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existence were obtained. In the theory of differential inclusions, the questions concerning
the existence of the solutions included in a given set are significant; the field of research
related to them bears the name of viability theory [26].

The importance of the consideration of differential inclusions follows naturally from the
mathematical control theory. The development in the last decade of optimal control theory
that culminated with the Pontryagin maximum principle has brought about a renewed
interest in the calculus of variations, and particularly in such classical phases thereof as
the theory of the first variation and first-order necessary conditions. It turns out that the
classical Lagrange problem in the calculus of variations could be looked upon as a particular
case of the optimal control problem. The necessary condition of optimality, the Pontryagin
maximum principle, obtained for the latter problem contained all the classical first-order
necessary conditions [7, 12].

This paper is written based on the analogy relationship between specific optimal control
problem and the duality theory. Since the control theory constructed a completely new
theory, duality theory can also develop by using concepts of variational analysis. There
are as many alternative approaches to duality theory as individuals are working in the field
of duality theory. These different approaches may be approximately classified, at the risk
of gross simplification, into three groups. The first group of approaches is based on the
conjugacy correspondence developed by Fenchel and extended by Rockafellar [30]. In its
modern form, this theory states that given f(x), a closed, proper, and convex function, its
conjugate dual is also a closed proper convex function. Economically, this implies a one-
to-one correspondence between the production function and the normalized profit function
under the assumption of closure, properness, and convexity [31]. The second group of
approaches is based on the symmetric duality between gauge functions, or distance functions,
or polar cones of convex sets. The third group of approaches is based on the duality between
the set of production possibilities and its support function.

Duality in the calculus of variations has existed in different forms in literature for a long
time [6, 32, 33]. As is known, the principle of duality is one of the central directions in convex
optimality problems due to the importance of its implementations, and it is interpreted
differently for different particular cases. The paper [1] deals with optimality conditions
for a convex bilevel programming problem via the Fenchel-Lagrange duality. The paper
[5] presents a simple dual condition for the convex subdifferential sum formula. To obtain
a generalized Clarke-Ekeland dual least action principle, the subdifferential sum formula
is then used to derive necessary and sufficient optimality conditions for a general cone-
constrained convex optimization problem under a much weaker dual constraint qualification.

In the paper [11], converse duality theorems for scalar and multiobjective second-order
dual problems in nonlinear programming are established. The authors formulate a dual
problem of approximate Mond-Weir type and develop the duality results in the paper [16].
The authors also study vector optimization problems with perturbed cone constraint by
incorporating the concept of cone convex functions concerning mapping problems of vector
optimization. Moreover, under that kind of cone convexity assumption, the necessary and
sufficient optimality conditions and duality results for quasi-solutions to a mapping of vector
optimization problems with perturbed cone constraint are formulated.

Mahmudov [21] gives a sufficient condition for optimality for the non-convex problem and
proves duality theorems based on the apparatus of locally conjugate mappings. The paper
[22] is devoted to investigating the optimization problem of partial Goursat-Darboux type
differential inclusions and sufficient conditions are formulated for so-called Goursat-Darboux
type convex and non-convex partial differential inclusions. Then the author constructs the
dual problem to convex problem for differential inclusion of considered hyperbolic type. In
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the paper [25], applying the infimal convolution concept of convex functions, step by step,
the author constructs the dual problems for third-order discrete, discrete-approximate, and
differential inclusions and prove duality results. As a result, in the next investigations, the
passage to the limit in the dual problem with discrete approximations plays a significant role,
without which it is hardly ever possible to establish any duality to the continuous problem.
In this way, relying on the described method for computation of the conjugate and support
functions of discrete-approximate problems, a Pascal triangle with binomial coefficients can
be successfully used for any higher-order calculations.

In this paper, we study the duality theory of optimal control problems given by second-
order polyhedral differential inclusions. We formulate sufficient conditions of optimality for
polyhedral differential inclusions based on the apparatus of Euler-Lagrange inclusions and
transversality conditions. By the optimal control theory method and a careful analysis,
we obtain some optimality results about the duality for boundary value problems and the
duality theorems allow one to conclude that a sufficient condition for an extremum is an
extremal relation for the primal and dual problems. Although the presented work is generally
devoted to the dual optimization problem for polyhedral inclusions with special boundary
conditions, in a sense it is also a logical continuation of the primal problem considered in
[23].

There have been some applications of optimal control theory to boundary value problems
for ordinary differential inclusions or\and equations [4]. The paper [15] deals with the
existence-uniqueness problem in a class of Neumann boundary value problems for second-
order ordinary differential equations probably across several points of resonance. Moreover,
some global optimality results about the existence and uniqueness of solutions for boundary
value problems are obtained. The necessary conditions of the Pontryagin Maximum Principle
are discussed in the paper [31], by interpreting Boundary value problems for differential
inclusions leading to a new indirect method for the computation of optimal trajectories with
its focus on global convergence conditions for compact control domains.

The present paper is devoted to one of the difficult and interesting areas, i.e., the con-
struction of duality for boundary value problems with second-order polyhedral differential
inclusions. The problems posed and their dualities are novel. We organized this paper as
follows.

Section 2 deals rather comprehensively with the set-valued mappings that are used on
the right-hand side of differential inclusions. We propose a concise introduction to convex
analysis, defining conjugate functions of convex functions, locally adjoint mappings, the cone
of tangent directions, and applying their properties to the polyhedral set-valued mappings,
and recalling the calculation of subdifferentials of convex functions. Then we introduce the
boundary value problems for second-order polyhedral differential inclusions that are mainly
concerned with dual problems.

Section 3 is concerned with the derivation of sufficient optimality conditions for second-
order differential inclusions with boundary value conditions. Construction of the Euler-
Lagrange inclusion and transversality condition is based on passing to the limit in the
optimality conditions of discrete approximation problems associated with the differentiable
problem. We formulate Theorem 3.1 on a sufficient optimality condition and do not use the
passage to the limit in the corresponding discrete approximation problem for the following
two reasons. First, the formation of optimality conditions of Theorem 3.1 requires more
calculations, so we decided to omit them. Second, since we analyze optimality and duality
in parallel in this paper, the sufficient conditions of optimality are enough for our needs.
Consequently, a separate topic of consideration, in our view, is the substantiation of the
laws of passage to the limit in the problem of discrete approximation and the establishment
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of the necessary conditions of optimality.
Section 4 is devoted to duality in the control problem with second-order polyhedral

differential inclusions. We establish the dual problems for our main continuous problem.
But the construction of the duality problem with the support of discrete approximation
problems requires a lot of effort and attention to understand the computational aspects. We
have omitted this so as not to deviate from the main question. A duality relationship between
a pair of optimization problems with boundary value constraint is formulated. Therefore we
prove that the Euler-Lagrange type adjoint inclusion simultaneously is a dual relation and
the optimal values in the primal convex and the dual concave problems are equal.

In Section 5, the optimization of a second-order linear boundary value problem is con-
sidered to show the implementation of the used approach. Moreover, a numerical example
is developed to solve a polyhedral boundary value problem with second-order differential in-
clusions. Then accordingly to Theorem 4.1, we show that under the conditions of Theorem
3.1, the optimal values of primal and dual problem coincide.

2 Needed facts and Problem Statements

We recall some necessary and recent results of set-valued mappings and refer the reader
to the book [17, 28] for an introduction to the theory of differential inclusions and duality.
Convex functions and convex set-valued mappings are studied in this paper in the setting
of n-dimensional Euclidean space Rn. Let ⟨x, y⟩ be an inner product of x, y ∈ Rn, (x, y) be
a pair of x, y elements. Throughout this work we assume that G : Rn ⇒ Rn is a set-valued
mapping from Rn into the set of subsets of Rn. Then G : Rn ⇒ Rn is said to be convex if
its graph gphG = {(x, y) : y ∈ G(x)} is a convex subset of R2n = Rn × Rn. A set-valued
mapping G is convex-closed if its gphG is a convex-closed set in R2n. It is convex-valued if
for each x ∈ domG the set G(x) is a convex set, where domG = {x : G(x) ̸= ∅}.

The convex cone KA(z0) is called the cone of tangent directions at the point z0 =
(x0, y0) ∈ A if from z = (x, y) ∈ KA(z0) it follows that z is a tangent vector to the set
A ⊂ R2n at the point z0. In other words, there exists such function µ : R → R2n such that
z0 + λz + µ(λ) ∈ A for sufficiently small λ > 0 and λ−1µ(λ) → 0 as λ ↓ 0. Obviously, for
a convex mapping G, the cone of tangent directions at the point (x0, y0) ∈ gphG setting
µ(λ) ≡ 0, is defined as follows

KgphG(x0, y0) = cone[gphG− (x0, y0)]

=
{
(x, y) : x = λ(x− x0), y = λ(y − y0) , λ > 0

}
, ∀ (x, y) ∈ gphG.

A polyhedral convex set in Rn is a set that can be expressed as the intersection of some
finite family of closed half-spaces, that is, as the set of solutions to some finite system of
inequalities of the form ⟨x, x∗

k⟩ ≤ βk, k = 1, . . . , l. In particular, if the finite system of
inequalities is homogeneous, the set of solutions to this finite system of inequalities is called
the polyhedral cone. One of the remarkable properties of a polyhedral set is that it can
be interpreted as a sum of polyhedron and polyhedral cone. Conversely, the sum of any
polyhedron and polyhedral cone is a polyhedral set.

A function f(x) is called a proper function if it does not assume the value −∞ and is
not identically equal to +∞. Clearly, f is proper if and only is domf ̸= ∅ and f(x) is finite
for x ∈ domf = {(x) : f(x) < +∞}. The subgradient of a convex function f(x0) at x0,
denoted x∗, is defined by the system of inequalities f(x) − f(x0) ≥ ⟨x∗, x − x0⟩ ∀ x. The
set of all subgradients at x0 denoted ∂f(x0) is referred to as the subdifferential of f(x0) at
x0. If the subdifferential at x0 consists of only one element, it is equal to the gradient of f
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at x0, denoted ∇f(x0). Given the subdifferential, a closed, proper, and convex function is
determined up to an additive constant.

The definition of the conjugate of a function grows naturally out of the fact that the
epigraph of a closed proper convex function on Rn is the intersection of the closed half-
spaces in Rn+1 that contain it. The function defined as f∗(x∗) = sup

x
{⟨x, x∗⟩ − f(x)} is

called the conjugate of f which is one of the basic concepts both of convex analysis and
duality theory. It is closed and convex. It is useful to remember, in particular, that Young’s
inequality f(x) + f∗(x∗) ≥ ⟨x, x∗⟩ holds for any function. If here f is a proper convex
function, then we shall refer to this relation as Fenchel’s inequality.

For a convex set-valued mapping G : Rn ⇒ Rn, a set-valued mapping G∗(·; (x0, y0)) :
Rn ⇒ Rn defined by

G∗(y∗; (x0, y0)
)
:=

{
x∗ : (x∗,−y∗) ∈ K∗

gphG(x
0, y0)

}
,

is called the LAM to G at a point (x0, y0) ∈ gphG, where K∗
gphG(x

0, y0) is the dual to the

cone of tangent directions KgphG(x
0, y0). Let us denote the following:

MG(x
∗, y∗) := inf

x,y

{
⟨x, x∗⟩ − ⟨y, y∗⟩ : (x, y) ∈ gphG

}
. (2.1)

It is clear that for every x ∈ Rn

MG(x
∗, y∗) ≤ ⟨x, x∗⟩ −HG(x, y

∗).

Here the Hamiltonian function HG(x, y
∗) = sup

y
{⟨y, y∗⟩ : y ∈ G(x)}, y∗ ∈ Rn and for convex

set-valued mapping G, we put HG(x, y
∗) = −∞, if G(x) = ∅. Moreover it is easy to see that

the function
MG(x

∗, y∗) = inf
x
{⟨x, x∗⟩ −HG(x, y

∗)}

is a support function of the set gphG taken with a minus sign. It follows that for a fixed
y∗ MG(x

∗, y∗) = −
(
−HG(·, y∗)

)∗
(x∗), that is, MG is the conjugate function for −HG(·, y∗)

taken with a minus sign.
From the applied point of view, the polyhedral mapping plays an important role. A

polyhedral mapping is defined, the graph of which is the following polyhedral set in R2n:

gphG =
{
(x, y) : Ax−By ≤ d

}
, G(x) =

{
y : Ax−By ≤ d

}
,

where A and B, m × n dimensional matrices, d is a m-dimensional column-vector. The
Hamiltonian function HG(·, y∗) for a polyhedral mapping is closed and its LAM is the step
function in the argument (x, y):

G∗(y∗; (x, y)) := {
−A∗λ : y∗ = B∗λ, λ ≥ 0 , ⟨Ax−By − d, λ⟩ = 0

}
.

In this paper, we consider the boundary value problem for second-order polyhedral dif-
ferential inclusions, labeled by (PC):

minimum J(x(·)) =
∫ T

0

f
(
x(t), t

)
dt, (2.2)

(PC) x′′(t) ∈ G(x(t), t), a.e. t ∈ [0, T ], (2.3)

x(0)− x(T ) = α0 , x′(0)− x′(T ) = α1 , (2.4)
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where f : Rn → Rn is proper polyhedral function and G(·, t) : Rn ⇒ Rn is a polyhedral
set-valued mapping, G(x) = {y : Ax−By ≤ d}, A and B, m× n dimensional matrices, d is
a m-dimensional column-vector and α0, α1 are fixed vectors.

It is required to find a feasible trajectory x(t), t ∈ [0, T ] minimizing Lagrange problem
over a set of feasible trajectories. Here, a feasible trajectory x(t); t ∈ [0, T ] satisfies boundary
value constraints almost everywhere (a.e.) in [0, T ], the second-order polyhedral differential
inclusions whose second-order derivative in [0, T ] belongs to the standard Lebesgue space
Ln
1 ([0, T ]). In more detail, a feasible solution x(·) of the problem (PC) is a mapping x(·) :

[0, T ] → Rn satisfying x′′(t) ∈ G(x(t), t), a.e. t ∈ [0, T ], x(0)−x(T ) = α0, x
′(0)−x′(T ) = α1

with x(·) ∈ AC([0, T ]) ∩ Wn
1,2([0, T ]) where AC([0, T ]) is a space of absolutely continuous

functions from [0, T ] into Rn and Wn
1,2([0, T ]) is a Banach space of absolutely continuous

functions from [0, T ] into Rn together with first order derivatives for which x′′(·) ∈ Ln
1 ([0, T ]).

Notice that a Banach space Wn
1,2([0, T ]) can be equipped with the different equivalent norms.

The construction of the dual problems to the given primal polyhedral problem (PC) for
ordinary differential inclusions is the main problem of this paper. Duality often makes it
possible to simplify the computational procedure and construct a generalized solution to
variational problems that do not have classical solutions. The duality theorems allow one to
infer that a sufficient condition for an extremum is an extremal relation for the primal and
dual problems. The latter means that if some pair (β, β∗) satisfies this extremal relation,
then β and β∗ are solutions to a primal and a dual problem, respectively. We remark that
a significant part of the investigations of Ekeland and Temam [12] for simple variational
problems are connected with such problems and that there are similar results for ordinary
differential inclusions in Mahmudov [21]-[25].

In this paper, we purpose twofold goal. First, we prove sufficient optimality conditions
of boundary value problem (PC). Second, we use this method to establish a duality rela-
tion problem to a Lagrange differential problem. Therefore, initially, we give the sufficient
conditions of optimality for the problem (PC) which will play an important role in the next
duality investigations.

3 Polyhedral Optimization of Boundary value problems for Differ-
ential Inclusions

Before giving the duality theorems and results, we formulate the sufficient conditions of
optimality for the problem (PC) with second-order polyhedral differential inclusions.

Theorem 3.1. Let f be continuous proper polyhedral function and G be a polyhedral set-
valued mapping given in problem (PC). Then for the optimality of the trajectory x̃(·) in
the problem (PC) with second-order differential inclusions, it is sufficient that there exist
absolutely continuous function x∗(·), t ∈ [0, T ], together with the second-order derivatives
and the function λ(t) satisfying a.e. the following the second-order polyhedral Euler-Lagrange
type inclusions (i), the equation (ii) and transversality conditions (iii):

(i) x∗′′
(t)−A∗λ(t) ∈ ∂f(x̃(t), t), a.e. t ∈ [0, T ],

(ii)
〈
Ax̃(t)−Bx̃′′(t)− d , λ(t)

〉
= 0 , λ(t) ≥ 0, x∗(t) = B∗λ(t) a.e. t ∈ [0, T ],

(iii) B∗
(
λ(0)− λ(T )

)
= 0 , B∗

(
λ′(0)− λ′(T )

)
= 0.

Proof. For all feasible solutions x(·), it follows from the definition of subdifferential that

f(x(t), t)− f(x̃(t), t) ≥
〈
x∗′′

(t)−A∗λ(t) , x(t)− x̃(t)
〉
, a.e. t ∈ [0, T ]. (3.1)
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It is easy to see from the condition (ii) that〈
Ax(t)−Bx′′(t) , λ(t)

〉
≤

〈
Ax̃(t)−Bx̃′′(t) , λ(t)

〉
for λ(t) ≥ 0, t ∈ [0, T ], or more convenient form

−
〈
A∗λ(t) , x(t)− x̃(t)

〉
≥ −

〈
B∗λ(t) , x′′(t)− x̃′′(t)

〉
. (3.2)

Taking into account x∗(t) = B∗λ(t) a.e. t ∈ [0, T ] and inequalities (3.1) and (3.2), we
obviously have

f(x(t), t)− f(x̃(t), t) ≥
〈
x∗′′

(t) , x(t)− x̃(t)
〉
−

〈
x∗(t) , x′′(t)− x̃′′(t)

〉
, (3.3)

by integrating the inequality (3.3) over the interval t ∈ [0, T ], it follows that∫ T

0

[
f(x(t), t)−f(x̃(t), t)

]
dt≥

∫ T

0

[〈
x∗′′

(t) , x(t)− x̃(t)
〉
−
〈
x∗(t) , x′′(t)− x̃′′(t)

〉]
dt. (3.4)

The formula in the square parentheses on the right-hand side of (3.4) can be expressed in
the following equivalent way:〈

x∗′′
(t) , x(t)− x̃(t)

〉
−
〈
x∗(t) , x′′(t)− x̃′′(t)

〉

=
d

dt

〈
x∗′

(t) , x(t)− x̃(t)
〉
− d

dt

〈
x∗(t) , x′(t)− x̃′(t)

〉
.

This allows us to conclude that∫ T

0

[
f(x(t), t)− f(x̃(t), t)

]
dt ≥

〈
x∗′

(T ) , x(T )− x̃(T )
〉
−
〈
x∗′

(0) , x(0)− x̃(0)
〉

−
〈
x∗(T ) , x′(T )− x̃′(T )

〉
+
〈
x∗(0) , x′(0)− x̃′(0)

〉
. (3.5)

Now denoting on the right hand-side of (3.5) by Λ and using the boundary condition of the
problem (PC), we obtain that

Λ =
〈
x∗′

(T ) , x(T )− x̃(T )
〉
−
〈
x∗′

(0) , x(0)− x̃(0)
〉

−
〈
x∗(T ) , x′(T )− x̃′(T )

〉
+

〈
x∗(0) , x′(0)− x̃′(0)

〉
=

〈
x∗′

(T ) , x(T )− x̃(T )
〉
−
〈
x∗′

(0) , x(T )− x̃(T )
〉

−
〈
x∗(T ) , x′(T )− x̃′(T )

〉
+
〈
x∗(0) , x′(T )− x̃′(T )

〉
. (3.6)

Then since x∗(t) = B∗λ(t) a.e. t ∈ [0, T ] and taking into account the condition (iii) of the
theorem, we have

Λ =
〈
x∗′

(T )− x∗′
(0) , x(T )− x̃(T )

〉
−
〈
x∗(T )− x∗(0), x′(T )− x̃′(T )

〉
=

〈
B∗λ′(T )−B∗λ′(0) , x(T )− x̃(T )

〉
−
〈
B∗λ(T )−B∗λ(0) , x′(T )− x̃′(T )

〉
= 0.(3.7)
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Therefore this shows that ∫ T

0

[
f(x(t), t)− f(x̃(t), t)

]
dt ≥ 0

i.e. for all feasible solutions x(t), we have J
(
x(t)

)
≥ J

(
x̃(t)

)
, so x̃(t), t ∈ [0, T ] is optimal.

The desired result is proved completely.

Remark 3.2. It should be noted that this sufficient condition is also necessary conditions
for the trajectory x̃(t), t ∈ [0, T ], when properly reformulated. In this paper, we have used a
specific peculiarity of the polyhedral differential inclusions. But in the proof of the necessary
condition, it is hardly worthwhile. The argument is that certain conditions imposed on
f(·, t) and LAM are required for a problem with differential inclusions in a general case.
For a convex case, it is simple to realize the conditions put on the f(·, t) (not only for the
polyhedral functions). It should be noted that the condition on boundness and upper semi-
continuity of the LAM can be proven starting from the details of the polyhedral differential
inclusions. In a more general case for first-order ordinary differential inclusions, all details
related to the approximation problem are investigated using the familiar the Arzelá-Ascoli
Theorem. Therefore, taking into account all the above difficulties, note that the transition
to the continuous problem (PC), in any case, is a separate topic of discussion and omitted.

4 The Dual Problem and Main Results

The starting point of our investigations is a general approach for constructing a dual opti-
mization problem to the primal problem (PC) based on the theory of conjugate functions. It
is interesting to note that in the theory of mathematical programming problem the analogy
of these results consists of the following. Suppose that we have a problem

inf
x∈M

f(x) (P )

where f is a closed, proper convex function and that M is a convex closed set. To establish
the duality relations, we need the supplementary results of Theorem 3.15 [17] of the duality
of operations of addition and infimal convolution of convex functions. By this result, if there
exists a point v ∈ M , where f is continuous (f is continuous on ridomf , however, f may
have a point of discontinuity in its boundary), the optimal value of problem (P ) is

inf
v∈M

f(v) = inf
v∈M

{
f(v) + δM (v)

}
= − sup

v∈M

{
− f(v)− δM (v)

}
= − sup

v∈M

{
⟨v, 0⟩ −

(
f(v) + δM (v)

)}
= −(f + δM )∗(0) = −

(
f∗ ⊕ δ∗M

)
(0)

= − inf
{
f∗(v∗) + δ∗M (−v∗)

}
= sup

{
− f∗(v∗)− δ∗M (−v∗)

}
.

Here δM (v) =

{
0 , v ∈ M

+∞ , v ̸∈ M
is the indicator function of the set M and the operation

of infimal convolution ⊕ of functions f∗ and δ∗M is defined as follows:

(f∗ ⊕ δ∗M )(v) = inf
{
f∗(v1) + δ∗M (v2) : v1, v2 ∈ Rn, v1 + v2 = v

}
.

In general, it can be noticed that (f + δM )∗(0) ≤
(
f∗ ⊕ δ∗M

)
(0) and so

inf
v∈M

f(v) ≥ sup
{
− f∗(v∗)− δ∗M (−v∗)

}
.
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Then it is reasonable to announce that the dual problem to the primal problem (P ) can be
formulated as being

sup
{
− f∗(v∗)− δ∗M (−v∗)

}
. (P ∗)

The problem (P ∗) is called the dual problem to the primal problem (P ).
Further, we denote by β and β∗ the optimal objective values of the problems (P ) and

(P ∗), respectively. The next result shows that weak duality, namely the fact that the optimal
objective value of the primal problem is always greater than or equal to the optimal objective
value of the dual problem, is a consequence of the way in which the latter problem is defined.
It holds −∞ ≤ β∗ ≤ β ≤ +∞. In addition, if the value of the problem (P ) is finite, then
the supremum in the problem (P ∗) is attained for all v∗.

The construction of the duality problem would lead us too far astray from the main
themes of this paper and is therefore omitted. We note that the dual problems are related
to a large portion of Mahmudov’s investigations for simple variational problems, and similar
results occur for ordinary differential inclusions [21]-[25]. In general, in order to establish a
dual problem to the convex problem (PC) (where f and G are convex functions and convex
set-valued mapping, respectively), we have used a limiting process in dual problem for a
discrete-approximate problem to continuous problem (PC); by passing to the formal limit
as a discrete step tends to zero, the obtained maximization problem will be the dual problem
to the continuous convex problem (PC):

sup
x∗,v∗

{
−
∫ T

0

f∗(v∗(t), t)dt

+

∫ T

0

MG(x
∗′′
(t) + v∗(t), x∗(t))dt+ ⟨α0, x

∗′
(0)⟩ − ⟨α1, x

∗(0)⟩
}
. (4.1)

Now we establish the dual pr oblem (PC)∗ to the main boundary value problem for second-
order polyhedral differential inclusions. Then let’s calculate the function MG by using
definition (2.1). It can be easily seen that, denoting w = (x, y) ∈ R2n, w∗ = (ξ∗,−η∗) ∈ R2n

we have a linear programming problem

inf{⟨w,w∗⟩ : Cw ≤ d} (4.2)

where C = [A : −B] is m× 2n block matrix. Then for a solution w̃ = (x̃, ỹ) of the problem
(4.2) there exists m-dimensional vector λ ≥ 0 such that w∗ = −C∗λ, ⟨Ax̃−Bỹ − d, λ⟩ = 0.
And vice versa, if these conditions are satisfied, then w̃ = (x̃, ỹ) is a solution of the problem
(4.2). Therefore w∗ = −C∗λ implies that ξ∗ = −A∗λ, η∗ = −B∗λ, λ ≥ 0. Thus we find
that

MG(ξ
∗, η∗) = ⟨x̃,−A∗λ⟩ − ⟨ỹ,−B∗λ⟩ = −⟨Ax̃, λ⟩+ ⟨Bỹ, λ⟩ = −⟨Ax̃−Bỹ, λ⟩ = −⟨d, λ⟩.

(4.3)
Therefore by using the relation x∗′′

(t) + v∗(t) = ξ∗(t) = −A∗λ(t) and x∗(t) = η∗(t) =
−B∗λ(t), we derive the following dual problem, labeled (PC)∗, to the primal continuous
polyhedral problem (PC):

sup
λ(·)

{
−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt

−
∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ∗(0)
〉}

. (4.4)

Now we are in a position to prove the main result of this paper.
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Theorem 4.1. Let f(·, t) be a continuous proper polyhedral function and G be a polyhedral
set-valued mapping. Moreover let x̃(t) be an optimal solution of the primal problem (PC)
with polyhedral differential inclusions. Then for the optimality of dual variable λ(t), t ∈ [0, T ]
in the dual problem (PC)∗, it is necessary and sufficient that the conditions (i) − (iii) of
Theorem 3.1 are satisfied. Besides, the optimal values in the primal (PC) and dual (PC)∗

problems are equal.

Proof. We prove that for all feasible solutions x(·) and dual variable λ(·) of the primal (PC)
and dual (PC)∗ problems, respectively, the following inequality holds:∫ T

0

f(x(t), t)dt ≥ −
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt

−
〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ(0)
〉
. (4.5)

From the Young’s inequality, we write

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt ≤

∫ T

0

f(x(t), t)dt

−
∫ T

0

〈
B∗λ′′(t)−A∗λ(t) , x(t)

〉
dt.

(4.6)

It is clear from the definition (2.1) that

−
∫ T

0

〈
d, λ(t)

〉
dt ≤ −

∫ T

0

〈
A∗λ(t), x(t)

〉
dt+

∫ T

0

〈
B∗λ(t) , x′′(t)

〉
dt. (4.7)

By summing up the inequalities (4.6)-(4.7), we conclude that

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ(0)
〉

≤
∫ T

0

f(x(t), t)dt−
∫ T

0

〈
B∗λ′′(t)−A∗λ(t) , x(t)

〉
dt−

∫ T

0

〈
A∗λ(t), x(t)

〉
dt

+

∫ T

0

〈
B∗λ(t) , x′′(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+
〈
α1, B

∗λ(0)
〉
. (4.8)

Now we rewrite inequality (4.8) in more convenience form

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ(0)
〉

≤
∫ T

0

f(x(t), t)dt+

∫ T

0

[〈
B∗λ(t) , x′′(t)

〉
−
〈
B∗λ′′(t) , x(t)

〉]
dt

−
〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ(0)
〉
. (4.9)

Then it is easy to see that

〈
B∗λ(t) , x′′(t)

〉
−
〈
B∗λ′′(t) , x(t)

〉
=

d

dt

〈
B∗λ(t) , x′(t)

〉
− d

dt

〈
B∗λ′(t) , x(t)

〉
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and taking integral, we find that

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ(0)
〉

≤
∫ T

0

f(x(t), t)dt+
〈
B∗λ(T ) , x′(T )

〉
−

〈
B∗λ′(T ) , x(T )

〉
−

〈
B∗λ(0) , x′(0)

〉
+
〈
B∗λ′(0) , x(0)

〉
−

〈
α0, B

∗λ′(0)
〉
+

〈
α1, B

∗λ(0)
〉
.

Then it follows from the boundary value constraint that

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+
〈
α1, B

∗λ(0)
〉

≤
∫ T

0

f(x(t), t)dt+
〈
B∗λ(T ) , x′(T )

〉
−
〈
B∗λ′(T ) , x(T )

〉
−

〈
B∗λ(0) , x′(0)

〉
+
〈
B∗λ′(0) , x(0)

〉
−
〈
x(0)− x(T ), B∗λ′(0)

〉
+

〈
x′(0)− x′(T ), B∗λ(0)

〉
.

or equivalently

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+
〈
α1, B

∗λ(0)
〉

≤
∫ T

0

f(x(t), t)dt+
〈
B∗λ(T )−B∗λ(0) , x′(T )

〉
−
〈
B∗λ′(T )−B∗λ′(0) , x(T )

〉
.

By condition (iii) of Theorem 3.1, we derive that

−
∫ T

0

f∗
(
B∗λ′′(t)−A∗λ(t) , t

)
dt−

∫ T

0

〈
d, λ(t)

〉
dt−

〈
α0, B

∗λ′(0)
〉
+
〈
α1, B

∗λ(0)
〉

≤
∫ T

0

f(x(t), t)dt

which verifies the inequality (4.5) giving the desired result.

Furthermore, suppose that λ̃(t), t ∈ [0, T ] satisfies the conditions (i)− (iii) of Theorem
3.1 by using the definition of function MG in the interval [0, T ],

−
〈
d, λ̃(t)

〉
= −

〈
A∗λ̃(t), x̃(t)

〉
+

〈
B∗λ̃(t) , x̃′′(t)

〉
. (4.10)

Moreover we have

−f∗
(
B∗λ̃′′(t)−A∗λ̃(t) , t

)
= f(x̃(t), t)−

〈
B∗λ̃′′(t)−A∗λ̃(t) , x̃(t)

〉
. (4.11)

Therefore taking into account the Eqs. (4.10)-(4.11) in relations (4.6)-(4.7), the inequality

sign is replaced by equality, and hence for x̃(·) and λ̃(t) the equality of values of the primal

and dual problems is ensured. Moreover x̃(·) and λ̃(t) are satisfy the conditions (i)− (iii) of
Theorem 3.1, the collection (i)− (iii) is a dual relation for the primal (PC) and dual (PC)∗

problems. This completes the proof of theorem.
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5 Applications

In this section, we illustrate the main points of this paper through numerical examples.

Example 5.1. Let us consider the boundary value problems for second-order “linear” dif-
ferential inclusions:

minimize J(x(·)) =
∫ T

0

f(x(t), t)dt

x′′(t) ∈ G(x(t)) a.e. t ∈ [0, T ],

G(x) = {v : v = Ax+Bu, u ∈ U}, (5.1)

x(0)− x(T ) = α0, x
′(0)− x′(T ) = α1,

where f(·, t) is continuously differentiable function, A and B are n× n and n× r matrices,
respectively, U is a polyhedral subset of Rr, α0, α1 are constant vectors. The problem is to
find a controlling parameter ũ(t) ∈ U such that the arc x̃(t) corresponding to it minimizes
J(x(·)).

By elementary computations, we find that

G∗(v∗; (x̃, ṽ)) = {
A∗v∗ , −B∗v∗ ∈ (cone(U − ũ))∗,

∅ , −B∗v∗ ̸∈ (cone(U − ũ))∗,
(5.2)

where ṽ = Ax̃ + Bũ, u ∈ U , A∗ and B∗ are transposed matrices. Besides −B∗v∗ ∈
(cone(U − ũ))∗ means that the Weierstrass-Pontryagin maximum condition〈

Bũ(t), x∗(t)
〉
= sup

u∈U

〈
Bu, x∗(t)

〉
satisfied. Notice that the function f is continuous differentiable function, taking into ac-
count the definition of LAM and using Theorem 3.1, hence, we derive that the arc x̃(t)
corresponding to the controlling parameter ũ(t) minimizes J(x(·)) in the Example 5.1 if
there exists an absolutely continuous function x∗(t) satisfying second order adjoint differen-
tial inclusion(equation), the transversality and Weierstrass-Pontryagin conditions:

x∗′′
(t) = A∗λ(t) + f ′

x(x̃(t), t) , a.e. t ∈ [0, T ],

B∗x∗(0)− f ′
x(x̃(0), 0) = B∗x∗(T )− f ′

x(x̃(T ), T ),

B∗x∗′
(0)− f ′

x(x̃(0), 0) = B∗x∗′
(T )− f ′

x(x̃(T ), T ),〈
Bũ(t), x∗(t)

〉
= sup

u∈U

〈
Bu, x∗(t)

〉
.

Example 5.2. Consider the following second-order polyhedral differential problem with the
boundary value constraints:

min J(x(·)) =
∫ 10

0

x(t)dt, (5.3)

2x(t)− x′′(t) ≤ 0, a.e. t ∈ [0, 10], (5.4)

x(0)− x(10) = 1 , x′(0)− x′(10) = 4. (5.5)

Here we assume that f
(
x(t), t

)
= x(t) is continuously differentiable function, T = 10, and

polyhedral set-valued mapping G(x) = {y : 2x− y ≤ 0} where according to problem (PC),
we choose that A = [2], B = [1], d = [0] and α0 = 1, α1 = 4.
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It can be easily seen that the subdifferential of f is the gradient vector, that is
∂xf(x̃(t), t) = {1}. Then according to Theorem 3.1, we have

x∗′′
(t)− 2λ(t) = 1, a.e. t ∈ [0, 10],〈

2x̃(t)− x̃′′(t) , λ(t)
〉
= 0 , λ(t) ≥ 0, x∗(t) = λ(t) a.e. t ∈ [0, 10], (5.6)

λ(0) = λ(10) and λ′(0) = λ′(10).

In view of first relations of (5.6) we have a boundary value problem given by second-order
linear nonhomogeneous equation with constant coefficients

λ′′(t)− 2λ(t) = 1,

λ(0) = λ(10) and λ′(0) = λ′(10). (5.7)

We need to find the roots of the characteristic equation of the homogeneous differential
equation. Obviously, characteristic equation r2 − 2 = 0 has two real roots r1 =

√
2 and

r2 = −
√
2 and the solution is λh(t) = C1e

√
2t+C2e

−
√
2t where C1, C2 are arbitrary constants.

Moreover, the particular solution of (5.7) is λp(t) = − 1
2 . Thus the general solution of (5.7)

is

λ(t) = λh(t) + λp(t) = C1e
√
2t + C2e

−
√
2t − 1

2

where C1, C2 are arbitrary constants. By using the boundary value condition, we find that
λ(t) = − 1

2 .
On the other hand, since λ(t) ̸= 0, t ∈ [0, 10] from the condition (5.6) of problem, we deduce
that
2x̃(t) − x̃′′(t) = 0, the general solution of which is x̃(t) = C3e

√
2t + C4e

−
√
2t, (C3, C4 are

arbitrary constants). Using the boundary condition x(0) − x(10) = 1, x′(0) − x′(10) = 4,

we find that C3 = 1+2
√
2

1−e10
√

2
and C4 = 1

1−e−10
√

2
. Consequently, we have the solution of the

stated problem in Example 5.2

x̃(t) =
1 + 2

√
2

1− e10
√
2
e
√
2t +

1

1− e−10
√
2
e−

√
2t.

Then its value is ∫ 10

0

x̃(t)dt =

∫ 10

0

[ 1 + 2
√
2

1− e10
√
2
e
√
2t +

1

1− e−10
√
2
e−

√
2t
]
dt

=
( (1 + 2

√
2)e

√
2t

√
2(1− e10

√
2)

− e−
√
2t

√
2(1− e−10

√
2)

)∣∣∣∣∣
10

0

= −2.

Example 5.3. Let us now construct the dual problem to the differential problem in Eqs.
(5.3)-(5.5) and calculate its value. For this, we first compute the conjugate function f∗ of
the function f defined in the cost functional (5.3). By definition of the conjugate function,
we find that

f∗(η∗) = sup
η

{
⟨η, η∗⟩ − f(η)

}
= sup

η

{
ηη∗ − η

}
= sup

η

{
η(η∗ − 1)

}
=

{
0 , η∗ = 1,

+∞, otherwise.
(5.8)
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Then taking into account the dual problem (PC∗) in the formula (4.4), we write dual problem
of the problem in Example 5.2 as follows:

sup
λ

{
−
∫ 10

0

f∗(λ′′(t)− 2λ(t))dt− λ′(0) + 4λ(0)
}
. (5.9)

Then from (5.8), we have f∗(λ′′(t) − 2λ(t)) = 0 under the condition λ′′(t) − 2λ(t) = 1.
Therefore, we get the dual problem (5.9) in more convenient form

sup
{
− λ′(0) + 4λ(0)

}
= 4λ(0)− λ′(0). (5.10)

Therefore we find the value of dual problem in Example 5.2 is 4λ(0) − λ′(0) = −2. Thus
accordingly to Theorem 4.1, we have showed that under the conditions of Theorem 3.1, the
optimal values of primal (5.2) and dual problem (5.10) coincide. Consequently, we prove

that if β =
∫ 10

0
x̃(t)dt = −2 and β∗ = 4λ(0) − λ′(0) = −2 are the values of second-order

polyhedral differential problem in Example 5.2 and its dual problem, respectively, then
β = β∗ = −2 for an optimal pair primal and dual problems.

6 Conclusions

This paper can be divided conditionally into two parts. In the first part, a particular
boundary value problem is considered for second-order polyhedral differential inclusions. To
formulate sufficient conditions of optimality for polyhedral differential inclusions, we use con-
structions of convex analysis in terms of locally conjugate mappings for such problems. The
arising conjugate polyhedral inclusions in the considered results are called Euler-Lagrange
inclusions. The derivation of sufficient conditions is implemented by passing to the limit as
the discrete steps tend to zero. It should be noted that the justification of sufficient condi-
tions of optimality for the problem (PC) is complicated by the accompaniment of discrete
and discrete-approximation problems therefore we omit and formulate only final results. In
the second part, the duality theorem proved allows one to conclude that a sufficient condition
for an extremum is an extremal relation for the primal and dual problems. Thus, we estab-
lished a one-to-one relationship between the optimality conditions of polyhedral second order
differential inclusions for the primal boundary value problems and the dual problem which
are formulated by using the concepts of convex analysis and duality theory. Via numerical
examples, we have shown how the conditions of optimality for the original polyhedral dif-
ferential problem can be extended by comparing known duality relations to dual polyhedral
differential inclusions. Besides, there can be no doubt that investigations of duality results
in optimal control problems with second/higher-order polyhedral discrete/differential inclu-
sions can have a great contribution to the modern development of the optimization theory.
In addition to being of independent interest, such boundary value problems may also play
a significant role in more complex approaches, including the theory of Sturm-Liouville and
integral transformation techniques, as well as applying these to variational problems from
different fields.
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