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Then, for the mapping G := F + h, there exists a > 0 such that

d(x,G−1(y)) ≤ κ

1− κµ
d(y,G(x)), for all (x, y) ∈ B(x̄, a)×B(ȳ, a).

Plenty of results on the stability of the local metric regularity under single-valued per-
turbation can be found in [4], [5], [6], [8], [10] and references therein. A natural question is
whether the preservation still holds under set-valued perturbations.

For the metric regularity, there are two types of perturbations. The first one is, as
adopted in Theorem 1.1, the usual addition type. That is, for the mapping F and a per-
turbation mapping H (single-valued or set-valued), G is taken as G = F + H. In this
perturbation type, a counter-example in [6] (Example 5I.1) shows that the preservation of
the local metric regularity no longer holds in general. However, when adding the condition
that the diameter of the perturbation mapping at the point under consideration is small
enough, a stability result on the local metric regularity was proved in [1] (Theorem 3.2).

The second type of perturbation is not an obvious addition type, but to introduce a
quantity measuring the closeness of the set-valued mappings F and G. For a point x ∈ X
and a constant ε > 0, the quantity is defined as follows (see [7]).

σF,G(x, ε) := sup
η∈G(x)

inf
ξ∈F (x)

sup
d(x′,x)≤ε

ξ′∈F (x′)

inf
η′∈G(x′)

‖η − ξ + ξ′ − η′‖ . (1.2)

The following stability result on the local metric regularity was obtained in [9], in which the
set-valued perturbation is of the second type.

Theorem 1.2 (Theorem 3.2 in [9]). Let X be a complete metric space and Y be a normed
space. Let F,G be set-valued mappings with closed graphs, (x̄, ȳ) ∈ gphF and (x̄, z̄) ∈ gphG
be given points. Suppose that F is metrically regular at x̄ for ȳ with constant κ > 0 and that
the following two conditions are satisfied:

(i) There exist positive constants r, µ with µ ∈ (0, κ−1) such that

σF,G(x, ε) ≤ µε, whenever x ∈ B(x̄, r) and ε ≤ r. (1.3)

(ii)

lim
x→x̄

sup
v∈F (x)

inf
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ = 0. (1.4)

Then G is metrically regular at x̄ for z̄ with constant κ
1−κµ .

When both F and G are single-valued mappings, (1.3) reduces to the local Lipschitz
continuity of G− F around x̄ while (1.4), which can be removed, reduces to the continuity
of G− F at x̄.

Recently, along with the condition (1.3), a weaker stability was preserved for the local
metric regularity as follows.

Theorem 1.3. (Theorem 2 in [2]) Let X,Y be Banach spaces, F,G : X ⇒ Y be two set-
valued mappings with closed graphs and ȳ ∈ F (x̄). Consider some positive parameters κ, r
and s such that

d(x, F−1(y)) ≤ κd(y, F (x)), for all (x, y) ∈ B(x̄, r)×B(ȳ, s).
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Let µ > 0, δ > 0 and ν > 0 satisfy

κµ < 1,
κ

1− κµ
ν < r, δ + (1 + κµ)ν < s.

In addition, assume that there is z̄ ∈ G(x̄) with

inf
v∈F (x)

sup
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ ≤ δ, for all x ∈ B(x̄, r). (1.5)

If

σF,G(x, ε) ≤ µε, whenever x ∈ B(x̄, r) and ε ≤ r,

then one has

d(x̄, G−1(z)) ≤ κ

1− κµ
d(z,G(x̄)), for all z ∈ B(z̄, ν).

Remark 1.4. Here we draw a comparison between condition (1.5) and (1.4). We claim
that even when the condition (1.5) is strengthened into

lim
x→x̄

inf
v∈F (x)

sup
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ = 0, (1.6)

it is not comparable with (1.4) when F and G are both set-valued mappings, since in general,
we cannot clear the size relation between quantities

inf
v∈F (x)

sup
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ and sup
v∈F (x)

inf
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ .

Indeed, for any fixed x, although it holds obviously that

p1(v) := inf
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ ≤ sup
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ := p2(v),

it is indeterminate that which of q1 := supv∈F (x) p1(v) and q2 := infv∈F (x) p2(v) is larger.
For instance,

(i) If F (x) = [0, 2], p1(v) = v−3, p2(v) = v, then for any v ∈ F (x) one has p1(v) ≤ p2(v),
but

q1 = sup
v∈[0,2]

{v − 3} = −1 < 0 = q2 = inf
v∈[0,2]

{v};

(ii) If F (x) = [0, 2], p1(v) = v − 1, p2(v) = v, then for any v ∈ F (x) one also has
p1(v) ≤ p2(v), but

q1 = sup
v∈[0,2]

{v − 1} = 1 > 0 = q2 = inf
v∈[0,2]

{v}.

However, when G is a single-valued mapping, it is clear that condition (1.6) is weaker than
(1.4) since for any x, one has

inf
v∈F (x)

‖(G(x)− z̄)− (v − ȳ)‖ ≤ sup
v∈F (x)

‖(G(x)− z̄)− (v − ȳ)‖ .
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In this paper, under the same conditions in Theorem 1.3, we prove a result on the
stability of the local metric regularity under the second type of set-valued perturbations.
On the one hand, our result is obviously stronger than Theorem 1.3. On the other hand,
as shown in Remark 1.4, since condition (1.5) is generally not comparable with (1.4), we
present a set-valued perturbation stability result of the local metric regularity in a different
point of view. Furthermore, by using a fixed point theorem, we prove the special case (the
origin mapping is single-valued) of our main result.

Throughout this paper, the symbol B(x, r) denotes the closed ball with center x and
radius r in all spaces under consideration. The graph and the inverse of a set-valued mapping
F are denoted by gphF := {(x, y) | y ∈ F (x)} and F−1(y) := {x | y ∈ F (x)}, respectively.

2 Main Result

In this section, we introduce our main results.

Theorem 2.1. Let X be a Banach space, Y be a normed space, F,G : X ⇒ Y be two
set-valued mappings with closed graphs and (x̄, ȳ) ∈ gphF. Consider positive constants κ
and r such that

d(x, F−1(y)) ≤ κd(y, F (x)), for all (x, y) ∈ B(x̄, r)×B(ȳ, r). (2.1)

Let µ > 0, δ > 0 and θ > 0 satisfy that

κµ < 1, max

{
κ

1− κµ
θ, δ + (1 + κµ)θ

}
< r. (2.2)

Suppose that there exists z̄ ∈ G(x̄) such that

inf
v∈F (x)

sup
w∈G(x)

‖(w − z̄)− (v − ȳ)‖ ≤ δ, for all x ∈ B(x̄, r). (2.3)

In addition, assume that

σF,G(x, ε) ≤ µε, whenever x ∈ B(x̄, r) and ε ≤ r. (2.4)

Then, there exists r′ > 0 such that

d(x,G−1(z)) ≤ κ

1− κµ
d(z,G(x)), for all (x, z) ∈ B(x̄, ρ)×B(z̄, ρ), (2.5)

where ρ = min
{
r′, θκ

1+κ−κµ

}
.

Proof. From (2.2) we can pick κ′ > κ, µ′ > µ and r′ > 0 such that

κ′µ′ < 1,
κ

1− κ′µ′ θ + r′ < r, δ + (1 + κ′µ′)θ < r. (2.6)

The following proof will include two steps.
Step 1 We prove that the inequality

d(x,G−1(z)) ≤ κ

1− κµ
d(z,G(x)) (2.7)

holds for any (x, z) ∈ B(x̄, r′)×B(z̄, θ) with d(z,G(x)) < θ.
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Fix any (x, z) ∈ B(x̄, r′) × B(z̄, θ) with d(z,G(x)) < θ. If z ∈ G(x), we are done since
both sides of the inequality (2.7) are zero in this case.

Now we consider the case that z /∈ G(x). Set λ := d(z,G(x)) and x0 := x, then 0 < λ < θ,
which implies that we can take sufficiently small α > 0 satisfying λ + α < θ. Thus we can
find w0 ∈ G(x) = G(x0) such that

‖z − w0‖ < λ+ α < θ.

Put r0 = κ(λ+ α) < κθ < r, then from condition (2.4) we have

inf
ξ′∈F (x0)

sup
∥x′−x0∥≤r0

η∈F (x′)

inf
η′∈G(x′)

‖w0 − ξ′ + η − η′‖ ≤ σF,G(x0, r0) ≤ µr0 < µ′r0.

Thus, there exists v0 ∈ F (x0) such that

sup
∥x′−x0∥≤r0

η∈F (x′)

inf
η′∈G(x′)

‖w0 − v0 + η − η′‖ < µ′r0. (2.8)

Set y0 = z − w0 + v0, it holds for any τ ∈ F (x0) and τ ′ ∈ G(x0) that

‖y0 − ȳ‖ = ‖z − z̄ + z̄ − w0 + v0 − ȳ‖ ≤ ‖z − z̄‖+ ‖w0 − v0 + ȳ − z̄‖
≤ ‖z − z̄‖+ ‖w0 − v0 + τ − τ ′‖+ ‖(τ ′ − z̄)− (τ − ȳ)‖ ,

and hence from (2.3) and (2.8), we have y0 ∈ B(ȳ, r) since

‖y0 − ȳ‖ ≤ ‖z − z̄‖+ sup
η∈F (x0)

inf
η′∈G(x0)

‖w0 − v0 + η − η′‖

+ inf
η∈F (x0)

sup
η′∈G(x0)

‖(η′ − z̄)− (η − ȳ)‖

≤ θ + µ′r0 + δ < θ + µ′κθ + δ < (1 + κ′µ′)θ + δ < r.

It follows from the metric regularity of F at x̄ for ȳ with κ (condition (2.1)) that

d(x0, F
−1(y0)) ≤ κd(y0, F (x0)) ≤ κ ‖y0 − v0‖ = κ ‖z − w0‖ < κ(λ+ α),

which yields that there exists x1 ∈ F−1(y0) such that ‖x1 − x0‖ < κ(λ+ α) = r0.
Since y0 ∈ F (x1) and ‖x1 − x0‖ < r0, it holds from (2.8) that

d(w0 − v0 + y0, G(x1)) = inf
η′∈G(x1)

‖w0 − v0 + y0 − η′‖

≤ sup
η∈F (x1)

inf
η′∈G(x1)

‖w0 − v0 + η − η′‖

≤ sup
∥x′−x0∥≤r0

η∈F (x′)

inf
η′∈G(x′)

‖w0 − v0 + η − η′‖ < µ′r0,

thus we can find w1 ∈ G(x1) such that

‖w0 − v0 + y0 − w1‖ < µ′r0. (2.9)

Let r1 := κ′µ′r0, then r1 < r0 < r. From (2.4) and since

‖x1 − x̄‖ ≤ ‖x1 − x0‖+ ‖x0 − x̄‖ < κ(λ+ α) + r′ < κθ + r′ < r, (2.10)
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we have σF,G(x1, r1) ≤ µr1 < µ′r1. Noting that w1 ∈ G(x1), we obtain

inf
ξ∈F (x1)

sup
∥x′−x1∥≤r1

η∈F (x′)

inf
η′∈G(x′)

‖w1 − ξ + η − η′‖ ≤ µr1 < µ′r1,

which yields the existence of v1 ∈ F (x1) satisfying

sup
∥x′−x1∥≤r1

η∈F (x′)

inf
η′∈G(x′)

‖w1 − v1 + η − η′‖ ≤ µr1 < µ′r1,

and hence

sup
η∈F (x1)

inf
η′∈G(x1)

‖w1 − v1 + η − η′‖ < µ′r1. (2.11)

Set y1 = z − w1 + v1, then for any τ ∈ F (x1) and τ ′ ∈ G(x1), from (2.3), (2.6) and (2.11)
we have

‖y1 − ȳ‖ = ‖z − z̄ + z̄ − w1 + v1 − ȳ‖
≤ ‖z − z̄‖+ ‖w1 − v1 + τ − τ ′‖+ ‖(τ ′ − z̄)− (τ − ȳ)‖
≤ ‖z − z̄‖+ sup

η∈F (x1)

inf
η′∈G(x1)

‖w1 − v1 + η − η′‖

+ inf
η∈F (x1)

sup
η′∈G(x1)

‖(η′ − z̄)− (η − ȳ)‖

≤ θ + µ′r1 + δ = θ + µ′κ′µ′r0 + δ

< θ + µ′κ(λ+ α) + δ < (1 + κ′µ′)θ + δ < r,

which along with (2.10) implies (x1, y1) ∈ B(x̄, r) × B(ȳ, r). From (2.1) and (2.9) and
recalling z = y0 + w0 − v0, we have

d(x1, F
−1(y1)) ≤ κd(y1, F (x1)) ≤ κ ‖y1 − v1‖ = κ ‖z − w1‖

= κ ‖w0 − v0 + y0 − w1‖ < κµ′r0 < (κ′µ′)r0,

and therefore there exists x2 ∈ F−1(y1) such that ‖x2 − x1‖ < (κ′µ′)r0.

Now suppose that x0 = x, x1, x2, ..., xn are given for n ≥ 2 and that

v0 ∈ F (x0), v1 ∈ F (x1), ..., vn−1 ∈ F (xn−1),

and

w0 ∈ G(x0), w1 ∈ G(x1), ..., wn−1 ∈ G(xn−1)

are found satisfying

(i) xk+1 ∈ F−1(yk) for yk = z − wk + vk and k ≤ n;

(ii) ‖xk − xk+1‖ < rk with rk = (κ′µ′)kr0;

(iii) ‖wk−1 − vk−1 + yk−1 − wk‖ < µ′rk−1 hold for k = 1, 2, ..., n− 1;

(iv) sup ∥x′−xk∥≤rk
η∈F (x′)

infη′∈G(x′) ‖wk − vk + η − η′‖ < µ′rk.
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Since κ′µ′ < 1, thus for each n, we have

‖xn − x̄‖ ≤ ‖xn − x0‖+ ‖x− x̄‖ ≤ r′ +

n−1∑
k=0

(κ′µ′)kr0 < r′ +
κ

1− κ′µ′ θ < r, (2.12)

which implies xn ∈ B(x̄, r) for each n > 0. From (i) we have yn−1 ∈ F (xn), and then

d(wn−1 − vn−1 + yn−1, G(xn)) = inf
η′∈G(xn)

‖wn−1 − vn−1 + yn−1 − η′‖

≤ sup
η∈F (xn)

inf
η′∈G(xn)

‖wn−1 − vn−1 + η − η′‖ . (2.13)

It holds from (ii) that ‖xn−1 − xn‖ < rn−1, and hence

sup
η∈F (xn)

inf
η′∈G(xn)

‖wn−1 − vn−1 + η − η′‖

≤ sup
∥x′−xn−1∥≤rn−1

η∈F (x′)

inf
η′∈G(x′)

‖wn−1 − vn−1 + η − η′‖ . (2.14)

Combining (2.13) and (2.14) and considering (iv), we have

d(wn−1 − vn−1 + yn−1, G(xn)) < µ′rn−1.

Thus there exists wn ∈ G(xn) such that

‖wn−1 − vn−1 + yn−1 − wn‖ < µ′rn−1. (2.15)

Put rn = (κ′µ′)nr0 < r, then from (2.4) we obtain

inf
ξ∈F (xn)

sup
∥x′−xn∥≤rn

η∈F (x′)

inf
η′∈G(x′)

‖wn − ξ + η − η′‖ ≤ σF,G(xn, rn) ≤ µrn < µ′rn,

which yields the existence of vn ∈ F (xn) satisfying

sup
∥x′−xn∥≤rn

η∈F (x′)

inf
η′∈G(x′)

‖wn − vn + η − η′‖ < µ′rn,

and hence
sup

η∈F (xn)

inf
η′∈G(xn)

‖wn − vn + η − η′‖ < µ′rn. (2.16)

Set yn = z − wn + vn, then for any τ ∈ F (xn) and τ ′ ∈ G(xn), we have

‖yn − ȳ‖ = ‖z − z̄ + z̄ − wn + vn − ȳ‖
≤ ‖z − z̄‖+ ‖wn − vn + τ − τ ′‖+ ‖(τ ′ − z̄)− (τ − ȳ)‖
≤ ‖z − z̄‖+ sup

η∈F (xn)

inf
η′∈G(xn)

‖wn − vn + η − η′‖

+ inf
η∈F (xn)

sup
η′∈G(xn)

‖(η′ − z̄)− (η − ȳ)‖

≤ θ + µ′rn + δ = θ + µ′(κ′µ′)nr0 + δ

< θ + µ′κ(λ+ α) + δ < (1 + κ′µ′)θ + δ < r.
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Recalling yn−1 = z − wn−1 + vn−1 and using the metric regularity of F , we obtain

d(xn, F
−1(yn)) ≤ κd(yn, F (xn)) ≤ κ ‖yn − vn‖ = κ ‖z − wn‖

= κ ‖wn−1 − vn−1 + yn−1 − wn‖ < κµ′rn−1 < (κ′µ′)rn−1,

hence there exists xn+1 ∈ F−1(yn) such that

‖xn+1 − xn‖ < (κ′µ′)rn−1 = (κ′µ′)nr0 < r.

By induction, we conclude that (i)∼(iv) hold for all k > 0.
Given any nonnegative integer n, p, using the triangle inequality, we have

‖xn − xn+p‖ ≤
p−1∑
j=0

‖xn+j − xn+j+1‖ ≤
p−1∑
j=0

(κ′µ′)n+jr0 < (κ′µ′)n
κ

1− κ′µ′ (λ+ α), (2.17)

which implies that {xn} ⊂ B(x̄, r) is a Cauchy sequence and hence converges to some
x∗ ∈ B(x̄, r). By fixing n = 0 and letting p → ∞ in (2.17), we obtain

‖x− x∗‖ = ‖x0 − x∗‖ ≤ κ

1− κ′µ′ (λ+ α).

Due to ‖z − wn‖ = ‖wn−1 − vn−1 + yn−1 − wn‖ < µ′rn−1 for all n > 0 and rn−1 =
(κ′µ′)n−1r0 → 0 (since κ′µ′ < 1), it holds that wn → z. Taking into account that
(xn, wn) ∈ gphG and the closedness of gphG, we get z ∈ G(x∗). Consequently, we ob-
tain

d(x,G−1(z)) ≤ ‖x− x∗‖ ≤ κ

1− κ′µ′ (λ+ α). (2.18)

By letting κ′ → κ, µ′ → µ and α → 0+ in (2.18), we have

d(x,G−1(z)) ≤ κ

1− κµ
λ =

κ

1− κµ
d(z,G(x)),

which completes Step 1 since (x, z) is chosen arbitrarily in B(x̄, r′)×B(z̄, θ) with d(z,G(x)) <
θ.
Step 2 In this step we prove that (2.5) holds for ρ = min

{
r′, θκ

1+κ−κµ

}
where r′ has been

found in Step 1.
Fix any (x, z) ∈ B(x̄, ρ)× B(z̄, ρ). If d(z,G(x)) < θ, then (2.5) holds immediately from

the result we have got in Step 1 since ρ ≤ min{r′, θ}.
Now we consider the case that d(z,G(x)) ≥ θ. Since

d(z,G(x̄)) ≤ ‖z − z̄‖ ≤ ρ < θ,

it can also be derived from the result in Step 1 that

d(x̄, G−1(z)) ≤ κ

1− κµ
d(z,G(x̄)),

thus we get

d(x,G−1(z)) ≤ ‖x− x̄‖+ d(x̄, G−1(z)) ≤ κ

1− κµ
d(z,G(x̄)) + ‖x− x̄‖

≤ κ

1− κµ
‖z − z̄‖+ ‖x− x̄‖ ≤ (

κ

1− κµ
+ 1)ρ =

κ+ 1− κµ

1− κµ
ρ

≤ κ+ 1− κµ

1− κµ
· κθ

1 + κ− κµ
=

κ

1− κµ
θ ≤ κ

1− κµ
d(z,G(x)).
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Example 2.2. Let set-valued mappings F,G : R ⇒ R be defined as

F (x) := [5x− 1

10
, 5x+

1

10
],

and

G(x) := [5x+
1

3
sinx− 1

10
, 5x+

1

3
sinx+

1

10
].

Note that 0 ∈ F (0) and 0 ∈ G(0). From the Robinson-Ursescu’s Stability Theorem (See
Theorem 2.83 in [3]), we have

d(x, F−1(y)) ≤ d(y, F (x)), for all (x, y) ∈ (−1

5
,
1

5
)× (−1

5
,
1

5
).

Further, it can be checked that

σF,G(x, ε) ≤
ε

3
, whenever x ∈ (−1

5
,
1

5
) and ε ≤ 1

5
.

and

inf
v∈F (x)

sup
w∈G(x)

‖v − w‖ ≤ 1

6
, for all x ∈ (−1

5
,
1

5
).

Thus, by applying Theorem 2.1 with

x̄ = ȳ = z̄ = 0, r =
1

5
, δ =

1

6
, κ = 1, µ =

1

3
, θ =

1

45
,

we can conclude that there exists r′ > 0 such that

d(x,G−1(z)) ≤ 2

3
d(z,G(x)), for all (x, z) ∈ (−ρ, ρ)× (−ρ, ρ),

where ρ = min
{
r′, 1

75

}
.

Without a doubt, the proof presented before is sufficient for the result when the mapping
F is a single-valued mapping and G has finite values. However, utilizing a fixed point theorem
obtained in [11], we introduce a different way to prove the result when F is a continuous
single-valued mapping.

Theorem 2.3 (Theorem 1 in [11]). Let δ > 0, θ ∈ (0, 1), x̄ ∈ X and Φ : B(x̄, δ) → 2X\{∅}
satisfy the following properties:

(i) For each η ∈ (0, δ), the intersection of gphΦ with B(x̄, η)×B(x̄, η) is closed;

(ii)

d(x̄,Φ(x̄)) < (1− θ)δ, (2.19)

d(x,Φ(x)) ≤ θd(x,Φ−1(x)), for all x ∈ B(x̄, δ). (2.20)

Then for any β > 0, there exists z ∈ B(x̄, δ) such that z ∈ Φ(z) and

d(z, x̄) ≤ 1 + β

1− θ
d(x̄,Φ(x̄)).
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Theorem 2.4. Let X be a Banach space, Y be a normed space, f : X → Y be a continuous
single-valued mapping and G : X ⇒ Y be a set-valued mapping with a closed graph and a
finite value. Consider positive constants κ and r such that

d(x, f−1(y)) ≤ κ ‖y − f(x)‖ , for all (x, y) ∈ B(x̄, r)×B(f(x̄), r). (2.21)

Let µ > 0, δ > 0 and θ > 0 satisfy

κµ < 1, max

{
2κ

1− κµ
θ, δ + θ

}
< r. (2.22)

Suppose that there exists z̄ ∈ G(x̄) such that

sup
w∈G(x)

‖(w − z̄)− (f(x)− f(x̄))‖ ≤ δ, for all x ∈ B(x̄, r). (2.23)

In addition, assume that for any x ∈ B(x̄, r) and ε ≤ r, it holds

sup
ξ∈G(x)

sup
∥x′−x∥≤ε

inf
η′∈G(x′)

‖ξ − f(x) + f(x′)− η′‖ ≤ µε. (2.24)

Then, there exists r′ > 0 such that

d(x,G−1(z)) ≤ κ

1− κµ
d(z,G(x)), for all (x, z) ∈ B(x̄, ρ)×B(z̄, ρ), (2.25)

where ρ = min
{
r′, θκ

1+κ−κµ

}
.

Proof. From (2.22) we can pick κ′ > κ, µ′ > µ and r′ > 0 such that

κ′µ′ < 1,
2κ

1− κ′µ′ θ + r′ < r. (2.26)

Similar to the proof of Theorem 2.1, we only need to show that the inequality

d(x,G−1(z)) ≤ κ

1− κµ
d(z,G(x)) (2.27)

holds for any (x, z) ∈ B(x̄, r′)×B(z̄, θ) with d(z,G(x)) < θ.
Fix x ∈ B(x̄, r′) and z ∈ B(z̄, θ) with d(z,G(x)) < θ. If z ∈ G(x), we are done since

both sides of the inequality (2.27) are zero in this case.
Now we consider the case that z /∈ G(x). Set λ := d(z,G(x)), then 0 < λ < θ, which

implies that we can take sufficiently small α > 0 satisfying λ + α < θ. Thus we can find
w ∈ G(x) such that

‖z − w‖ < λ+ α < θ.

Set y = z − w + f(x), then it holds from (2.22) and (2.23) that

‖y − f(x̄)‖ = ‖z − z̄ + z̄ − w + f(x)− f(x̄)‖
≤ ‖z − z̄‖+ ‖(w − z̄)− (f(x)− f(x̄))‖
≤ ‖z − z̄‖+ sup

w∈G(x)

‖(w − z̄)− (f(x)− f(x̄))‖ ≤ θ + δ < r,

and hence we have (x, y) ∈ B(x̄, r)×B(f(x̄), r). Thus from (2.21) and (2.26) we obtain

d(x, f−1(y)) = d(x, f−1(z − w + f(x)))
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≤ κ ‖z − w‖ < κ(λ+ α) < κθ < (1− κ′µ′)(
r − r′

2
). (2.28)

Define

Φ : B(x,
r − r′

2
) 3 x′ 7→

∪
w′∈G(x′)

f−1(z − w′ + f(x′)). (2.29)

The continuity of f yields the closedness of Φ(x′) for each x′ ∈ B(x, r−r′

2 ). From (2.28) and
noting that w ∈ G(x), we get

d(x,Φ(x)) = d(x,
∪

w′∈G(x)

f−1(z − w′ + f(x)))

≤ d(x, f−1(z − w + f(x))) < (1− κ′µ′)(
r − r′

2
). (2.30)

Pick x′ ∈ B(x, r−r′

2 ). For an arbitrary t > 0, we can find x̃ ∈ Φ−1(x′) such that

h := ‖x′ − x̃‖ < d(x′,Φ−1(x′)) + t, (2.31)

then from (2.29) we know

x′ ∈ Φ(x̃) =
∪

w′∈G(x̃)

f−1(z − w′ + f(x̃)), (2.32)

and x̃ ∈ B(x, r−r′

2 ), and hence

h = ‖x′ − x̃‖ ≤ ‖x′ − x‖+ ‖x− x̃‖ ≤ r − r′

2
+

r − r′

2
< r.

Furthermore, we have x̃ ∈ B(x̄, r) since

‖x̃− x̄‖ ≤ ‖x̃− x‖+ ‖x− x̄‖ ≤ r − r′

2
+ r′ < r.

Then it holds from (2.24) that

sup
ξ∈G(x̃)

inf
η′∈G(x′)

‖ξ − f(x̃) + f(x′)− η′‖

≤ sup
ξ∈G(x̃)

sup
∥x′′−x̃∥≤h

inf
η′∈G(x′′)

‖ξ − f(x̃) + f(x′′)− η′‖ ≤ µh. (2.33)

Fix any ŵ ∈ G(x′), by (2.23) and noting that

‖x′ − x̄‖ ≤ ‖x′ − x‖+ ‖x− x̄‖ ≤ r − r′

2
+ r′ < r,

we get

‖z − ŵ + f(x′)− f(x̄)‖ ≤ ‖z − z̄‖+ ‖z̄ − ŵ + f(x′)− f(x̄)‖ ≤ θ + δ < r.

We also have from (2.32) that there exists w̃ ∈ G(x̃) such that

x′ ∈ f−1(z − w̃ + f(x̃)),
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and hence
z = w̃ − f(x̃) + f(x′). (2.34)

Then, by (2.21) and (2.34) we obtain

d(x′,Φ(x′)) = d(x′,
∪

w′∈G(x′)

f−1(z − w′ + f(x′))) ≤ d(x′, f−1(z − ŵ + f(x′)))

≤ κ ‖z − ŵ‖ = κ ‖w̃ − f(x̃) + f(x′)− ŵ‖ .

Since ŵ can be chosen arbitrarily in G(x′), it holds from (2.31) and (2.33) that

d(x′,Φ(x′)) ≤ κ inf
η′∈G(x′)

‖w̃ − f(x̃) + f(x′)− η′‖

≤ κ sup
ξ∈G(x̃)

inf
η′∈G(x′)

‖ξ − f(x̃) + f(x′)− η′‖

≤ κµh < κ′µ′(d(x′,Φ−1(x′)) + t). (2.35)

Then we have
d(x′,Φ(x′)) ≤ κ′µ′d(x′,Φ−1(x′))

by letting t → 0+ in (2.35).

By Theorem 2.3 we know that for any β > 0, there exists x∗ ∈ B(x, r−r′

2 ) such that
x∗ ∈ Φ(x∗) and

‖x− x∗‖ ≤ 1 + β

1− κ′µ′ d(x,Φ(x)). (2.36)

By the definition of Φ, we can find w∗ ∈ G(x∗) such that

x∗ ∈ f−1(z − w∗ + f(x∗)),

which yields z = w∗ ∈ G(x∗) and hence x∗ ∈ G−1(z).
Consequently, from (2.28) and (2.36) we obtain

d(x,G−1(z)) ≤ ‖x− x∗‖ ≤ 1 + β

1− κ′µ′ d(x,Φ(x))

=
1 + β

1− κ′µ′ d(x,
∪

w′∈G(x)

f−1(z − w′ + f(x)))

≤ 1 + β

1− κ′µ′ d(x, f
−1(z − w + f(x)))

≤ (1 + β)κ

1− κ′µ′ (d(z,G(x)) + α). (2.37)

By letting κ′ → κ, µ′ → µ, α → 0+, and β → 0+ in (2.37), we obtain (2.27) and complete
the proof.

Example 2.5. Let single-valued mapping f : R → R and set-valued mapping G : R ⇒ R
be defined as

f(x) := x2 − 2x and G(x) :=

{
x2 − 2x+

1

2
|x|, x2 − 2x+

1

8

}
.

We can prove

d(x, f−1(y)) ≤ 3

5
|y − x2 + 2x|, for all (x, y) ∈ (−1

6
,
1

6
)× (−1

6
,
1

6
).
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It can also be checked that

sup
ξ∈G(x)

sup
∥x′−x∥≤ε

inf
η′∈G(x′)

‖ξ − f(x) + f(x′)− η′‖ ≤ ε

4
, for all x ∈ (−1

6
,
1

6
) and ε ≤ 1

6
,

and

sup
w∈G(x)

‖w − f(x)‖ ≤ 1

7
, for all x ∈ (−1

6
,
1

6
).

Then, by applying Theorem 2.4 with

x̄ = z̄ = 0, r =
1

6
, κ =

3

5
, µ =

1

2
, δ =

1

7
, θ =

1

48
,

we have that there exists r′ > 0 such that

d(x,G−1(z)) ≤ 6

7
d(z,G(x)), for all (x, y) ∈ (−ρ, ρ)× (−ρ, ρ),

where ρ = min
{
r′, 1

104

}
.
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