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For any x ∈ Rn, we define n-dimensional column vectors Axm−1 ∈ Rn and n×n matrices
Axm−2 ∈ Rn×n, respectively, as follows:

Axm−1 =

( n∑
i2,...,im=1

aii2...imxi2 . . . xim

)
1≤i≤n

, (1.2)

A(x) def= Axm−2 =

( n∑
i3,...,im=1

aiji3...imxi3 . . . xim

)
1≤i,j≤n

. (1.3)

Qi [22] and Lim [14] independently first defined eigenpairs of tensors in 2005. Let A
be an m-order n-dimensional tensor, we say λ ∈ R is an eigenvalue of A, if there exists
x ∈ Rn\{0} such that

Axm−1 = λx[m−1], (1.4)

a vector x is an eigenvector associated with the eigenvalue λ, and (λ,x) is called an eigenpair,
where x[m−1] is a vector, whose i-th entry is defined by (x[m−1])i = xm−1

i . The largest
eigenvalue (spectral radius) of A is the maximum modulus of the eigenvalues of A, which is
denoted by ρ(A).

An m-order n-dimensional tensor is called nonnegative (resp., positive) if all entries are
nonnegative (resp., positive), that is, ai1i2...im ≥ 0 (resp., > 0) for all 1 ≤ i1, i2, . . . , im ≤ n.

The set of all real nonnegative tensors of order m and dimension n is denoted by R[m,n]
+ . In

addition, a tensor A is called weakly reducible [11] if there exists a nonempty proper index
subset Ω ⊂ {1, 2, . . . , n} such that

Ai1i2...im = 0, whenever i1 ∈ Ω and at least one index in {i2, . . . , im} does not belong to Ω.

If A is not weakly reducible, then we call it weakly irreducible.
The Perron-Frobenius theorem is extended to a nonnegative weakly irreducible tensor in

[11]. For convenience, we denote max{xy}
def
= max1≤i≤n{xi

yi
} and min{xy}

def
= min1≤i≤n{xi

yi
}

for any x ∈ Rn and 0 < y ∈ Rn.

Theorem 1.1 ([11, Theorem 4.1]). Let A be a weakly irreducible tensor A ∈ R[m,n]
+ . Then

there exists a unique positive eigenvector x∗ > 0 corresponding to the largest eigenvalue
ρ(A) up to a multiplicative constant. Moreover, for any x > 0, we have

min

{
Axm−1

x[m−1]

}
≤ ρ(A) ≤ max

{
Axm−1

x[m−1]

}
.

In [18], an algorithm for computing the largest eigenvalue of nonnegative tensors, ex-
tending the Collatz’s method for nonnegative matrices, was proposed by Ng, Qi and Zhou,
so we often called it NQZ for short. In Chang, Pearson and Zhang [5], the authors proved
the convergence of NQZ for primitive tensors. Its linear convergence was studied in [28, 12].
As its variation, Liu, Zhou and Ibrahim [17] proposed an always convergent algorithm for
finding the largest eigenvalue of any irreducible nonnegative tensors by using shift tech-
nique. Ni and Qi [19] presented the Newton method for finding the largest eigenvalue of
nonnegative tensors by revealing the relation between the homogenous polynomial map and
its associated semi-symmetric tensor. Based on nonsingular M equations, Ding and Wei
[9] generalized inverse iteration (or Noda iteration) [21] for solving the largest eigenvalue of
nonnegative tensors. By combining the idea of the Newton method with Noda iteration,
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Liu, Guo and Lin [15, 16] presented a positivity preserving Newton-Noda iteration (NNI for
short) algorithm, for computing the largest eigenvalue of a nonnegative (weakly) irreducible
tensor. In their algorithm, the authors used practical procedure for choosing θk to guar-
antee the global convergence. In [23], we have presented a local quadratically convergent
and positivity preserving algorithm, by combining inverse iteration and the Newton method,
to compute the largest eigenvalue of nonnegative weakly irreducible tensors. Some recent
papers on the largest eigenvalue of nonnegative tensors, we refer to [25, 6, 30, 26].

We stress that, different from [23], the goal there is to present a globally convergent
inverse iteration algorithm, to find the largest eigenvalue of a nonnegative weakly irreducible
tensor, whereas the algorithm in [23] does not have global convergence theory, the algorithm
in [23] is essentially a modified Newton’s method. The presentation of the proposed inverse
iteration algorithm of this paper is also different from the inverse iteration algorithm in
Ding and Wei [9]. As an important topic of this paper, we present that, by reformulating
(1.4), a differently global inverse iteration algorithm for finding the largest eigenvalue of a
nonnegative weakly irreducible tensor.

In this paper, we present an inverse iteration algorithm for finding the largest eigenvalue
of a nonnegative weakly irreducible tensor, which is a positivity preserving algorithm. We
show that a series of properties on the proposed algorithm, and also use the Newton method
to get a positive solution of the M-like equation produced by the proposed algorithm at
each iteration. We prove that it is a globally convergent algorithm, and apply its derived
algorithm to test the positive definiteness of an even order weakly irreducible Z-tensor.
Some results illustrate that they are stable and fast convergence in numerical experiments.

The paper is organized as follows. In Section 2, we present an inverse iteration algorithm
and prove a nice property for this algorithm. In Section 3, we reformulate M-like equation
as a nonlinear system of equations, and apply the Newton method to solve it. In Section 4,
the global convergence of the proposed algorithm is established. In Section 5, we present a
derived algorithm to determine the positive definiteness of an even order weakly irreducible
Z-tensor. Some numerical results are reported in Section 6. Finally, some concluding
remarks are given in Section 7.

Throughout the paper, ∥ · ∥ denotes the 2-norm or its induced matrix norm, and all
matrices are n × n unless specified otherwise, the superscript T denotes the transpose of a
vector or matrix.

2 Inverse Iteration Algorithm

In this section, we will present an inverse iteration algorithm for computing the largest
eigenvalue of a nonnegative weakly irreducible tensor A. Let Diag(x) be a diagonal matrix

generated by x ∈ Rn, that is, Diag(x)
def
= Diag

{
x1, . . . , xn

}
.

For the purpose of computing the largest eigenvalue of A, it follows from Theorem 1.1
that its associated eigenvector x∗ is positive. For any x > 0, then we give an equivalent
formulation for (1.4), that is,

Diag(x[2−m])Axm−1 = λx. (2.1)

This is a vital step in the development of our inverse iteration algorithm for finding the
largest eigenvalue of A.

A matrix A ∈ Rn×n is a nonnegative (resp., positive) matrix, if its all entries are non-
negative (resp., positive), denoted by A ≥ 0 (resp., A > 0). A ∈ Rn×n is called a Z-matrix
if its all off-diagonal entries are non-positive. Any a Z-matrix A can be written as form of
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A = sI − B with B ≥ 0. If s > ρ(B), then A is called a nonsingular M-matrix, and A is
called a singular M-matrix if s = ρ(B), where ρ(B) is the largest eigenvalue of B. From
Berman and Plemmons [4], we give the following theorems for a M-matrix.

Theorem 2.1 ([4, pp. 134-138]). For a Z-matrix A ∈ Rn×n, the following statements are
equivalent:

(i) A is a nonsingular M-matrix;

(ii) Ax > 0 for some x > 0;

(iii) A−1 ≥ 0.

Theorem 2.2 ([4, Theorem 2.7]). The following two statements are true:

(i) an irreducible Z-matrix A ∈ Rn×n is a nonsingular M-matrix if and only if for some
x > 0 the vector Ax is nonnegative and nonzero;

(ii) A is an irreducible nonsingular M-matrix if and only if A−1 > 0.

From Ni and Qi [19], for a given A, there always exists a semi-symmetric tensor As such
that Axm−1 = Asx

m−1 for any x ∈ Rn. So we assume that A is semi-symmetric (see [19,
Definition 2.1]) in this paper. The following two lemmas give some basic properties on (2.1),
the detailed proofs can be seen in [23, Lemmas 2 and 3].

Lemma 2.3. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. Then, Diag(x[2−m])A(x) and

A(x) are nonnegative irreducible matrices for any x > 0, where A(x) is defined in (1.3).

Lemma 2.4. If ρ(A) is the largest eigenvalue of a weakly irreducible tensor A ∈ R[m,n]
+ ,

its associated eigenvector is x∗, then x∗ is also an eigenvector corresponding to the largest

eigenvalue ρ(Diag(x
[2−m]
∗ )A(x∗)) of Diag(x

[2−m]
∗ )A(x∗), and vice versa.

In what follows, we prove that a nice property of Diag(x[2−m])A(x), which shows it is
an irreducible nonsingular M-matrix for every x > 0.

Theorem 2.5. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. If s > ρ(A), then sI −

Diag(x[2−m])A(x) is an irreducible nonsingular M-matrix for every x > 0.

Proof. For convenience, we denote G(x) := sI−Diag(x[2−m])A(x). It follows from Lemma
2.3 that Diag(x[2−m])A(x) is a nonnegative irreducible matrix for any x > 0, thenG(x) is an
irreducible Z-matrix. It is also easy to compute that Diag(x[m−2])G(x) = s ·Diag(x[m−2])−
A(x).

According to G(x) is a Z-matrix, and note that Diag(x[m−2]) is a positive diagonal
matrix, then we have Diag(x[m−2])G(x) is also a Z-matrix. Moreover,

g(x) := Diag(x[m−2])G(x)x = sx[m−1] −Axm−1. (2.2)

Note that s > ρ(A), then we get

sx[m−1] −Axm−1 > ρ(A)x[m−1] −Axm−1.

Now we prove g(x) is a nonnegative and nonzero vector for every x > 0. If it is not
true, then g(x) ≤ 0, that is, sxm−1

i ≤ (Axm−1)i for any i ∈ {1, 2, . . . , n}, which implies

s ≤ (Axm−1)i
xm−1
i

. Thus, s ≤ min{Axm−1

x[m−1] }, contradictory to s > ρ(A) ≥ min{Axm−1

x[m−1] }. Hence,
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g(x) is a nonnegative and nonzero vector for every x > 0, this means that Diag(x[m−2])G(x)
is a nonsingular M-matrix from Theorem 2.2 (i).

Since Diag(x[2−m]) is also a positive diagonal matrix, and g(x) is a nonnegative and
nonzero vector for every x > 0, it follows from (2.2) that G(x)x = Diag(x[2−m])g(x) > 0 is
a nonnegative and nonzero vector for every x > 0. Together with Theorem 2.2 (i) again, we
have that G(x) is an irreducible nonsingular M-matrix for every x > 0, and thus, the proof
is completed.

By Theorem 2.5 and inverse iteration algorithm for nonnegative irreducible matrices,
we give the detailed steps of inverse iteration algorithm for nonnegative weakly irreducible
tensors, see Algorithm 1.

Algorithm 1 Inverse iteration algorithm for nonnegative weakly irreducible tensors.

1: Initialization: Given an initial point x0 > 0 with ∥x0∥ = 1 and tol > 0, compute

λ0 = max

{
Axm−1

0

x
[m−1]
0

}
and λ0 = min

{
Axm−1

0

x
[m−1]
0

}
.

2: repeat

3: Compute yk by solving
[
λkI−Diag(y

[2−m]
k )A(yk)

]
yk = xk.

4: Normalize the vector xk+1 = yk

∥yk∥ .

5: Compute λk+1 = max

{
Axm−1

k+1

x
[m−1]
k+1

}
and λk+1 = min

{
Axm−1

k+1

x
[m−1]
k+1

}
.

6: until
λk+1−λk+1

λk+1
≤ tol.

7: Output: The largest eigenvalue ρ(A)← λk+1 and its associated eigenvector x∗ ← xk+1.

It follows from the step 4 of Algorithm 1 and (1.3) that

Diag(x
[2−m]
k+1 )A(xk+1) = Diag

(
y
[2−m]
k

∥yk∥2−m

)
A
(

yk

∥yk∥

)
=

1

∥yk∥2−m∥yk∥m−2
Diag(y

[2−m]
k )A(yk)

= Diag(y
[2−m]
k )A(yk).

(2.3)

Note that, as shown in Theorem 2.5, if yk is not an eigenvector ofA, λkI−Diag(y
[2−m]
k )A(yk)

is an irreducible nonsingular M-matrix provided that yk > 0 at each iteration of Algorithm 1,
which also ensures the positive property of approximate eigenvector. So, for the multi-linear
equations in the step 3 of Algorithm 1, we call it asM-like equation, which is different with
the multi-linearM equation discussed in [9]. We will give a method (Newton’s method) to
get a positive solution by solvingM-like equation in the next section. We also remark that,
the given inverse iteration algorithm in [9] need to solve an M equation at each iteration,
but it is unknown whether or not the Newton method still work for solving M equation,
when the given tensor is not symmetric, as the authors have pointed out in [9]. However, we
can employ the Newton method to obtain a positive solution by solvingM-like equation at
each iteration of Algorithm 1 for any nonnegative weakly irreducible tensors, the symmetric
property of A is not required.
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3 Solving M-Like Equation Via the Newton Method

ConsiderM-like equation
[
sI−Diag(w[2−m])A(w)

]
w = b for every b > 0, where s > ρ(A).

ThisM-like equation is equivalent to the following nonlinear system of equations

F(w)
def
=

[
sI−Diag(w[2−m])A(w)

]
w − b

= sw −Diag(w[2−m])Awm−1 − b

= 0.

(3.1)

Lemma 3.1 ([23, Lemma 4] ). Let A ∈ R[m,n], for any w > 0, then

J(w)
def
=

∂

∂w
(Diag(w[2−m])Awm−1)

= (m− 1)Diag(w[2−m])Awm−2 − (m− 2)Diag(w[1−m])Diag(Awm−1),

(3.2)

and

J(w)w = Diag(w[2−m])A(w)w = Diag(w[2−m])Awm−1. (3.3)

We use the Newton method to solve nonlinear system of equations (3.1). Note from (3.2)
in Lemma 3.1 that, we have the following Newton’s iteration:

∇F(wk)(wk+1 −wk) = [sI− J(wk)](wk+1 −wk) = −F(wk), k = 0, 1, . . . . (3.4)

By some calculations on (3.4), we get

[sI− J(wk)]wk+1

= [sI− J(wk)]wk − F(wk)

= swk − J(wk)wk − swk +Diag(w
[2−m]
k )Awm−1

k + b

= b,

(3.5)

where the last equality is obtained from (3.3). Now, we need to show that sI− J(wk) is an
irreducible nonsingular M-matrix for any wk > 0.

Theorem 3.2. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. If s > ρ(A), then sI− J(wk)

is an irreducible nonsingular M-matrix for every wk > 0.

Proof. From (3.2) in Lemma 3.1 and the fact that Diag(w
[2−m]
k )A(wk) is a nonnegative

irreducible matrix for any wk > 0, we then have sI−J(wk) is an irreducible Z-matrix since
its all off-diagonal entries are non-positive. Moreover, it follows from Theorem 2.5 and (3.3)
that

[sI− J(wk)]wk

= swk −Diag(w
[2−m]
k )A(wk)wk

= [sI−Diag(w
[2−m]
k )A(wk)]wk

> 0,

which, together with Theorem 2.1, means that sI − J(wk) is an irreducible nonsingular
M-matrix. The proof has been completed.
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Algorithm 2 The Newton method for solving (3.1).

1: Initialization: Given an initial point w0 > 0 and tol > 0, compute F(w0) and
∇F(w0) = sI− J(w0).

2: repeat
3: Compute wk+1 by solving [sI− J(wk)]wk+1 = b.
4: until ∥F(wk+1)∥ ≤ tol.
5: Output: wk+1 as a solution of (3.1).

Hence, note that Theorem 2.2 (ii), (3.5) can be rewritten as wk+1 = [sI−J(wk)]
−1b > 0

provided that wk > 0. Further, we can give a detailed step to solve M-like equation, see
Algorithm 2.

It should be pointed out that the computational cost can be saved, if we use LU decom-
position of matrix sI− J(wk), instead of computing its inversion directly. In the procedure
of Algorithm 2, we will always have wk+1 > 0 by setting the initial point w0 > 0. Therefore,
Algorithm 2 is a positivity preserving algorithm in the sense of the computed vector wk+1.

In what follows, it is easy to show that the positive property of the sequence {xk}
produced by Algorithm 1, with an initial point x0 > 0.

Lemma 3.3. Let {λk,xk} be generated by Algorithm 1, with an initial point x0 > 0. If we
employ Algorithm 2 to solveM-like equations in the step 3 of Algorithm 1, then xk > 0 for
all k = 1, 2, . . . .

Proof. Note that λ0 > ρ(A) and x0 > 0, then the solution output by Algorithm 2 as y0 > 0

because we employ Algorithm 2 to solve [λ0I−Diag(y
[2−m]
0 )A(y0)]y0 = x0 > 0. According

to the step 4 of Algorithm 1, we have that x1 = y0

∥y0∥ > 0. Continuing this iterative

procedure k = 2, 3, . . . , we also have xk > 0, and thus, the proof is completed.

4 Convergence Analysis

In this section, we will investigate the global convergence of Algorithm 1. The M-like
equation of Algorithm 1 is solved by Algorithm 2 in this paper, and thus the positive
property of xk is ensured from Lemma 3.3.

Now, we will prove that Algorithm 1 is a globally convergent algorithm. The following
theorem shows that the sequence {λk} is monotonically decreasing and bounded below by
ρ(A).

Theorem 4.1. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. If {λk,xk,yk} is generated

by Algorithm 1, then the sequence {λk} is monotonically decreasing and bounded by ρ(A)
from below.

Proof. From Lemma 3.3, it follows that the vectors xk and yk satisfy xk > 0 and yk > 0
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for all k = 0, 1, . . . . Then, by the definition of λk+1, and (1.3), we have

λk+1 = max

{Axm−1
k+1

x
[m−1]
k+1

}

= max

{
Diag(x

[2−m]
k+1 )A(xk+1)xk+1

xk+1

}
= max

{
Diag(y

[2−m]
k )A(yk)yk

yk

}
= max

{
λkyk − xk

yk

}
= λk −min

{
xk

yk

}
< λk,

(4.1)

where the third and fourth equalities are obtained by the steps 4 and 3 of Algorithm 1,
respectively, the last inequality follows from xk > 0 and yk > 0 for all k = 0, 1, . . . . This
means that the sequence {λk} is monotonically decreasing. It follows from Theorem 1.1 that
λk > λk+1 ≥ ρ(A). The proof has been completed.

In the following, we show that some properties of the sequence {xk} produced by Algo-
rithm 1, which will help us to establish the global convergence of Algorithm 1.

Lemma 4.2. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. If {λk,xk} is generated by

Algorithm 1, then for any convergent subsequence of {xk}, its limit is positive.

Proof. For ease of notation, we assume that a convergent subsequence {xki
} of {xk}, and

denote z := limi→∞ xki
. It follows from Lemma 3.3 that z ≥ 0. By the definition of λk and

Theorem 4.1, we have

λ0 > λki = max

{Axm−1
ki

x
[m−1]
ki

}
≥

(Axm−1
ki

)j

(x
[m−1]
ki

)j
, (4.2)

for each j ∈ {1, 2, . . . , n}. On the other hand, we have

lim
i→∞

(Axm−1
ki

)j

(x
[m−1]
ki

)j
=

(Azm−1)j
(z[m−1])j

. (4.3)

Thus, from (4.2) and (4.3), it follows that

(Azm−1)j < λ0(z
[m−1])j , (4.4)

for any j ∈ {1, 2, . . . , n}. Further, assume that zt = 0 for some t ∈ {1, 2, . . . , n}, by setting
j = t on the above inequality (4.4), then we have

n∑
j2,...,jm=1,j2,...,jm ̸=t

atj2...jmzj2 . . . zjm < λ0(zt)
m−1 = 0,

which contradicts to A ∈ R[m,n]
+ , and therefore, z > 0. This completes the proof.
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Lemma 4.3. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. If {xk} is generated by Algo-

rithm 1, then there is a constant δ such that

lim
k→∞

min{xk} = δ > 0.

Proof. By Lemma 3.3, we have δ ≥ 0. If δ = 0, then there exists a subsequence {xki
}, with

limi→∞ min{xki
} = 0. Since ∥xk∥ = 1, that is, {xk} is a bounded sequence, then we may

assume that limi→∞ xki = z. Note that z > 0 from Lemma 4.2, but, limi→∞ min{xki} =
min{z} = 0, which is a contradiction. Therefore, there is a constant δ such that limk→∞ min{xk} =
δ > 0, and thus, the proof is completed.

It follows from Theorem 4.1 that the sequence {λk} produced by Algorithm 1 is mono-
tonically decreasing and bounded below by ρ(A), and thus we have limk→∞ λk = s ≥ ρ(A).
In what follows, we will prove that s = ρ(A) based on the previous results.

Theorem 4.4. Let A ∈ R[m,n]
+ be a weakly irreducible tensor. Suppose that {λk,xk,yk} is

generated by Algorithm 1. Then, the monotonically decreasing sequence {λk} converges to
ρ(A), limk→∞ λk = ρ(A), and the positive sequence {xk} converges to x∗, limk→∞ xk = x∗.

Proof. From (4.1) it follows that

λk − λk+1 = min

{
xk

yk

}
≥ min{xk}

max{yk}

≥ min{xk}
∥yk∥

,

(4.5)

where the last inequality is obtained from ∥yk∥ ≥ max{yk}. Note that the sequence {λk}
is monotonically decreasing and bounded below by ρ(A), that is, limk→∞ λk − λk+1 = 0, it
then follows from (4.5) that

lim
k→∞

min{xk}
∥yk∥

= 0.

By Lemma 4.3, we obtain that limk→∞
1

∥yk∥ = 0. There exists a convergent subsequence

{xki+1} of {xk} such that limi→∞ xki+1 = z > 0 according to Lemma 4.2 and ∥xk∥ = 1. We
next prove that limi→∞ λki

= s = ρ(A). Note that the step 3 of Algorithm 1 and ∥xki
∥ = 1,

we have

∥yki
∥ = ∥[λki

I−Diag(y
[2−m]
ki

)A(yki
)]−1xki

∥

≤ ∥[λki
I−Diag(y

[2−m]
ki

)A(yki
)]−1∥,

then
1

∥yki
∥
≥ 1

∥[λki
I−Diag(y

[2−m]
ki

)A(yki
)]−1∥

≥ 0.

Therefore, from limk→∞
1

∥yk∥ = 0, it implies that limi→∞ ∥[λkiI−Diag(y
[2−m]
ki

)A(yki)]
−1∥ =

∞. Let 1
σki

be the largest singular value of [λki
I − Diag(y

[2−m]
ki

)A(yki
)]−1 ∈ Rn×n,

then limi→∞
1

σki
= ∞. Due to the fact that σki

is the samllest singular value of λki
I −

Diag(y
[2−m]
ki

)A(yki) ∈ Rn×n, then we have that limi→∞ σki = 0, meaning that λkiI −
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Diag(y
[2−m]
ki

)A(yki) tends to a singular matrix. From (2.3), it follows that

Diag(y
[2−m]
ki

)A(yki
) = Diag(x

[2−m]
ki+1 )A(xki+1). If limi→∞ λki

= s > ρ(A), according to

limi→∞[λki
I−Diag(x

[2−m]
ki+1 )A(xki+1)] = sI−Diag(z[2−m])A(z) and Theorem 2.5, we obtain

that sI−Diag(z[2−m])A(z) is a nonsingular M-matrix, which leads a contradiction. Hence,
according to {λk} is a monotonically decreasing sequence and bounded below by ρ(A), we
have that s = ρ(A), and

ρ(A) = lim
i→∞

λki
= lim

i→∞
λki+1

= lim
i→∞

max

{Axm−1
ki+1

x
[m−1]
ki+1

}
= max

{
Azm−1

z[m−1]

}
.

Thus, z = x∗ > 0 from Theorem 1.1. Furthermore, it follows from Axm−1
∗ = ρ(A)x[m−1]

∗
that

Diag(x
[2−m]
∗ )A(x∗)x∗ = ρ(A)x∗.

From Lemma 2.3 and the Perron-Frobenius theorem for nonnegative irreducible matrices,

we also have that ρ(A) = ρ(Diag(x
[2−m]
∗ )A(x∗)). The proof has been completed.

5 Testing the Positive Definiteness of an Even Order Weakly Irre-
ducible Z-tensor

In this section, we consider how to determine the positive definiteness of an even order
weakly irreducible Z-tensor. By the definition of Z-tensor B in [29], we have the form

B = µI −A, where A ∈ R[m,n]
+ , µ is a scalar and I is a unit tensor whose entries are defined

by

Ii1i2...im =

{
1, if i1 = i2 = · · · = im,

0, otherwise.

If A is a nonnegative weakly irreducible tensor, then B is a weakly irreducible tensor. For
all x ∈ Rn, if we have Bxm ≥ 0, then B is called positive semidefinite, in particular, we
call B is positive definite if Bxm > 0 when x ̸= 0. For computing the largest eigenvalue of
an even order nonnegative weakly irreducible tensor A by using Algorithm 1, as have been
proved previously, it generates a monotonically decreasing sequence {λk} tends to ρ(A).
Then the smallest eigenvalue of B can be computed, which is µmin = µ− ρ(A), and thus we
can determine whether B is positive definite or not.

For Algorithm 1, in order to obtain the smallest eigenvalue of B, we need to solve the
followingM-like equation at the k-th iteration and normalize the vector yk

[λkI−Diag(y
[2−m]
k )A(yk)]yk = xk,

xk+1 =
yk

∥yk∥
.

(5.1)

By the form B = µI − A and yk > 0, we have

Diag(y
[2−m]
k )B(yk) = µI−Diag(y

[2−m]
k )A(yk),
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where B(yk)
def
= Bym−2

k , and thus

λkI−Diag(y
[2−m]
k )A(yk) = Diag(y

[2−m]
k )B(yk)− µkI, (5.2)

where µk = µ− λk = min

{
Bxm−1

k

x
[m−1]
k

}
. Hence, (5.1) is equivalent to

[Diag(y
[2−m]
k )B(yk)− µkI]yk = xk,

xk+1 =
yk

∥yk∥
.

(5.3)

It follows from Theorem 2.5 and (5.2) that Diag(y
[2−m]
k )B(yk) − µkI is also an irreducible

nonsingular M-matrix. Similar to the previous analysis of Section 4, we also employ the
Newton method to solveM-like equation in (5.3), from a positive initial point we have that
yk > 0. Thus xk+1 > 0, which means that the positive property of xk is guaranteed for
each k provided that x0 > 0.

By the definition of µk, xk > 0 and yk > 0, we have

µk+1 = µk +min

{
xk

yk

}
> µk,

this implies the sequence {µk} is monotonically increasing. Based on the previous analysis,
we can get an derived algorithm of Algorithm 1 for computing the smallest eigenvalue of a
weakly irreducible Z-tensor, its detailed steps as follows.

Algorithm 3 Inverse iteration algorithm for weakly irreducible Z-tensors.
1: Initialization: Given an initial point x0 > 0 with ∥x0∥ = 1 and tol > 0, compute

µ0 = min

{
Bxm−1

0

x
[m−1]
0

}
.

2: repeat

3: Compute yk by solving
[
Diag(y

[2−m]
k )B(yk)− µkI

]
yk = xk.

4: Normalize the vector xk+1 = yk

∥yk∥ .

5: Compute µk+1 = min

{
Bxm−1

k+1

x
[m−1]
k+1

}
.

6: until ∥Bxm−1
k+1 − µk+1x

[m−1]
k+1 ∥∞ ≤ tol.

7: Output: The smallest eigenvalue µmin ← µk+1 and its associated eigenvector x∗ ←
xk+1.

It is worth pointing out that, Algorithm 3 is independent of µ and does not use the
expression B = µI −A in the procedure. Finally, we also give the main results of Algorithm
3 as follows.

Theorem 5.1. Let B ∈ R[m,n] be an even order weakly irreducible Z-tensor. Suppose that
{µk,xk} is generated by Algorithm 3. Then the monotonically increasing sequence {µk}
converges to µmin, with limk→∞ µk = µmin, and the positive sequence {xk} converges to x∗,
limk→∞ xk = x∗.

6 Numerical Results

We report some numerical results in this section to illustrate the effectiveness of Algorithm
1 and Algorithm 3, and compare them with NQZ [18] and NNI [16]. In our experiments,
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we take the parameter tol = 10−8 and the number of maximum iteration steps 10,000 for

Algorithm 1, Algorithm 3, NQZ and NNI. The relative residual is denoted by
λk−λk

λk
at the

k-th iteration. We set initial points x0 = (1,1,...,1)T√
n

for Algorithm 1, Algorithm 3, NQZ and

NNI, w0 = (1, 1, . . . , 1)T for Algorithm 2 in all test examples of this section.
All numerical tests are done using MATLAB R2010b and the Tensor Toolbox version 2.6

[1]. The numerical experiments are performed on a PC with an Intel(R) Core(TM) 2 Duo
CPU T6600 at 2.20 GHz and 4.00 GB of RAM under the Windows 7 operating system.

In the following tables, “m,n” denote the order and the dimension of test tensor, respec-
tively, “Iter.” refers to the number of iteration steps, “ρ(·)” denotes the value of λk at the
final iteration, “Res.” denotes the residual error value of ∥Axm−1

k − λkx
m−1
k ∥∞ when the

iterative algorithms are terminated and “µmin” denotes the value of µk at the final iteration.
We first employ Algorithm 1 to find the largest eigenvalue of the adjacency tensors and

the signless Laplacian tensors [8] of loose paths,

Example 6.1. Consider an m-uniform hypergraph with r edges G = (V,E), which is called
a loose path [27], if its vertex set as

V = {i(1,1), . . . , i(1,m), i(2,2), . . . , i(2,m), . . . , i(r−1,2), . . . , i(r−1,m), i(r,2), . . . , i(r,m)},

and edge set is

E =
{
{i(1,1), i(1,2), . . . , i(1,m)}, {i(1,m), i(2,2), . . . , i(2,m)}, . . . , {i(r−1,m), i(r,2), . . . , i(r,m)}

}
,

where r is the length of the loose path. We know that this loose path has n = r(m− 1) + 1

vertices. Then its the adjacency tensor A ∈ R[m,n]
+ is a symmetric tensor, whose entries are

defined by

ai1i2...im =


1

(m− 1)!
, (i1, i2, . . . , im) ∈ E,

0, otherwise.

Example 6.2. Consider the signless Laplacian tensor S of an m-uniform loose path with r

edges G = (V,E), with S = A+D, where its the adjacency tensor A ∈ R[m,n]
+ is defined in

Example 6.1, and the diagonal tensor D with its diagonal element di,...,i equal to the degree
of vertex i for all i ∈ {1, 2, . . . , n}.

Tables 1 and 2 report the numerical results obtained by Algorithm 1, NQZ and NNI, for
finding the largest eigenvalue of the adjacency tensors and the signless Laplacian tensors of
loose paths in Examples 6.1 and 6.2, respectively. As we have observed, these two tables 1-2
show that the performance of Algorithm 1 is a little better than that of NQZ and NNI, and
the number of iterations is at most 6 for Algorithm 1. We can also see that our results are
to satisfy some results with theory of Theorems 1-4 in Yue, Zhang and Lu [27]. Figures 1
and 2 depict the relationship between the relative residual and the number of iterations on
Examples 6.1 and 6.2 for Algorithm 1, NQZ and NNI, respectively. As we see, they indicate
that Algorithm 1 , NQZ and NNI are monotonically decreasing. They also illustrate that
the convergence rate of NQZ and NNI appear to be linear and quadratic, as confirmed
some results with theory of their linear and quadratic convergence rate (see [28, 12, 16]),
respectively. Moreover, from the tables 1-2 and figures 1-2, we can see that the Algorithm 1 is
quadratic convergence. As we known, inverse iteration algorithm is quadratically convergent

This toolbox was downloaded from http://www.sandia.gov/~tgkolda/TensorToolbox/.
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Table 1: The largest eigenvalue of adjacency tensors on Example 6.1
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(a) (m, r) = (3, 3)
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Figure 1: The comparison of Algorithm 1, NQZ and NNI for Example 6.1
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Table 2: The largest eigenvalue of signless Laplacian tensors on Example 6.2
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Figure 2: The comparison of Algorithm 1, NQZ and NNI for Example 6.2
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for computing the largest eigenvalue of a nonnegative irreducible matrix [10, 13]. In [9], the
authors conjectured the given inverse iteration algorithm converges quadratically as well.
We conjecture Algorithm 1 is also quadratically convergent algorithm, however, we now can
not prove this result in theory.

As a real application, eigenvector centrality is a standard network analysis tool for de-
termining the importance of entities in a connected system that is represented by a graph
or hypergraph. For hypergraph models of such multirelational data, Benson [2] proposed
three hypergraph eigenvector centralities: clique motif eigenvector centrality (CEC), Z-
eigenvector centrality (ZEC) and H-eigenvector centrality (HEC). In order to illustrate the
effectiveness of Algorithm 1 for computing the HEC scores, in our tests we used the sunflower
hypergraph with singleton core of different size coming from [2]. The sunflower hypergraph
G = (V,E) with singleton core {1} is an m-uniform, r-petal hypergraph, then its vertex set
as V = {1, 2 . . . , (m− 1)r + 1}, and edge set is

E =
{
{1, 2, . . . ,m}, {1,m+ 1, . . . , 2m− 1}, . . . , {1, (m− 1)r −m+ 3, . . . , (m− 1)r + 1}

}
.

An illustration of a 4-uniform, 5-petal sunflower hypergraph with core {µ} can be found in
the left part of [2, Figure 1]. The detailed results are shown in Table 3.

Table 3: HEC of the sunflower hypergraph with singleton core
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Figure 3: The comparison of Algorithm 1, NQZ and NNI for sunflower hypergraph

We observe that the resulting HEC scores are correct from Table 3, as expected, Algo-
rithm 1, NQZ and NNI perform well for the sunflower hypergraph with singleton core. The
resulting HEC scores are also consistent with the analysis in [2, subsection 2.4], which are



204 Z. SHENG AND Q. NI

equal to r
1
m for different size m and r. Figure 3 also depicts the relationship between the

relative residual and the number of iterations on the sunflower hypergraph with singleton
core for Algorithm 1, NQZ and NNI.

We then apply Algorithm 3 to determine whether an even order Z-tensor is positive
definite or not. For NQZ, to test the positive definiteness of an even order Z-tensor, we
need to apply it on C = µI − B with B is a Z-tensor, where µ ≥ maxi{bi,i,...,i} for all
i ∈ {1, 2, . . . , n}. However, Algorithm 3 and NNI [16, section 6] can work on B directly,
since they do not involve µ in the procedure.

Example 6.3. Consider a Z-tensor B = 10D−A ∈ R[m,n], where A and D are the adjacency
tensor and the diagonal tensor of an m-uniform loose path with r edges G = (V,E) with
n = r(m− 1) + 1, which are defined in Examples 6.1 and 6.2, respectively.

Table 4: Testing the positive definiteness of Z-tensors on Example 6.3

Example 6.4. Consider a random Z-tensor B ∈ R[m,n]. Generate a random vector z whose
elements are randomly distributed in the interval (0, 1), let bi,i,...,i = α+ zi with α ∈ {0, 1}
is a scalar, for all i ∈ {1, . . . , n}, let bi,i+1,...,i+1 = −zi for 1 ≤ i ≤ n − 1 and bn1...1 = −1,
otherwise, bi1,i2,...,im = 0 for 1 ≤ i1, i2, . . . , im ≤ n.

Table 5: Testing the positive definiteness of Z-tensors on Example 6.4

For NQZ, we take µ = 20 and µ = α + 1 in Examples 6.3 and 6.4, respectively. Tables
4 and 5 list the numerical results obtained by Algorithm 3, NQZ and NNI, to test whether
even order Z-tensors are positivity or not in Examples 6.3 and 6.4, respectively. From µmin

is computed by Algorithm 3 and NQZ for each Z-tensor, if we have µmin > 0, then we can
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determine it is positivity. These two tables 4-5 show that the improvement of Algorithm
3 over the existing NQZ and NNI in term of the number of iterations, and the number of
iterations is at most 8 for Algorithm 3. But NQZ and NNI use much less cpu time than
Algorithm 3 in numerical test. Finally, it is worth pointing out that, we also observe that
the efficiency of the NQZ is dependent on the choice of µ in our experiments.

In summary, Algorithm 1 and Algorithm 3 are promising for finding the largest eigenvalue
of nonnegative weakly irreducible tensors and testing the positive definiteness of even order
weakly irreducible Z-tensors, respectively, the numerical results illustrate that the overall
good performances of both Algorithm 1 and Algorithm 3.

7 Conclusions

We have presented a positivity preserving inverse iteration algorithm with an initial posi-
tive vector for finding the largest eigenvalue of nonnegative weakly irreducible tensors, by
reformulating (1.4) as (2.1) for any x > 0 in this paper. We have analyzed some properties
of Algorithm 1, and have established the global convergence results. At each iteration of Al-
gorithm 1, we used the Newton method to computeM-like equation, which always preserve
yk > 0 for any initial positive point. In numerical, we have illustrated that the promising
behavior of Algorithm 3 for testing the positive definiteness of even order Z-tensors. The
numerical results indicated that the efficiency of both Algorithm 1 and Algorithm 3. The
quadratic convergence of inverse iteration algorithm is an attractive topic for future work.
Reformulated (1.4) as (2.1), we obtain a matrix-based method, how to prove this result by
combining with some results [10, 13] is still under investigation.
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