radius of A as follows:
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Lemma 1.3 ([11, Corollary 3.3]). Let A € R[_f"q;m;"] be partially symmetric. If k < p and
s < gq, then

Prs(A) < max  {R;(A),Cj(A)},

i€[m],j€[n]

where
Ri(A) = > ||

i2,...,ip€[m],j1,...,5q €[n]

Cj(A) = > |y i |-

1,0 ip €[M] g2, 0q €[N]

(1.4)

Due to the diversity of selection of p, ¢, k and s, many scholars have studied the properties
of 1**-singular values when these parameters are taken as special values. For example, when
k = s = p+ q, such [F*-singular values of rectangular tensors are introduced by Chang et
al. and called singular value of rectangular tensors in [1]. Subsequently, properties, lower
and upper bounds of spectral radius and inclusion sets for singular values of rectangular
tensors are studied in [15, 18, 21, 22, 23, 24]. When k£ = p and s = ¢, such [*:5_singular
values of rectangular tensors are called V-singular values and studied in [7]. In this paper,
such [¥:5-singular values are called [P»9-singular values as k = p and s = ¢.

Given a partially symmetric rectangular tensor A € RPi%™7] it determines a multivari-
ate polynomial

f(z,y) = AzPy? = > Wiy ipaeeejqTin =" TipYjs *** Yjg- (1.5)
i1 seensip €[m] g1, dg €]

When both p and ¢ are even, if f(z,y) > 0 for all x € R"™ \ {0} and y € R™ \ {0}, then we
say that A is positive definite. When A is the elasticity tensor, which is a real rectangular
tensor with p = ¢ = 2 and m = n = 2 or 3, the strong ellipticity condition holds if and
only if A is positive definite [14]. Since the strong ellipticity condition plays an important
role in nonlinear elasticity and materials, positive definiteness of such a partially symmetric
tensor has a sound application background. When k£ and s are even and k,s > 2, Yao et
al. [19] proposed the following method to judge the positive definiteness of A by using its
1k _singular values.

Theorem 1.4 ([19, Theorem 2]). Let A € RIPG™"] be partially symmetric with p and q
being even, k and s be even and k,s > 2. Then A is positive definite if and only if all of its
%5 _singular values are positive.

There is another way to judge the positive definiteness of A: One can try to construct a
set which includes all [**-singular values of A in the complex plane, and furthermore if the
set lies in the right half complex plane, then we can conclude that all I*:*-singular values of
A are positive and, consequently, A is positive definite.

Although many researchers have constructed such sets [15, 20, 21, 22, 23, 24], unfortu-
nately, all these sets contain the origin, and hence they cannot be used to judge the positive
definiteness of a real partially symmetric rectangular tensor. Then, a question is naturally
raised: How to construct a singular value inclusion set that can be used to judge the positive
definiteness of a real partially symmetric rectangular tensor? We focus on this issue in this
paper.

The rest is arranged as follows. In Section 2, we construct an (P>?-singular value inclusion
set with parameter vectors « and 8 to locate all IP-9-singular values of a real rectangular
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tensor. Subsequently, by selecting appropriate parameter vectors o and 3, we obtain the
optimal singular value inclusion interval and use it to judge the positive definiteness of a
real partially symmetric rectangular tensor. In other words, as an application of the set,
we present a sufficient condition of the positive definiteness of a real partially symmetric
rectangular tensor. As another application of the set, we obtain an upper bound of the
[P9-spectral radius of a nonnegative rectangular tensor in Section 3. Also in Section 3, we
present a lower bound of the [P-9-spectral radius. In Section 4, we focus on calculation of all
[P-gingular values/vectors of a real rectangular tensor A, derive the relationship between
all [?2-singular values/vectors of A and Z-eigenpairs of the lifting square tensor C4 of A,
and derive the relationship between all [P>%-singular values/vectors of A4 and generalized
eigenvalues/eigenvectors of C4 and the lifting square tensor Cz of the identity rectangular
tensor Z, which provides an alternative method to find all {P?-singular values/vectors of A.
In Section 5, we use two examples to verify the theoretical results. In the end, we give some
conclusions to end this paper.

Locations for [”?-Singular Values of a Real Rectangular Tensor
with p and ¢ Even

Taking k = p and s = ¢ in Definition 1.1, then (1.1), (1.2) and (1.3) reduce to the following
equations:

AxP~ 1yt = /\<p(m) (x), (2.1)

AxPyt=t = 2ol (y), (2:2)

Izl = llyllq = 1. (2.3)

Let both p and ¢ be even, x = (11,22,...,2,)' € R™ and y = (yl,yg,...,yn)—r € R”.

For any given x;, ¢ € [m], if #; > 0, then sign(z;) = 1 and hence sign(z )|;1cl|p_ =Pt

x; < 0, then sign(z;) = 71 and hence sign(z;)|z;|P~! = (—=1)(—x; )p V=2l and ifx; = 0,

then sign(a;)|z;|P~* = 2P, Consequently, sign(z;)|z;[P~! = 2?~" for any z; € R, i € [m],

which implies that SOL—)l( ) = zP~1. Similarly, it follows that <p((1_)1( ) = yla=1. Then (2.1),
(2.2) and (2.3) are equivalent to

APyt = \glp=1, (2.4)

APyt~ = \yla—1, (2.5)

x’l’—|—~~+xp:1, (2.6)

yi+-Fyl =1, (2.7)

and then we call A an [P9-singular value of A and (x,y) a pair of {P?-singular vectors of A
associated with A. Here, o(.A) is the set of all I”?-singular values of A.

Now, we construct a set with parameter vectors e and 8 to locate all [P>4¢-singular values
of a real rectangular tensor.

Theorem 2.1. Let A € RIPG™™ with both p and q even, a = (auq,...,am)" € R™ and
B= (ﬁl,...,ﬂn)—r € R™. Then

o(A) CT(A, a,B) :=T(A a)NT(A4,B), (2.8)
where

T(A0) = | T4 o), T(AB) := ] T;(48),

i€[m] J€[n]
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fZ(A, ai) = {Z eR: |Z — Oél'| S Z |ai4..it...t — Ozi| + TZ(.A)},

ten]
fj(./L ﬂj) = {Z eR: |Z - ﬁj‘ < Z \at...tj...j - ﬁjl + Cj(A)}7
te[m]
ri(A) = Ri(A) = Y fasivels ¢(A) = Ci(A) = Y lapijogl, i€ [m], j€n],
teln] te[m]

(2.9)
and R;(A) and C;(A) are defined in (1.4).

Proof. Let A € 0(A), x = (v1,22,...,Tm) € R™\ {0} and y = (y1,v2,.-.,9n) " € R"\ {0}
be an [P-singular vectors pair of A associated with X. Let |z4| = m[ax]{|xz\} and |yp| =
ielm

mzﬁ{|y3|} Then 0 < |z4] <1 and 0 < |y,| < 1. For any given real number «g, by the g-th
i€n
equation of (2.4), i.e.,
)\ngl = Z a9i2"‘ipj1"'jq$i2 e xipyjl T yjq’
i2,...,ip€[M],j1,...,4¢€[n]
and (2.7), we have

(A —ag)ah™

g
= bl —agah i+ 4 yd) (2.10)
i2,0ip €M1, 0,0 €[N

= Z a’giQ"'ipjl"‘jqxi2 e xipyjl e y]q
ig,...,ip€lm],j1,....dg €nl,
(i91everip i1 d@)#(Greesg Ly 1) (g g, m)
+(ag..gr1 — ag)ah Yyl + -+ (agegnen — ag)zh "yl (2.11)
By (2.7) and ¢ being even, we have 0 < |y;| < 1 for each j € [n]. Taking modulus in (2.11)
and using the triangle inequality, we have

|\ — O‘9H$9|p_l

IA

> |agis-ipgijo i | - i, |y |- - |y,

+ |ag~~gl~'l - ag||xg|p71|yl‘q +oot |ag-~gn~~n - O‘g||zg|p71‘yn|q

> [ |

i, ip€lmlLit.....dq€lnl,
(i9seeeyipsd1seesd@)Z(Gsee sy Lsee 1) ooy (geeesgimyim)

IN

+lag..g1.1 — O‘g||33g|p71 + ot lagegnen — O‘g||xg|p71

:(RQ(A) - Z |ag~--gt-~~t|) |9’79|p_1 + Z |ag...gt-t — O‘9||$g|p_17

te[n) te[n]

which implies that

A —ag] < Z |ag...gt...t — og| + Rg(A) — Z |ag...gt---tl;
te[n]

te(n]
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and, consequently,

AeT (A ay) € | Ti(A ) =T(4, ). (2.12)

1€[m]

For any given real number 8j, by the h-th equation of (2.5), i.e.,

q—1 _ E : i U U
>\yh = all---lphjz'--jqxll xlpyjz y]qa
i1,...,0p€[m],j2,...,7¢ €[n]

and (2.6), we have

—1
(A= Br)yy
-1 -1
= Ay, = Bu(ay + - a2y (2.13)
—1
= Z Wiy ighjajoTin " TiyYjy Yy — Br(a] + -+ 20 )yf
i1,eesip €[m], g2, 5q €[n]
= Z iy .. iphja...jqli1 " TipYjs =Yg,
[ERTIT ip€lm],jo, .., jq€lnl,
[ ipd2s.s JQ)#,.. 1k, Rh) e (m m,h,..., h)
—1 —1
—‘y—((ll...lh...h — ﬂh)l‘zfy,ql + -+ (am...mh...h — ,Bh)mfnyz (2.14)

By (2.6) and p being even, we have 0 < |z;| < 1 for each i € [m]. Taking modulus in (2.14)
and using the triangle inequality, we have

A = Bullynl "™

IN

> | iphgaeeej 1 Tin | 12, 1950 ] - Y3,

i1 ens ip€[ml],j2,....,iq€n],

Plyp|T + -+ + |amemben — Bnl|zm [P ynT

+ |a1..1hen — Brllz1

(]

|Gy iphaegllyn] 7"
i15eees ip€[ml],jo,..., jiq€lnl,

(i1seemripsdgse-sdq)Z (Lo Lihy ey h) ey (my e ymy by h)

+ latanen = Bullynl*™ + -+ [amecmheen — Ballynl?™"

=(Cn() = 3 Jaananl ) lonl" D Javann — Ballynl*

te[m] t€[m]

which implies that

IN=Bul < D Jartnn — Bul + Ch(A) = D |astnnl,

te[m) te[m]

and, consequently,

NETH(A B C | Ti(A ;) =T(A,B). (2.15)

j€[n]

Combining (2.12) and (2.15), we have A € [['(A4,a) NT(A,B)], i.e., A € [(A,a, 8), which
implies that the conclusion (2.8) follows. O
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Next, we consider a problem: How to choose appropriate parameter vectors a and (3 to
optimize the [P*9-singular value inclusion interval in Theorem 2.17 Before giving the optimal
inclusion interval for I'( A4, a, 8) in Theorem 2.1, two lemmas are given by taking a = 1 in
Lemmas 4.1 and 4.2 of [16].

Lemma 2.2. Let

f(x):x—Z|x—bi|—c

1€[n]

be a real valued function about x, where b; € R, by < by < --- < b, and c € R.
(a) If n is odd, then

ol n
mél]%f(%)zzbi_ Z b; — ¢,
i=1

. n+3
="

and this takes place for every x € [bnT-l—l,bnT-Hi] if bnT-i—l #* bnT-f—S7 and only for x = bnTH
if bugr = buys. Note that let [b%,b#] be [b%,—i—oo) if buzs does not exist.

(b) If n is even, then

mealécf(x) :ibi_ i b; — ¢,

and this mazimum is reached when x = bz 4.

Lemma 2.3. Let
glz) =z + Z |z —b;| + ¢

i€[n]

be a real valued function about x, where b; € R, by < by < --- < b, withn > 2, and c € R.

(a) If n is odd, then

n—1
mn 2
miﬂgg( )= E b; — b; + ¢,
ve nt1 i=1
="

and this takes place for every x € [bnT—l,bnT-l—l] if bnT—l #* bnT+1, and only for x = bn2;l
ifbucy =bug

(b) If n is even, then

n %71
min g(z) = E b; — E b; + c,
z€R . ¢
1:%+1 =1

and this minimum is reached when xr = b%.
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Theorem 2.4. Let A € RP:a™n] with both p and q even. Then

~ ~

o(A) CT(A) :=T(A)NT(A), (2.16)
where
T(A) = | @A) = [lw]), T(A) = | @A) = [I;1,]),
1€[m] J€[n]
and I;, @, lAj and 1, are taken by the following methods:
(a) if n is odd, then
ol n
Zizzbi,t_ Z by —1i(A), Z bzt_zbzt+rz
t=1 t:nT-#S» t7n+1
(b) if n is even, then
~ 5 n n -1
l; = Zbi,t - Z bir —ri(A), ;= Z bi — Z bit +1i(A
t=1 t=142 t=241 t=1
(c) if m is odd, then
m'TH m—1
=) dij— Z dij —ci(A), 4 = Z dij — Zdt,j+6j(A)
t=1 —m+s p— bl —1
(d) if m is even, then
) 5 m m T—1
=Y dij— > dij—ci(A), d;= > dij— Zdta+ca
t=1 t=1%+2 t=m 41
Here, for each i € [m], bj1 < bjo < --- < b, s an arrangement in non-decreasing

order of a;...it... fort € [n]; for each j € [n], di; < ds; < --- < dy,j; is an arrangement in
non-decreasing order of ay...4j...; fort € [m]; and r;(A) and ¢;(A) are defined in (2.9).

Proof. Let X\ € 0(A). By Theorem 2.1, we have \ € F("{lj a, B), which implies that there
exists an index ¢ € [m] and an index j € [n] such that A € T';(A, ;) and A € T';(A, §;), that
is,

A — ;] < Z |a...it-.t — ;| + 13 (A), e, XE€ [f(al) ()], (2.17)
te[n]
and
A= Bl < D avajey = Bil +¢5(A), ie, Ae[f(8)),9(8)), (2.18)

te[m]
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where

= — Z |az a’l'”'Lt"-t‘ = — Z |a1 - bi,t| - Ti(A),

ten] te[n]
g(az)—az+ Z |az az~~~zt~~~t‘+rz( )—0614' Z |az_bzt|+Tz( )
ten] te[n]
Z B — at..tjej| — Z 18 = de,j| — ¢;(A),
te[m]
9(B;) = B + Z 185 = oot gl + ¢ (A) = B+ D 1B — dij| + ¢;(A),
te(m) t€[m]

Next, we consider a question: How to choose parameters o; and (; to minimize the
inclusion intervals [f(a;), §(a;)] in (2.17) and [f(a;), §(a;)] in (2.18)7
(a) Assume that n is odd. By Lemma 2.2, we have

n+1

gnzgléf ;) Z bit — Z bit — (2.19)

t= n+5

and this maximum is reached for any o; € [b; nT-%—l7b,L- nT-HS] By Lemma 2.3, we have

1) — 7 % A ’ 2.2
min j(a;) = th X;b,mw‘(fl) (2.20)

t=ntl1 n+1

and this minimum is reached for any «; € [b, a1, b %} Taking a; = b; n1 in (2.17) and
using (2.19) and (2.20), we have

AE szt_ Z blt Z bzt_zbzt+rz )

t= n+3 t= n+l

ie, A€ [l;,ﬂd, which implies that A € fi(A) - f(A) and, consequently, o(A) C T'(A).
(b) Assume that n is even. By Lemma 2.2, we have

Mw

max f(a;) = f(bin11) = Z biy —ri(A) > f(biz). (2.21)

i €R t=1 t—”+2
By Lemma 2.3, we have
giexﬁg(ai) = g(biz) = HZH biy — Z bie +1i(A) < G(bi,z41)- (2.22)

Taking a; = b; » and o; = b; z 1 in (2.17), respectively, we have

A€ | f(big) b, %)} and A€ [f(bi,%+1)7§(bi,§+l) :
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By (2.21), (2.22) and the existence of A\, we have X\ € [f(bigﬂ),g(bi%)}, ie, e [l

which implies that A € T';(A) C I'(A) and, consequently, o(A) C T'(A).
(c) Assume that m is odd. For the interval (2.18), by using the similar method as (a) to
derive the maximum of f(8;) and the minimum of §(3;), we have

m m m m2_1
Ac [Z dij — Z dij —cj(A), Z dyj — Z dyj + Cj(A)],
t=1 t=1

_m+43 _m+1
t=mt3 t=mtl

i.e., A € [I;,1;], which implies that \ € fj(A) C I'(A), and, consequently, o(A) C T'(A).
(d) Assume that m is even. Similar to the proof of (b), we have

E m m -1
A€ [Zdtﬁ - Z dij — cj(-A)7 Z dij — Z di; + Cj(A)]7
t=1 =1

t="1+2 t="241

i.e., A € [I;, 4], which implies that A € T';(A) C T'(A), and, consequently, o(A) C T'(A).
In combination with (a), (b), (c) and (d), (2.16) follows. O

Based on the interval I'(A) in Theorem 2.4, a sufficient condition for the positive defi-
niteness of a partially symmetric rectangular tensor is derived.

Theorem 2.5. Let A € RP:G™7 with both p and q even, and X be an [P9-singular value of
A. If

min l; >0 or minl; >0, (2.23)
i€[m] J€[n]

where I; and l} are defined in Theorem 2.4, then X\ > 0. Furthermore, if A is also partially
symmetric, then A is positive definite, consequently, f(x) defined in (1.5) is positive definite.

Proof. Suppose on the contrary that A < 0. By Theorem 2.4, we have A € T'(A4), which
implies that there is an ig € [m] and a jo € [n] such that A € [l;,, ;] and A € [I},,;,],
which conflicts with the assumption A < 0 from (2.23). Hence, A > 0. By Theorem 1.4, the
conclusion follows. O

Bounds for the ["‘-Spectral Radius of Nonnegative Rectangular
Tensors

In this section, we present a lower bound and an upper bound for the [P>?-spectral radius
Pp,q(A) of a nonnegative rectangular tensor A, and prove that the upper bound is smaller
than that in Lemma 1.3, that is, Corollary 3.3 in [11].

Lemma 3.1 ([11, Theorem 3.1]). Let A € R[f:"’q;mm] be partially symmetric. If there exist
w>0, R\ {0} andy € R \ {0} such that

AzP 1y > w1 AxPya=t > wyls U

where k,s € {2,...,p+4q,...}, then

- k-
Pk,s(A) = wmax{ lolls ® Jiell P}
S — .

Il " llylls
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Lemma 3.2 ([12, Lemma 2.1]). Consider the real function of the real variable
$(x) =Y | —bil,
i€[n]

for which by < by --- < b, are real numbers.
(i) If n is odd, then

min () = (by + -+ +bags) = (bugr + -+ +b1)-

This minimum is reached when © = bnt1.
2
(ii) If n is even, then

min¢(z) = (by + - +bzt1) — (b

+otby).
z€R

w3

This takes place for every x € [bn,bn 1] if bn # bnyy and only for x = bz if bn =
bﬂ+1.
2

Theorem 3.3. Let A € R[f;q;mm] be partially symmetric with both p and q even. Then

11 . )
max {2} i {Ri(A), G5 (A} < ppg(A) < p7(A), (3.1)

where
min{n1,n3}, if m and n are odd,

“(A) min{ne, N4}, if m and n are even,
P min{ni,na}, if m is even and n is odd,
min{nq,n3}, if m is odd and n is even,

n+1 nTJrl . n+1l
71 = max bit — bit +ri(A)p, 1M =max > by —

i€m] | =242

Mo L0
(<1
o~
+
Iy
PN
-
=
——

QU
&
|

Jeln] | t=2'42

H_
Il
-

<

+

o

=
—

m+l = mtl .
ng=max{ >, dij— > dij+ci(A)p, m1=max Y. di
b 1

and R;(A) and C;(A) are defined in (1.4), r;(A) and c;(A) are defined in (2.9). Further-
more, p*(A) < max {R;(A),C;(A)}.

"~ i€[m],j€[n]
Here, for each i € [m], IA),»J < Bm < - < Bi7n+1 s an arrangement in non-decreasing
order of 0 and a;...it...t for t € [n], and for each j € [n], cil,j < 6227]‘ < < cfm+1,j s an
arrangement in non-decreasing order of 0 and ay...4j...; fort € [m].

Proof. Let w = _min {Ri(A).C;(A)}. Hw >0, taking @ = (L,....1)" € R} and
1€m|,J€n
y=(1,...,1)T € R7, it follows that
Az Lyt = (Ry(A), ..., Rn(A)T > walr=1,
AxPyt=! = (C1(A),...,Cn(A))T > wyls=1.

By Lemma 3.1, we have

Pp,q(A)>wmax{ L ! }:wmax{;71}. (3.2)

I3 Nyl
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If w = 0, then (3.2) also holds. Hence, the left inequality in (3.1) follows.

Next, we prove the second inequality in (3.1). Let A be the [P*?-singular value with
Al = pp,q(A). By Theorem 2.1, we have A € ['(A, o) NT(A, B), that is, there exists an
i €[m] and a j € [n] such that A € T';(A, ;) and X € fj(.A, Bj), i.e

|>\ — O[Z'| S Z |a7;..4it.4.t — CVZ" + TZ(A)

te(n]

and

Ppg(A) = [A| < foi — 0] + Z | — @i.ipent| +1i(A) = Z o — ZA),;7t| +ri(A)  (3.3)

te(n] te[n+1]
and
ppa(A) = N < [8; =0l + D 1B —arijogl +¢(A) = D 1B —dij|+¢;(A). (34)
te[m] te[m+1]

If n is odd, then n + 1 is even, and by (3.3) and Lemma 3.2, we have

ntl n+1 n+1
Pp.a(A Z bzt_zbzt‘i‘?"l <maX{ Z blt—Zb”_;_rl }:

p=nt3 'n.+3 i€[m] n+3

If n is even, then n + 1 is odd, and by (3.3) and Lemma 3.2, we have

+/\
Pp,q(A SZb

=n4
2

i M““S

n+1
Zt—i—r,( <max{ Z bzt—Zb”—i—n }:77.

1€[m] =242

If m is odd, then m + 1 is even, and by (3.4) and Lemma 3.2, we have

m,+1

m—+41
m—+1 —5 m—+1
Pp,q(A) < Z dij — Z dij + ¢j(A) < max Z dm Z dy g tei(A) p=mns.
t:m'TH t=1 je[’l’l] m+3
If m is even, then m + 1 is odd, and by (3.4) and Lemma 3.2, we have
m+41 3 m—+1 5
ppa(A) < D diy— Y dij+c;(A) < max { D odiy— Y di+ Cj(A)} = 1.
t=142 t=1 jen =142 t=1

Apparently, if m and n are odd, then pp 4(A) < min{ni,ns}; if m and n are even, then
Pp.g(A) < min{ne,ns}; if m is even and n is odd, then p, ,(A) < min{n;,n4}; if m is odd
and n is even, then p, ,(A) < min{ny, 73}
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Finally, we prove that p*(A) < nax {Ri(A),C;(A)}. By A € R[f;q;mm], we have
e\ml,J€

Qi wvipjy gy > 0 fOr iy, ... iy € [m], j1,...,jq € [n]. Hence,

n+1

n+1
m < max{ Z bis + szt +ri(A } =max R;(A) < max {R;(A),C;(A)},

el |, s i€fm iefml.j€ln)

n+1
Ny < max{ Z bzt + szt—kr, } < max R;(A) < max {R;(A),C;(A)},

i1€[m] Bl 1€[m] i€[m],jE€[n]

m+1 MTH
ns < max{ S odig+ > diy+ cj(A)} =maxC;(A) < max {R;(A),C;(A)},
=1

Jj€[n] Jms j€[n] i€[m],j€[n]

m+1
Ny < max{ Z dij + de +¢;( } <maxC;(A) < max {R;(A),C;(A)},

i<l | 5 jeln) i€lml.jeln)
and, consequently, the conclusion p*(A) < [m]ax[ ]{Ri(A), C;(A)} follows. O
USAWIS

Calculation of [”Y-Singular Values via the Lifting Square Tensors

In this section, we considered a question: How to calculate all [P-?-singular values of a given
real rectangular tensor A? We first derive the relationship between the [?2-singular values
of A and the Z-eigenvalues of its lifting square tensor C4, which provide a way to find all
1?2-singular values of A. Subsequently, we derive the relationship between the {P*¢-singular
values of A and the generalized eigenvalues of C4 and Cz, which provide a way to find all
[P-9-singular values of A. The idea of converting the singular value problem to an eigenvalue
problem comes from Chen, Qi, Yang and Yang’s work in [2, pp. 3725], in which the concept
of the lifting square tensor C4 of a real rectangular tensor A is introduced.

For a rectangular tensor A = (a;,...i,j,-..5,) € RIPaminl s lifting square tensor Cy4 =
(Ctrty-tys,) is an order p + ¢ dimension m + n tensor which is defined as follows:

Ctitatpiq
Aty ... pstptr1 =My tp g —ms if 1 S tl, e atp S m, m +1 S tp—‘,—ly e atp—O—q S m + n,
Utyir, tgrpti—my tg—m, HM+1 <t tg <mtn, 1<tg,... tgpp <m,
0, otherwise.

Let 2 = (z1,..,Zm) €ER™ y=(y1,...,yn) €ER"and z = (z7,y")T € R™*™". Then

_ AxP—1y49
Catit = ( Aipyqﬂ ) (4.1)

Now, let us recall the concept of an order m dimension n square tensor B and the
definition of Z-eigenvalues of B, which is introduced by Qi in [13]. We call B a real order
m dimension n square tensor and denote by B = (b;,4,...;.) € RI™™ if b, .0 ;€ R for
11y slm € [TL}
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Definition 4.1 ([13]). Let B = (b;,i,...i,,) € RI™™. If there are A € R and a nonzero vector
x € R™\ {0} such that

Bzm =Xz and z'z=1,
where Bz™~! € R", whose ith component is
(Ba™ 1), = Z biigeing Tin *** Ty

i2,...,im €[n]
then ) is called a Z-eigenvalue of B and x is called a Z-eigenvector of B associated with A.
For simplicity, we call (A, z) a Z-eigenpair of B.
Calculation of [?2-Singular Values via a Lifting Square Tensor
Taking k = s = 2 in Definition 1.1 and using sign(a)|a| = a for any a € R, then (1.1), (1.2)
and (1.3) are equivalent to the following system

AzP~ly? = Az,

AxPy?™! = Ny,

[#ll2 = llyll2 =1,

and then we call X an [>2-singular value of A and (z,y) a pair of [>2-singular vectors of A
associated with .

Next, the relationship between the (?2-singular values/vectors of A and the Z-eigenvalues/
vectors of its lifting square tensor C 4 is given.

Theorem 4.2. Let A € RP:@™n pe partially symmetric.

(a) If X is an 1%2-singular value of A with corresponding singular vectors pair (z,y), then
A/\/§p+q_2 is the Z-eigenvalue of C4 and z = (x7 /2,y /V/2)T is its Z-eigenvector.

(b) If X (# 0) is a Z-eigenvalue of Ca with corresponding Z-eigenvector z =

—2
(215 s Zms Zmg 1y - s Zman) | then \@Hq X is the 1>2-singular value of A with cor-
responding singular vectors pair (v/22;,V/2z,), where z; = (21,...,2m)" and z, =
(Zm+1, ey Zm+n)—r

(c) Assume that 0 is a Z-eigenvalue of Ca with corresponding Z-eigenvector z =
(21« oy Zms Zmtds - s Zmgn) |- Let zz = (21,0, 2m) " and 2y = (Zmt1s- -y Zmgn) |
If z; # 0 and z, # 0, then 0 is an [*>2-singular values of A with corresponding singular
vector pair (24 /2|2, 2y /|| 2yl12). If 2z = 0 or z, = 0, then 0 is not an 1*2-singular
value of A.

Proof. (a) Let A be an [?2-singular value of A with corresponding singular vectors pair (x, ).
Then AzP~ly? = Az, AzPy?~! = \y and ||z]j2 = |lylla = 1. Let z = (" /v2,y" /V2)".
Then ||z]|2 = 1. By (4.1), we have

AxP 1y Az A T

1 ptqg—1 ptqg—1 rta—2 /5
CpzPta—t = ﬁpyqq — ﬁ/\y — V2 \ \yf
W \/ﬁzﬂrq*l \/§P+Q*2 \/§

A
_WZ’

SheSi

R
VG
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which implies that A/ \/§p+q_2 is a Z-eigenvalue of C4 and z is its Z-eigenvector.

(b) Let A (# 0) be a Z-eigenvalue of C4 and z = (21, - -, Zm, Zmi1s -« - Zmin) | 7 0 be its
a Z-eigenvector. Let z; = (z1,...,2m) " and zy = (Zmi1,.- -, Zmin) - Then z = (2], 2,)".
By (4.1), we have

2y _ Azp=124
)\< - ) = Az =Cp2Pt17 1t = ( Azé’z;j_l{ > . (4.2)

Now, we prove the fact: z, # 0 and z, # 0. Suppose that z, = 0 (Similarly, we can also
assume that z, = 0. Here, we omit the proof for this case). By z # 0, we have z, # 0,
which implies that there is an ¢ € [m] such that z; # 0. By A # 0, z, = 0 and

AZi = (CAZIH»q?l)Z‘

- z : Cit?“'tpthrl“'thrq Pty " th th+1 T thJrq
b2, stptq €[mA4n]

= z : Qista, o stpstppr—my e stppg—mPta * Ztp Rt T Bty

we have z; = 0, which conflicts with that z; # 0. Hence, both z, and z, must be not zero.
Next, we prove that ||z,[|2 = ||2,]l2 = 1/v/2. For any g € [m], by

)\Zg = (CAZZH»q?l)g

- § : Cgt2"‘tptp+1“‘tp+qzt2 o thztp+l o th+q
ta2,estptq €[mAn]

= E gt sty tpr1—m, tprq—mPty """ Ztp Rty 1 " Rty
1<to,..., tp<m,

MALSt g 15ty y g Smtn

we have

2 _ E
/\Zg - Qg ta, e tptpp1—m, e tprg—mZg2ty """ 2ty Pty T Pty
1<tog,..., tpgm.
mA1<t, 1ty g <mtn

and, consequently,

AT+ + 22)

= E E gt tp,tpr1—m, tprq—mZgRts """ Ztp Rty n T Bty
ge[m] 1<tg,...,tp<m,
mAL<ty {1ty g Smtn

- § : Oty ,ta, oty tpgp1—m, o tppq—mPt1 Zta " Rt Bty T Rty
1<ty,tg,....,tp<m,
mA1<t, g, tppqSmtn

= Z at17t2)"':tpatp+17m7"'7tp+q7m(zw)tl (Z:E)t2

1<ty,tg,..., tp<m,
1§np+1—m ..... tp+q—7n§n

T (Zx)tp (Zy)tp+1—m e (Zy)t,,+q—m

= D iy (&) ()i (35 (2);, (4.3)

1<iy, ..., ip<m,
1<41,00dg<n
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For any m+1 < h <m+n, by
Azp = (CAZp+q_1)h

= z : cht2"'tqtq+1"'tq+p Rty """ th th+1 T th+p
t2,...,tp+q€[m+n]

= E Atgir, o tqpp,h—mita—m, - tg—mPty * " " Rt Rte1 " Rlaqpo
m+1<to,..., tg<m+n,

1<tgitn o tgpp<m
we have
2 _ } :
)\Zh - at11+1>“' tgtp,h—mita—m,.- ,tq—mZthQ T th th+1 e th+p’
m+1<to,..., tg<m+n,
1<tgh1,tgpp<m
and, consequently,

M2+ 4 22n)

= E § atq+1,“' ,tq+p,h—m,t2—m,m ,tq—mzhztg e th th+1 e th+p

mA1<h<mdn m+1<tg,.. tqg<m+n,
1<tgi1,tqgrp<m

= § atq+1,~“ ,tq+p,t1—m,tg—m,~- ,tq—mztlztg e th th+1 e th+p

= E Atgi1, stgrpst1—m,to—m,--- 7tq—m(zy)t1—m(zy)t2—m
1<ty —m,tg—m,....tqg—m<n,
1<tgyq, tgppS<m

(2 tg—m (Za)ty o (o)t

= D i (Za)in e (22)iy (2) 0 (25, (4.4)

1<iq,...,ip<m,
1<41 .0 0dg S

From (4.3), (4.4) and X # 0, we have 27 + -+ + 22, = 22, +--- + z2,,,,. Furthermore, by
I2ll2 =1, we have 2§ + -+« + 20, = 20y + -+ 2h g, = 1/2, e, lzallz = llzyll2 = 1/v2.

Let = 2,/||2:]]2 and y = z,/||2y||2. Then z = v22,, y = V22, and ||z[]2 = ||y|l2 = 1.
By (4.2), we have

— ptq—1 _ -
( sz ;y‘i ) B \/ip+q 1AZ£ ) - v jz% ;Z;’i = V2T et
Py V2T Azpaat Zply
Yy

_ \/ip+q71>\z _ \/§p+q2/\< \ﬁzz ) _ \/ierqZ/\( x ) 7
V22, y

—2
which implies that v2" 7 °X is an [?2_singular values of A with the singular vector pair

(,y).
(c) Let A = 0 be a Z-eigenvalue of C4 and 2z = (21, ..., Zm, Zmi1,- - > Zmin) | # 0 be its
a Z-eigenvector. Let z, = (21,...,2m)" and zy = (Zm41,--+s Zmin) - Then z = (2] ,2,])7

and (4.2) also holds. Suppose that z, # 0 and 2z, # 0. Let = = 2, /|22 and y = 2, /|12y |2
Then ||z]|2 = ||y]|]2 = 1 and

p—1_q
Azp 2y Az

p—1,,4q TS T YTy pra—y
APyt N T e | [ TR )
AzxPya—1 Azby?™! Az

— P q—1
EAHEE llz2 112 112y 112
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show that 0 is an [?2-singular value of A with corresponding singular vectors pair (z,y).

Suppose that either z, or z, is a zero vector. If z; = 0, then by z # 0, we have z, # 0.
From (4.2), it can be seen that if (z,y) is a singular vector pair of A associated with the
singular value 0, then ||z||2 = |ly|l2 = 1, = az, and y = Bz,, where & € R and S € R.
By ||2z]l2 = 0, we have ||z||2 = 0, which implies that 0 cannot be a singular value of A.
Similarly, one can prove that 0 cannot be a singular value of A if z, = 0. Hence, the proof
is completed. O

Based on Theorem 4.2, one can find all {>2-singular values of a rectangular tensor A by
calculating all Z-eigenvalues of its lifting square tensor C 4.

Calculation of [P?-Singular Values via Two Lifting Square Tensors

Let Z = (eiy..ipji-j,) € R[Piamin] he the identity rectangular tensor whose entries are defined
as follows:

. 1’ ’Ll:"':Z]n,]l:”':jq’
i1 iprg = ,
e 0, otherwise.

It is easy to verify that if both p and ¢ are even, then
TaP~ 1yt = 2P~ and TaPyl~! = y[q_l] (4.5)

for any x € R™ with ||z||, =1 and y € R” with ||y|, = 1.
Similarly, the lifting square tensor Cz = (ct,¢,..-t,,,) of Z is an order p + ¢ dimension
m + n real tensor which is defined as follows:

1, if1<ty = =t,<m, m+1<tp1 = =tprqg <Mm+n,
Ctltzwtp+q: 1, 1fm+1§t1:=tq§m+n, 1§tq+1:~--:tq+p§m,

0, otherwise.

Let 2 = (z1,..,Zm) €ER™ y=(y1,...,yn)’ €ER"and z = (z7,y")T € R™*™. Then

_ TaP~tyd
Cpspti-l — ( Torgath > . (4.6)

The determinant det(.A) of an order m dimension n tensor A is the resultant [3] of the
system of homogeneous equations Az™~! = 0, which is the unique polynomial on the entries
of A satisfying that det(A) = 0 if and only if A2z™~! = 0 has a nonzero solution. In view of
this, we call A a singular tensor if det(.A) = 0 and a nonsingular tensor if det(.A) # 0. From
(4.6), it is easy to verify that det(Cz) = 0 only when both z and y are zero vectors. Hence,
det(Cz) # 0.

Next, let us recall the generalized eigenvalue problem of tensor pairs which is introduced
by Ding and Wei in [5]. Let C; 2 be the projective plane in which (ag,81) € C x C and
(g, B2) € C x C are regarded as the same point, if there is a nonzero scalar ¢ € C such that
(a1, B1) = (tag,tB2). Let A and B be two order m dimension n complex tensors. We call
{A, B} a regular tensor pair if det(8A — al3) # 0 for some (o, ) € Cq 2, and call {A,B} a
singular tensor pair if det(8.A — al8) = 0 for all (a, 8) € Cq 2.

Let {A, B} be a regular tensor pair. If there are (o, ) € C1 2 and x € C™\ {0} such that

BAz™ ! = aBz™ L,
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then (a, B) is called an eigenvalue of {4, B} and z is called an eigenvector associated with
(o, B8). Tt is proved in [8, Theorem 3.1] that when B is nonsingular, i.e., det(B) # 0, there
is not a vector x € C™ \ {0} such that Bx™~! = 0. This implies that 8 # 0 if («, ) is
an eigenvalue of {A, B}. Hence, when det(B) # 0, A = /8 € C is called an eigenvalue of
{A, B}, and

AA,B) = {\ € C: det(A— AB) = 0}

is called the spectrum, i.e., the set of all eigenvalues, of {A, B}. Furthermore, if A € R and
x € R™\ {0}, then X is called an H-eigenvalue of {A, B} and z is called its corresponding
H-eigenvector [5].

Theorem 4.3. Let A € RP@™n] pe partially symmetric with both p and q even.

(a) If X is an IP%-gingular value of A with corresponding singular vectors pair (x,y), then
A is an H-eigenvalue of the reqular tensor pair {Ca,Cz} and z = (z",y")" is its
corresponding H -eigenvector.

(b) Assume that X is an H-eigenvalue of the reqular tensor pair {C4,Cz} with correspond-

ing H-eigenvector z = (21, Zms Zmats - s Zman) - If 22 = (21, .-, 2m) | # 0 and
2y = (Zmt1s- - Zman) | # 0, then X is an IP-singular value of A with corresponding
singular vectors pair (2z/||2zllp, 2y/l12yllq). If 22 = 0 or z, = 0, then X is not an

P 9-singular value of A.

Proof. (a) If A is an [P?-singular value of A with corresponding singular vectors pair (z,y),
then z # 0, y # 0, and hence z = (z ",y )" # 0. By (4.1), (4.5) and (4.6), we have

_ AxP~1yq Azlp—1 ALzP— 1y _
1 _ _ _ _ 1
CpzPTat = ( Ay ) = ( a1l ) =\ azaryet ) = A CrzPta1

which implies that X is an H-eigenvalue of the regular tensor pair {C4,Cz}and z = (z T,y ") T
is an H-eigenvector associated with A. Here, {C4,Cz} is a regular tensor pair because
det(CI) = det(OCA — (—I)CI) 7é 0 for (0, —1) S (CLQ.

(b) Let A be an H-eigenvalue of {C4,Cz} and z = (z;,zJ)T be its corresponding H-

eigenvector, where z, = (21,...,2y,)' and Zy = (Zmatis- -y Zmin) - By (4.1), (4.5) and
(4.6), we have
Azp=12d _ _ Tzb—1z4 Azp—1
(A1) = s ()= (050 ) wo

Assume that z, # 0 and z, # 0. Let = 2z, /||2z]|p and y = 2, /||2y||q- Then ||z||, =1 and
llyll; = 1. Furthermore, by (4.5) and (4.7), we have

1 Azgflzg AIzﬁ’lzg
p— q T np—1;_. na . np—1,_. na
APyt N Tl 0 | Z | Tl Ty
Apyr! Azt Mt
—T =71

ENHEAE EAHEAE

o AZaP Tyt (Al
T\ AZzryet ) T\ gl )
which implies that A is an [P%-singular value of A with the singular vectors pair

(z2/ 122 lpy 24/ 12y llg)-
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Assume that either z, or z, is a zero vector. If z; = 0, then by z # 0, we have z, # 0.
From (4.7), it can be seen that if (x,y) is an [P?-singular vectors pair of A associated with
A, then ||z||, = |lyllq = 1, © = m 2z, and y = 192y, where 1 € R and 1 € R. By 2, =0, we
have ||z||, = 0, which implies that A cannot be an [”*%-singular value of 4. Similarly, one can
prove that A cannot be a singular value of A if z, = 0. Hence, the proof is completed. ]

Based on Theorem 4.3, one can find all {P*9-singular values of a rectangular tensor A by
calculating all H-eigenvalues of its lifting square tensor pair {C4,Cz}.

Numerical Examples

In this section, two numerical examples are given to verify the theoretical results.

Example 5.1. Let A = (a;,4,5,5,) € R[2%22] be a partially symmetric rectangular tensor
with entries defined as follows:

a1111 = ag222 = 10, a1112 = a1121 = —1, a1122 = az211 =9, a1211 = a2111 = —1,

(1212 = Q1221 = G2112 = (2121 = —2, G1222 = G2122 = —1, @2212 = ag221 = —1.

Obviously, p=g=m =n = 2.
?2-singular values of A.

We first consider the localization of all {?2-singular values of A. By Theorem 2.4, we
have

I. Localization for all

ilzigzil:[2:1311(21’[61:&2:@1:@2:18, (51)
and hence
I'(A) = [1,18].

I1. Secondly, the positive definiteness of A is considered.

By (5.1) and Theorem 2.5, one can judge that A is positive definite.

III. Finally, we find all [?2-singular values of A.

By computation, all entries of the lifting square tensor C4 = (¢;ju) € R4 are as follows:

C1133 = C2244 = C€3311 = C4422 = 10,
C1134 = C1143 = C1233 = C1244 = 2133 = C2144 = €2234 = C2243

= (3312 = (3321 = C3411 = C3422 = C4311 = 4322 = C4412 = Cqq21 = —1,
C1144 = C2233 = €3322 = Cq411 = 9,

C1234 = C1243 = C2134 = €2143 = C3412 = C3421 = C4312 = C4321 = —2,

and other ¢;ji; = 0. Calculating all Z-eigenvalues of C4 by using zeig from the MATLAB
toolbox ‘TenEig’, we get 80 Z-eigenvalues counting multiplicity and their corresponding Z-
eigenvectors. The 80 Z-eigenvalues are 0 (multiplicity 48), 2.7500 (multiplicity 4), 4.7500
(multiplicity 4), 4.8333 (multiplicity 8), 5.2000 (multiplicity 8) and 5.7500 (multiplicity 8).
All different Z-eigenvalues and their parts of Z-eigenvectors of C4 are listed in Table 1:
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Table 1
Z-eigenvalues \, and their parts of Z-eigenvectors z = (z1, 22, 23, 24)T of C4.
Az 21 z2 Z3 2
0 0.0040 1.0000 0 0
2.7500 0.5000 0.5000 0.5000 0.5000
4.7500 0.5000 —0.5000 0.5000 —0.5000
4.8333 0.6606 —0.2523 0.2523 —0.6606
5.2000 0.1445 —0.6922 0.1445 —0.6922
5.7500 0.5000 0.5000 0.5000 —0.5000

Table 1 shows that z = (0.0040,1.0000,0,0) " is a Z-eigenvector associated with the Z-
eigenvalue A\, = 0. Let 2, = (21,22)" and 2y = (23,24)". Then z, = (0.0040,1.0000) " # 0
and z, = (0,0)T = 0. In fact, all Z-eigenvectors z = (21, 20, 23,21) | associated with the
Z-eigenvalue 0 have the characteristic: either z, = 0 or 2z, = 0. By Theorem 4.2, it follows
that 0 is not an [?>2-singular value of A.

Let A be an [>2-singular value of A and (x,y) be its a singular vectors pair. By Theorem
42, A = 2)\,, * = V22, and y = v/22,. From this, we can get all [>?-singular values of
A and their corresponding singular vectors pairs. All different {>2-singular values of 4 and

parts of their singular vector pairs (corresponding to those data in Table 1) are listed in
Table 2:

Table 2
All [?2-singular values \ and their parts of singular vectors pairs (z,y) of A.
A T1 ) Y1 Y2
5.5000 0.7071 0.7071 0.7071 0.7071
9.5000 0.7071 —0.7071 0.7071 —0.7071
9.6667 0.9342 —0.3568 0.3568 —0.9342
10.4000 0.2043 —0.9789 0.2043 —0.9789
11.5000 0.7071 0.7071 0.7071 —0.7071

Table 2 shows that all different {>2-singular values of A are 5.5000, 9.5000, 9.6667,
10.4000, 11.5000, which verifies Theorem 2.4, that is, o(A) C I'(A).

Example 5.2. Consider the nonnegative rectangular tensor A = (a;,iyj,j,) € RE;Q;Q;Q],

where

ai111 = 2222 = 2, aii12 = a1121 = 1, ai122 = ag011 = 2, aizn = ag111 = 1,
a1212 = 1221 = G2112 = G2121 = 1, @1222 = az122 = 1, asz212 = az20; = 1.

I. Calculation of all I22-singular values of A.
By computation, all entries of the lifting square tensor C4 = (c;jx1) € R4 are as follows:

C1133 = C1144 = C2233 = C2244 = (3311 = (3322 = C4411 = C4422 = 2,

C1134 = C1143 = C1233 = C1234 = C1243 = C1244 = C2133 = C2134 = €2143 = C2144 = C2234 = C2243
= (3312 = €3321 = C3411 = C3412 = €3421 = C3422 = C4311 = C4312 = C4321 = C4322 = C4412
= caq01 = L.

and other ¢;;; = 0. Calculating all Z-eigenvalues of C4 by using zeig from the MATLAB

toolbox ‘TenEig’, we get 48 Z-eigenvalues counting multiplicity, which are 0 (multiplicity

32), 0.5000 (multiplicity 12) and 2.5000 (multiplicity 4). All different Z-eigenvalues and
their parts of Z-eigenvectors of C4 are listed in Table 3:
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Table 3
Z-eigenvalues A\, and their parts of Z-eigenvectors z = (21, 22, 23, ;:4)—r of C4.
Az 21 Z2 Z3 24
0 0.7071 —0.7071 0 0
0.5000 0.5000 —0.5000 0.5000 —0.5000
2.5000 0.5000 0.5000 0.5000 0.5000

Table 3 shows that z = (0.7071, —0.7071,0,0)T is a Z-eigenvector associated with the Z-
eigenvalue A\, = 0. Let z, = (21,22) " and 2z, = (23,24) ". Then z, = (0.7071,—0.7071) " # 0
and z, = (0,0)" = 0. In fact, all Z-eigenvectors 2z = (z1,22,23,24) ' associated with the
Z-eigenvalue 0 have the characteristic: either z, = 0 or z, = 0. By Theorem 4.2, it follows
that 0 is not an [%2-singular value of A.

Let A be an [?>2-singular value of A and (z,y) be its a singular vectors pair. By Theorem
4.2, X =2\, z = 2z, and y = \/ﬁzy From this, we can get all {>2-singular values of
A and their corresponding singular vectors pairs. All different [?2-singular values of A and
parts of their singular vector pairs (corresponding to those data in Table 3) are listed in
Table 4:

Table 4

All I?2-singular values A and their parts of singular vectors pairs (z,y) of A.
A 71 Ty Y1 Yo

1.0000 0.7071 —0.7071 0.7071 —0.7071

5.0000 0.7071 0.7071 0.7071 0.7071

Table 4 shows that by calculating all Z-eigenvalues of its lifting square tensor C4 € R4,

we find all different [?2-singular values of A, they are 1.0000 and 5.0000.
II. Bounds for the [?2-spectral radius of A.
By Lemma 1.3, i.e., Corollary 3.3 of [11], we have

p2,2(A) < 10.
By Theorem 3.3, we have
5 < paa(A) <8,

which shows that the upper bound is smaller than that in Corollary 3.3 of [11] and that the
lower bound can reach the exact value of {>2-spectral radius of A in some case.

[6] Conclusion

In this paper, we first in Theorem 2.1 constructed an [P-?-singular value inclusion interval
I['(A, a, 8) with two parameter vectors « and f for a real rectangular tensor A. Subse-
quently, by selecting appropriate parameters « and (3, we derived the optimal singular value
inclusion interval I'(A) in Theorem 2.4, which provides a sufficient condition for the positive
definiteness of a real partially symmetric rectangular tensor in Theorem 2.5. Based on the
intervals in Theorem 2.1 and Theorem 3.1 of [11], we in Theorem 3.3 gave the lower and
upper bounds for the I”?-spectral radius p, 4(A) of a nonnegative rectangular tensor A. In
order to find all I>2-singular values/vectors of A, we in Theorem 4.2 derived the relation-
ship between [%2-singular values/vectors of A and Z-eigenpairs of its lifting square tensor
C4 and used the relationship to find all [?2-singular values/vectors of A, which is verified to
be feasible by Example 5.1. Similarly, in order to find all {P-?-singular values/vectors of A,
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we converted the [P*9-singular value problem of A to generalized eigenvalue problem of C 4
and Cz, and in Theorem 4.3 derived the relationship between [P?-singular values/vectors of
A and H-eigenvalues/eigenvectors of its lifting square tensor pair {C4,Cz}, which provides
an alternative method to find all IP:9-singular values/vectors of A.
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