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Abstract: The high dimensional sparse linear regression problem has many important applications in
electronic engineering, statistics, and compressed sensing. In this paper, we introduce a new penalized least
absolute deviation (LAD) model for the high dimensional sparse linear regression problem. First, we adopt
the LAD model because it is suitable for data in the presence of outliers and provides a powerful technique for
outlier robustness. Second, we adopt a reweighted difference of 1 and ¢2 norms as a nonconvex regularized
term which enables one to reconstruct the sparse signal of interest from substantially fewer measurements.
We propose a rule for setting the penalty level and show that the new model can provide a surprisingly good
estimation error without any assumptions on the moments of the noise even for Cauchy noise. We present
an efficient sequential linear programming algorithm for solving the new model and prove that the generated
sequence converges to a stationary point satisfying the first-order optimality condition. Numerical results
are also presented to indicate the efficiency of the proposed algorithm.
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Introduction

Since the number of observations is much less than the number of unknown coefficients
in the high dimensional sparse linear regression problem, analysis of high dimensional data
poses many challenges and has attracted much recent interests in many fields such as applied
mathematics, machine learning, statistics, economic, finance, and compressed sensing.

In this paper, we consider the following high dimensional linear regression problem

y = Ax + z,
wherey = (y1,...,yn)7T is the n-dimensional vector of outcomes, A is the n xm measurement
matrix, x is the m-dimensional vector of regression coefficients, and z = (21, ..., 2,)7 is the
n-dimensional vector of measurement noises. We assume A = (Aq,..., A,,) where A; € R"
denotes the ith regressor or variable. Throughout the paper, we assume that each vector
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A; is normalized such that ||A;]|l2 = v/n for ¢ = 1,...,m. We are interested in the high
dimensional case where m > n and the problem is sparse in the sense that only a small
proportion of the coefficients are nonzero. In such a scenario, a key task is identifying
and estimating the nonzero coefficients and our goal is to reconstruct the unknown vector
x € R™.

In general, the high dimensional linear regression problem can be formulated as

minimize [|x]lo  subject to y = Ax + z, (1.1)

where ||x||p (called fp-norm) denotes the number of nonzero elements of the vector x. For
the high dimensional sparse linear regression problem, a key assumption is the sparsity of
the true coefficient x*, which guarantees the model identifiability and enhances the model
fitting accuracy and interpretability [13, 25]. Here we assume

Ix*]lo =& < n. (1.2)

The set of nonzero coefficients or significant variables of x* is unknown. In what follows,
the true parameter values of x and m and k are implicitly indexed by the sample size n, but
we omit the index in our notation whenever this does not cause confusion.

Since the ordinary least squares method is not consistent in the setting of m > n, many
new methods have been advanced to solve (1.1) in recent years. The methods with ¢;-norm
penalties have been proposed, see e.g., [2, 7, 21, 26]. Among them, a popular approach is
the ¢1 penalized least squares model (also called Lasso [25])

!
min §||y—AX||§+/\||X||1, (1.3)

where A > 0 is a given penalty level. There are many state-of-the-art algorithms available
for (1.3), such as ADMM (3, 29], semismooth Newton ALM [19], and others [1, 4, 16, 17,
28, 33, 32]. Although the Lasso method is analytically simple and has nice properties under
the assumption of Gaussian noise and known variance [13], it is not suitable for data in the
presence of outliers or heterogeneity. Moreover, the Gaussian assumption may not hold in
practice and the estimation of the standard deviation is not easy.

To deal with the cases where the error distribution is unknown or may have a heavy tail,
Wang [26] proposed the ¢; penalized least absolute deviation (¢1-LAD) model for (1.1) as
follows

X¢,-LAD € argmin ||y — Ax|1 + Al|x||1, (1.4)

and showed that the optimal solution in (1.4) achieves the estimation error bound

N " klogm
[X¢,-LaD —X"[l2 =0 (\/ . > (1.5)

with a nearly universal penalty parameter and established a sure screening property for
such an estimator. The ¢;-LAD method selects the penalty level A not depending on noise
distribution but only assuming that noises have median 0 and P(z; = 0) = 0 for all i =
1,...,n. Note that the Cauchy noise satisfies this condition [26]. The LAD-type methods
are important when heavy-tailed errors are present. These methods have desired robust
properties in linear regression models; see, e.g., [15, 27].

In Lasso or LAD type of methods, the ¢; penalization works as the convex relaxation
of the fp-minimization (1.1). Such a convex relaxation works well [6] and has become
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widespread. This raises the question of whether a different alternative to £y minimization
might also find the correct solution, but with a lower measurement requirement than ¢,
minimization [8, 31]. Fortunately, it is found that the nonconvex penalized regressions enable
one to reconstruct the sparse signal of interest from substantially fewer measurements [9,
30, 34]. On the computational side, researchers have observed that under certain conditions
on the sensing matrix A, several nonconvex penalized regressions do produce solutions with
better quality [8, 11, 12, 14, 18, 20]. A popular nonconvex penalization is ¢, (0 < p < 1)
quasi-norm, which was proposed as alternative to £y and has been extensively studied; see,
e.g., 8,9, 11, 14, 18, 34]. We are interested in the difference of ¢; and ¢ norms (¢1_2) as a
nonconvex alternative to £y, which was first addressed in [12] in the context of nonnegative
least squares problems and group sparsity with applications to spectroscopic imaging, and
further studied in [20, 30]. The associated minimization is as follows

1
min ||y — Ax|3 + Al = [x2). (1.6)

Although minimizing such an nonconvex penalization is generally more difficult, it has ad-
vantages over the convex ¢; norm in the sense of enhancing the sparsity [30]. A contour plot
of the ¢1_5 metric can be seen in Figure 1. Numerical results reported in [30] indicates that
{15 outperforms /; 5 and ¢; for a highly coherent matrix A.

/q {"1/2 (1 — I

Figure 1: Contours of three sparsity metrics. The level curves of ¢; — {5 approach the x and
y axes as the values get small, hence promoting sparsity.

Motivated by the above observations, in this paper we combine the LAD used in [26]
and the reweighted difference of ¢; and ¢» norms from [8, 30] to propose a new penalized
regression for (1.1)

x € argmin [y — Ax|ly + A ([[Wx][|s = v[[Wx]|2) , (1.7)

where v € [0, 1) is a free parameter, the weighted matrix W = diag(wy, . .., w,,) is a positive
diagonal matrix given in [8] which can help to improve the signal reconstruction. This new
penalized LAD method allows it to combine the sparsity of the nonconvex regularization
and the outlier-robustness of the LAD regression. Some analyses show that the new model
(1.7) has many advantages over the models given in [26] and [30].

The main contributions of this paper are as follows.

(a) We present a new penalized regression method (1.7) for the high dimensional sparse
linear regression problem (1.1). The method combines the advantages of models (1.3)
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and (1.4). It is not only suitable for data in the presence of outliers but also able to
enhance sparsity to improve the signal reconstruction.

(b) We propose rules for setting the penalty level A and the parameter « following the gen-
eral principle of choosing the penalized parameter introduced in [2, 26]; We can obtain
the special choice of A = 2cy/nlogm and take v = % where 8 = max{w;*',..., w;'}
and ¢ >t > [ is a fixed constant. Such choices are universal and we only assume that
the noises have median 0 and P(z; =0) =0foralli=1,...,n.

(¢) We show that the estimation error bound

[ = x"[]2 =0 (\/Hl(fm> (1.8)

holds with high probability. Notice that we do not have any assumptions on the
moments of the noise, we only need a scale parameter to control the tail probability
of the noise. Moreover, the estimation error bound (1.8) still holds even for Cauchy
distributed noise where the first order moment does not exist.

(d) We present a sequential linear programming algorithm for solving (1.7) based on the
difference of convex functions (DC) algorithm and prove that the generated sequence
converges to a stationary point satisfying the first-order optimality condition of (1.7).
Especially, we formulate the subproblem at each iteration as a linear programming to
handle, which makes the method computationally efficient and promising.

The rest of this paper is organized as follows. In Section 2, we list some existing results
and discuss the choice of the penalty level. In Section 3, we present the main result about
the estimation error bound. We present an iterative method for solving (1.7) based on the
DC algorithm and establish the convergence analysis in Section 4. In Section 5, we report
some numerical results, which show the effects of v and A. The reported numerical results
also indicate that the model (1.7) has good numerical performance for both Gaussian noise
and Cauchy noise. Some conclusions are given in Section 6.

Notation. Let us fix some notation. Let [n] = {1,...,n} and T C [n] be an index set
and T¢ the complementary set, and let |T'| be the cardinality of 7. For any x,y € R,
xTy = (x,y) is their inner product. supp(x) = {i € [n] : x; # 0} denotes the support
of x, and it is obvious that ||x|lo = |supp(x)|. |x| € R™ denotes the vector with the ith
component |x;|. x7 denote the n-dimensional vector such that (xr); = z; if ¢ € T and
otherwise (x7); = 0. In addition, we define two n-dimensional vectors by x* = max{0,x}
and x~ = max{0, —x}. For z € R, sgn(z) is defined as

1 if z >0,
sgn(z) = < —1 if x <0,
[-1,1] ifz=0.
Finally, we denote 1,, = (1,...,1)T € R™ as the all one vector.

Preliminaries and Choice of Penalty Level

In this section, we first recall some results given in [26, 30] which will be used in the sequel.
Based on these results we then give a rule for choosing the penalty level A in the penalized
regression (1.7).
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For any x € R", it is well known that ||x||2 < ||x]|1 < v/n||x||2. The following further

result between the norms ||x||2 and ||x||; was given in [30, Lemma 2.1].

Lemma 2.1. Let x € R"\{0}, A = supp(x) and ||x||o = s. Then,
(s = V) min [zi] < [Ixlh = [Ixll2 < (Vs = DlIx]2-

We now consider the choice rule of A in (1.7). Here we assume that the measurement
errors z;’s are i.i.d. random variables and satisfy P(z; = 0) = 0 and the median of z; is 0
for i € [n]. Since the LAD is used in the penalized model (1.7), we can follow the way given
in [26]. Following the general principle of choosing the penalty introduced in [2], we know
that the subdifferential of ||y — Ax||; evaluated at the point of true coefficient x* measures
the estimation error in the linear regression. For the penalized regression (1.7), we choose
a penalty level A such that it is greater than the maximum absolute value of subdifferential
of |ly — Ax||; at x* with high probability. That is, we need to find a penalty level X for a
given constant ¢ > 0 and a given small probability o such that

PA>cllSoo) =1 — e, (2.1)

where S is the subdifferential of ||y — Ax||; at the point of true coefficient x*, and it is
specified by

S = ATu and u € R™ with the ith component u; = sgn(z;). (2.2)

Since z;’s are independent and have median 0, we know that P(u; =1) = P(u; = —1) = 0.5
and u;’s are independent. Then the distribution of u is known and hence the distribution
of ||S]| is easy to know for any given A and does not depend on any unknown parameters.
Therefore, the inequality (2.1) holds when we take 1 — o quantile of ||S]|c as A/c.

After the above discussion, we immediately obtain the following choice rule for the
penalty level A via the same proof as given in [26, Lemma 1].

Proposition 2.2. The choice of penalty A = c/2V (a)nlogm satisfies the inequality (2.1),
where V(a) > 0 is a constant such that 2m*~V(®) < a.

Taking o = 2/m and V(«) = 2, by Proposition 2.2, we can easily obtain that the special
choice of penalty A = 2¢y/nlog m satisfies the inequality

2
> o) >1— =
POZ elSle) 21— =

In this way, when the data size n is larger, since the variance of measurement errors z; is
larger than zero, the value of ||y — Ax*||; might be large. And then in the minimization
program (1.7), it will induce that the value of ||y — Ax||; much less than the value of ||y —
Ax*||; if the penalty level A were small. This well result the overfitting of the minimization
program (1.7), i.e. ||y — Ax||1 < |ly — Ax*||1. So we need \ increases with the increase of
data size n. Clearly, the above choices of penalty level are simple and they do not require
any assumptions on A, m and n, and the distribution of measurement errors z;. As long as
z;’s are independent random variables with median 0 and P(z; = 0) = 0, the choices satisfy
our requirement (2.1) and do not rely on the Gaussian assumption. This is a big advantage
over the traditional lasso method. For simplicity, we use A = 2cy/nlogm as the default
choice for the penalty level in (1.7).

Note that the difference between (1.4) and (1.7) is the penalization. So, in order to get
the estimation error bound (1.8), following the way to show (1.5) given in [26], we need the
following lemmas which were given in [26, Lemmas 4, 5 and 7).
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Lemma 2.3. For the random variable z = (z1,...,2,)T € R™ and any given real number
n € R, if there is a positive constant a > 0 such that

Plzi >n) < St an Vn>0; Pz <n) < 2+l Vi <0 (2.3)
holds for i € [n], then we have the expectation
Bl + 1l = ) > felolin { 1ol 2 i € o]
16 a
Lemma 2.4. For any vector z = (21,...,2,)T € R" and any real number u > 0, we have

n ul|z |1 . nu
. if |z]1 =2 5
3 Jzi ming)zlu} > {2, Flal 2 5

l2l3 o |zl < 2

i=1

Remark 2.5. The condition (2.3) introduces the scale assumptions on the measurement
errors z;,4 € [n]. Here a serves as a scale parameter of the distribution of z;. This is a very
weak condition and even Cauchy distribution satisfies it [26, Lemmas 4 and 5].

Estimation Error Bound

The purpose of this section is to establish the upper bound (1.8) for the estimation error of
our model (1.7). For simplicity, it follows from Proposition 2.2 that in this section we use
X = 2cy/nlogm as the default choice of penalty level, and we assume that this penalty level
satisfies A > ¢||S]|eo for some fixed constant ¢ > 0.

For the m x m positive diagonal matrix W = diag(ws, W), we define g =
max{w; ' : i € [m]}. Let A = supp(x*) and h = W(X* )E), Where x* is the true co-
efficient in (1.2) and % is defined as (1.7). Clearly, A = supp(Wx*), h = hp + hyc with
hy = W(x} —%xa) and hye = —Wx,c. Then, by Lemma 2.1, we have

WXy =A[IWx[[2 = [Wx" [y = [[halls + [hac s =+ [WxT[l2 = ~[hl]2.
Since x is an optimal solution of (1.7), we get
ly = Ax[s + A (IWx[ly = v[Wxll2) < [|z]ls + A (WX [[s = v[[Wx"|2) -
Hence, It follows from [|h|j2 < ||ha|2 + |[hac]l2 that
Iz + AW hl|y — [lz]l1 < A([balls + ¥lhallz = [haclly +][hac]l2)- (3.1)

In order to get the error bound (1.8), we need the following lemma to analyze the upper
bound of the right hand side of (3.1).

Lemma 3.1. Let h, 8 and A be defined as above. Then,

B ﬂ
(1 + 7 ) halls +7fballz 2 {1 == ) Ihacll = ylhacll.

Proof. By the convexity of ||z]|; and (2.2), we have
Iz + AW 'h|[ — |zl > (w, AW 'h) = (AT, W h) > —5|h]:[|ATu«

AB
= =Blh1lSllec = ==~ (halls + |hacl),
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which, together with (3.1), implies that

B
ally +7lhallz = llhaclls + vl[hacllz 2 == (hally + [hac]l1).

Hence, the desired result holds. O
Let ¢,t be two given constants such that ¢ >t > . Taking
_t=8

c

v (3.2)

in Lemma 3.1, we have
c—1t

c+t’
which is the similar result given in [26] for the ¢1-LAD model (1.4). Define the following set

[bally = élbpc|, €= (3.3)

A:={deR™: ||dr| > ¢||drec]|1, where T C [m] and |T| < &}.

Clearly, h € A; from (3.3). This conclusion is pretty crucial for our discussion, and it is
also important for the ¢1-LAD method [26] and the classical lasso method [2].

To study the performance of (1.7), we discuss some properties of matrix A = AW ™!,
For simplicity, we follow the description as in [26]. We first define two important constants
A% and A as

| Ad|[2 - . |Ad||3
" derm,0<|ld]lo<r n||d||3

Al =

" derm o<|dllo<x 7ld]3’

Here the vector d € R™ with 0 < ||d|jo < k is called a s-sparse vector. The definition
of the above constants is related to the Restricted Isometry Constants [5]. The value of
max{nA® — 1,1 —nAl} is called x-restricted isometry property (RIP), which is widely used
in compressed sensing. The (k1, k2)-restricted orthogonality constant 6., , is defined to be
the smallest number such that

[(Ady, Ady)| < 1By, , l|di]l2]|d2]l2

holds for any x; and ko sparse vectors d; and dy with disjoint supports. In compressed

sensing, the more n\¥ and nAl tend to 1, the more precise that the reconstruction of

sparse signals will be. With overwhelming probability, it can be seen that random Gaussian,

random Bernoulli, and random partial Fourier matrices satisfy the RIP with small difference

between nA%, nAlL and 1 [10, 22]. This good properties will make our model (1.7) work well.
Following [26], we define the following constant for the matrix A [2, 26]:

_ . [|4nl;
Kl _ || )
<0 = min o

To show the performance of the estimator (1.7), we should ensure that K (&) is bounded
away from 0 or approaches 0 slowly enough as in the ¢;-LAD case (1.4) [26]. From [26],
if we set 0 < 1 < /2 and klog(m) = o(n), when n large enough, we know that K (¢)
is bounded away from 0 with high probability where A is under gaussian random design
case, i.e. the entries of A are generated by independent and identically distributed N(0,1)
random variables. For simplicity, we will write K'(¢) as K whenever no confusion.
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To obtain the error bound (1.8), we now establish a lemma similar to [26, Lemma 3].
From (3.1), we have

2+ Anfl ~ 2l < A((1+ )bl +hac]lz).

Then we try to bound the estimation error via investigating the random variable
1
vn

To do so, we define a random variable B(d) for any vector d € R™ as

(llz + Ahlly — [lz[l1).

B(d) (lz + Adly — |lzll1) — E(llz + Ad]ls — [|z[|)].

_ |
=7
We obtain the following important result about B(d) via the same proof as [26, Lemma 3].

Lemma 3.2. Suppose that z;’s are independent random variables. For m > 3./k, we have

P (SUP{B(d) cldllo =, [|dfl2 =1} > (1 + 20\/)\%)\/2fﬁlogm> G

where o > 1 is a constant.

Remark 3.3. Lemma 3.2 indicates that for any x sparse vector d € R™,

1 . 1 _
ﬁ(llZ + Ad|[y — [lz]1) = %E(IIZ +Ad[y = lzll) = (1 + 20/ %)V 26 logm|[d]}2 - (3.4)

holds with probability at least 1 — 2m~4%(e* =1 This means that the value of the random
variable %(Hz + Ad||1 —||z||1) is very close to its expectation with high probability. Clearly,
the expectation is not random and much easier to analyze than the random variable itself.

Hence, this observation will help us to prove the error bound (1.8) by using Lemma 2.3.

Now we present our main theorem on the error bound (1.8) based on the following

conditions:
c ~y +c+ﬂ VE
c—BveE—1 c¢c—Bvr—1

3V o, MWK Ay 2c\/k+t—c
]_6\/§K2"{ > W + (% + o1V 2/<;10gm> m, (36)

where 01 =14 204/A% and 0 > 1, ¢ >t > ( are given as (3.2).
We give some remarks for the above two conditions.

Remark 3.4. The condition (3.5) shows that 6, 2, can be bounded by \5,. Note that «
decreases with x, which means that o can be bounded by a constant based on ¢, 8 and ~.
Hence, the condition (3.5) can be replaced by a number of similar RIP conditions [5].

/\12,€ > 0, 20, Where a =

(3.5)

and

Remark 3.5. Condition (3.6) implies that the columns of A cannot be too sparse. This
is because if the columns of A are sparse then the #; norm of columns of A will be small,
hence the value Ks,. will be small.

If we take A = 2¢y/nlogm in (3.6) and assume x log(m) = o(n) (which is a natural result

of the sparsity of the data), then we have K} _(¢) > T'y/ ’“O%, where T" is bounded by a

constant. By the similar arguments in [26], under gaussian random design case, we show
that Ky, is bounded away from zero for n large enough when 0 < % < v/2. This implies
that the condition (3.6) must hold for n large enough if ¢ > %
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Theorem 3.6. Consider the high dimensional linear regression model (1.1). Let m, K satisfy
m > 3v/k and A = AW =Y. Suppose that z1, zs, . .., 2z, are i.i.d. random variables satisfying
(2.3), the conditions (3.5) and (3.6) hold. Then with probability at least 1 — 2m 45" =1+1,
the estimator X in (1.7) satisfies

I
% — x*|]2 < Cy /w7
n

where the constant C' is given as

_16vV2X4,. (1+ o) oo (2 o) 2evEHt—c
€= a(Ay,, = O 2000)? (2 N (x/E 2 1) (65)(ﬁ1))

with 01 = 14 20,/A\% and o > 1.

Proof. Recall that h = W (x* — %) and A = supp(x*), and then arrange the indices in A¢
in the sequence of declining magnitude of hyc and divide A€ into subsets of size k. Then
AC = Ay JA2U...UA;, where each A; comprises k indices probably except A;. Denote
A=A A, =AJA;.

From A C A, and (3.3), it is shown that

[ha,

1 > ¢llhpcl,
which implies that

heA;:={deR™: |dr|1 > &|drec]||1,where T C [m] and |T| < 2x}.
Combining the definition of K}, (¢), we know that

14h][y > nk, (c)|ha,

2- (3.7)
It is easy to see that
1

_ 1 _
\/ﬁ(HAthZIIl = llzll1) 2 —=(lAha, + 2]} — [|z]l1)

3 A b, + 2l — A b, + 2l
1>1

=0 =0
For convenience, define

F(d) = %E(Hﬁdﬂnl ~ llzlh)

for any fixed vector d € R™. Tt follows from (3.4) that with probability at least 1 —
2m74m(a271),

1
vn
—4k(02-1)

In the same way, for any ¢ > 1 with probability at least 1 — 2m ,

([ Ahy, + 2]l = |lz[l1) > F(ha,) — (1 +20/Ak) /26 1logm|[ha, 2.

%(\IA(Z hy;) + 2 - Hfl(i hy;) +2l)1)

j=0 j=0

> F(hy,) — (14 20/ A%)/ 2k 1logm||hy, ||2-
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Let o1 =1+ 204/AY%, where o > 1 is a constant. Combining the above two inequalities, we
obtain that with probability at least 1 — 2m—4x(c”=D+1,

1 _
Z(Ab 2] = |12]1) > F(b) = o1y/2xlogm 3 _ [, 2 (38)
i>0
Then,
l l -
o < 37 Ml Ml Fimy [ — o
i=2 i=2 vE—1 Vel (3.9)

< Ibaclh — [[hacl2

—_ \/E _ 1 )
where the first inequality from Lemma 2.1, the second inequality holds since the magnitude
of hy, is larger than those of hy,, ,’s (i > 1), the third inequality holds due to the triangle

i4+1

inequality.
From Lemma 3.1 and (3.2), we have
p h h p h h
(1= 2)haclls = [hacll2) < 1+ 2)lballs +v][Rall2,
which, together with (3.9), yields
! c 1 B8
Ba 2 < ————— ( (14 Z) Ihally + 5] ) 3.10
Sl < s (1 2)mal 4 il (3.10)

=2

Combining (3.1), (3.8) and (3.10), we have

A
F(h) < —=(llballs +vl[ballz +vlbacllz = hacll) + a1y/2klogm Y [, |2
i>0
A Ay
< =|halh + (& +o1v2rlogm ) > [l
n NZD =
MK Ay
< —— RS
< 2 e + (2% + o1v/2eTogm ) (Il + I e
c 1 15}
ey byl (RS ONGIN PR LN )X
Define
ME A 2cy/k+t—c A
ClZT\/?l»+(\/—’:—L+01\/2KIOgm) %, 02:\/—%+Ul\/21€10gm.
Clearly, C5 < C7 and the above inequality yields
F(h) < Ci|[bafl2 + Callha, [l2 < Ci([hall2 4 [[ha, [[2)- (3.11)

Next, we consider two cases for any real number a > 0. First, if || Ah||; > 37", by Lemmas
2.3 and 2.4, we have

3 _
F(h) > ——||Ah||;.
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And then, it follows from (3.7) that

3\/_ 3v/n
F —K5, > K5, (]|h + ||h

(h) > belha.ll > VG o (Ihal2 + [ha, |12)-

Since the condition (3.6) holds, we must have ||hy, ||2 = 0 and hence it follows from (3.10)
that h = 0.

On the other hand, if || Ah||; < 3, by Lemmas 2.3 and 2.4, we have

F(h) > —~||An|3. (3.12)
164/n

Similar to the proof of [5, Theorems 3.1 and 3.2], we can obtain

|(Ahy_, Ah)| > nA)

i>2
n(>\l2.‘<, - 9&%0‘)

where the last inequality is from (3.10), (3.5) and ||ha |1 < k| hall2. In addition,

|(Ahy,, Ah)| < < [|Ah]2/nAg, [l |2
Therefore,
- /\l —9205)2 ()\l —920()2
An|3 > P26 = Onawa)” > 222 ([|hy 2 + [ha, [|2),
[ Ahll; > N a2 > N (Iall2 + [ha, 2)
which, together with (3.11) and (3.12) and A = 2¢y/nlogm, implies that
V22X, 16
h h
(sl + s, o) < e e
V24, 16 2cy
————2c 3.13
= (AlZH 70’{72&0[)2 a ( (\/_ + \/—Ul) ( )

2ev/K+t—c klogm
=N n

holds with probability at least 1 — 2m~4%(e"=D+1 By (3.10), we obtain

!
> by, llz < (3.14)
i=2
and 1
B”X* — X2 < [[W(x" = %)[[2 = [|hll2 < (1 + a)[[ha, 2. (3.15)

Combining (3.13), (3.14) and (3.15), we can show that the inequality

- 16v2)0%,. (1 +a)B 2cy 2e\/k+t—c rlogm
I < Sop e (e (VI TGV

holds with probability at least 1 — 2m k(e =141, By the definition of the constant C', we
get the desired result. O
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Remark 3.7. Suppose that the conditions in Theorem 3.6 also hold. Then, using (3.13)
and the decrease of the magnitude of hy,, we easily prove that

%GWMW?ZCmem}Cwm@)

This means if the nonzero coefficients are large enough in primal signal x*, then the method
(1.7) can select them into the model.

E Algorithm and Convergence Analysis

In this section, we will develop a sequential linear programming (SLP) algorithm to solve
(1.7) based on the DC algorithm [23, 24, 30]. We reformulate the subproblem in the proposed
algorithm as a linear program which is easily solvable. The convergence analysis of the
proposed algorithm will be established. At the end of this section, we will provide a rule to
choose the reweighted matrix W.

A sequential linear programming algorithm

The DC algorithm is a descent method to solve an optimization problem of the difference
of convex functions by Tao and An [23, 24]. Consider the following optimization problem

min f(x) := g(x) — h(x), (4.1)

x€ER™

where g and h are lower semicontinuous proper convex functions on R™. The kth iteration
scheme of the DC algorithm for solving (4.1) is given as follows:

{ vk € oh(xk),

k

xF+l = arg mingepm g(x) — h(x*) — (V¥ x — x¥),

where v¥ € Oh(x*) means that v¥ is a subgradient of h(x) at x*.
Clearly, the problem (1.7) can be written as the form of (4.1) by letting

9(x) = lly = Ax[ly + A[Wx|[1,  A(x) = My [Wx]2.
Note that the subdifferential of ||WWx||5 is

W2x .

Wl fx+#0
A|Wx||p = { TWxlz’ : x # 0,

{Wu| ullz <L, ueR™}, ifx=0.

Thus, using the DC algorithm to solve (1.7), the kth iteration scheme is given as

fi1 arg mingerm ||y — Ax|1 + A||Wx||1, if x¥=0
X = ) 2,k .
argmingene ly — Ax|l + A(IWxly = (x 82) ), ik £ o,

It is equivalent to solve a convex optimization which is in the form of

min [ly = Ax|y + A(Wx]ly = 7, v)), (4.2)
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where v € R™ is a constant vector. This problem can be reformulated as a linear program.
Using notation of |x|, x* and x~, we have x = x* —x~ and |[x| = xT + x~. Denote
s = |y — Ax| € R™. It is easy to see that

ly — Ax[s = 17s, [Wx|1 = 1, W(x" +x7).
Hence, the problem (4.2) can be reformulated as

min 17s + )\(I%W(XJ'_ +x7) —yvT(xt — X_)>
s.t. s+ Axt —x7) >y,

Axt —x7)—s <y,

s>0,x">0,x" >0.

Let c,d € R"™2™ be defined as

1, S
c= | W1, — v ], d=[xT
W1, + Ayv X~

Setting

(-1 -4 A [y
= (04 ) (V)

where I is an n X n identity matrix, we can equivalently formulate the problem as the
following linear program (LP):

: T

min c'd (4.3)
st. Bd<w, d>0.

This is a standard linear optimization. Clearly, it is feasible and ¢’'d > 0 for any feasible
solution d. Hence, it has at least one optimal solution which can produce the current
iterative point. It is well-known that there are many solution methods, such as the interior-
point method and the simplex method, to solve the LP (4.3). Moreover, the complexity
of the interior-point method for linear program is O((n + 2m)3®), which implies that such
method is very efficient.

Consequently, the details of our algorithm for solving (1.7) is described as follows.

Algorithm 4.1. A sequential linear programming algorithm
Step 0. Define € > 0, set k := 0,x° = 0 and choose x~! such that ||x° —x71||z > e.
Step 1. If |x* — x*71|3 < €, STOP. Output the optimal solution x* of (1.7).
Step 2. If x* = 0, compute

xF = arg rélﬂig}n ly — Ax||1 + A|Wx]|;. (4.4)
Otherwise, compute
W2xk
k41 _ . _ _
X" = arg min Ily AXH1—|—/\(||WX||1 7<X, i 'Xk|2>>. (4.5)

Step 3. Set k:=k + 1 and go to Step 1.
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Note that Algorithm 4.1 converts the primal nonconvex program (1.7) into a linear
program (4.3), the cost is that it doesn’t obtain a global optimal solution in general. The
experiments in Section 5 will show that Algorithm 4.1 often produces a solution that is close
to global minimizer with the initial point x° = 0. When x° = 0 and W = I, (4.4) reduces
to solving the ¢;-LAD model (1.4) given in [26], so Algorithm 4.1 will start at the solution
given by the ¢1-LAD method and then optimize the problem (1.7), which possibly explains
that our method (1.7) will outperforms the ¢;-LAD method.

Convergence analysis

Assuming the subproblem (4.2) at each iteration of Algorithm 4.1 is solved accurately and
the optimal solution can be achieved at some extreme point of the feasible region of (4.3),
we can show that the generated sequence {x*} converges to a stationary point of (1.7).

Definition 4.2. A point x € R" is said to be a stationary point of (1.7) if it satisfies
0 € dlly — Ax[ly + A(OI|Wx|ls =10 Wx]|2) . (4.6)

By the first-order necessary optimality condition, x satisfies (4.6). Hence, X is a station-
ary point of (1.7). Clearly, an optimal solution of (1.7) must be a stationary point, but the
converse is not true due to the nonconvexity of (1.7).

For simplicity, we define

F(x) = [ly = Ax[ly + A([[Wx[ls = v[[Wx]]2). (4.7)

The following lemma shows that the level set of F(x) is bounded and the sequence {F(x*)}
is nonincreasing. Consequently, the sequence {x*} generated by Algorithm 4.1 is bounded.

Lemma 4.3. Let F(x) be defined as (4.7) with A > 0 and 0 < vy < 1. Let {x*} be the
sequence generated by Algorithm 4.1. Then, the sequence {F(x*)} is nonincreasing and the
level set

L(x) ={xeR"| F(x) < F(x)}
is bounded for any given X € R™.

Proof. Tt is well known that |[IWx|[; > ||[Wx||2 for any x € R™. Then for any x € L(X), we
have
A1 =y)[Wx|l2 < F(x) < F(x).

Since W = diag(wy, . .., ws, ) is a positive diagonal matrix, we get 7 = min{w; : i € [m]} > 0.
This, together with A > 0 and 0 < v < 1, yields
F(x)
<
Il < 7.
which implies that the level set £(X) is bounded for any given x € R™.
We now prove that the sequence {F(x*)} is nonincreasing. For any k = 0,1,2, ..., taking

vk € 9||WxF||,, it follows from (4.4) and (4.5) that
xh 1 = arg min [ly — Al + A(|[Wxl = 1(x.vh)).
By the first-order optimality condition, there exist u**! € 9|y — Ax**1||; and wF*t! ¢

O||WxF+1||; such that
u" L AwR T - yvE = 0. (4.8)
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By the convexity, we have
ly = Ax" [l = [ly = Ax" [ > (x* — 1M ut ),

W[l = Wl > (= X wht ),

and
||ka||2 - ||ka+1H2 < <Xk - XkH,Vk).

Consequently, we obtain from (4.8) that
F(x") — F(xF1) > (xF — xM uM T o awh T - vh) = 0.
This shows that the sequence {F(x*)} is nonincreasing. O

It follows from Lemma 4.3 that the sequence {x*} generated by Algorithm 4.1 is bounded
due to {x¥} c £(x"). The following theorem shows that it converges to a stationary point
of (1.7).

Theorem 4.4. Let {x*} be the sequence generated by Algorithm 4.1. Then,

i) there exists a point X and an integer N large enough such that x* = % when k > N.
p g q g

(ii) x satisfies the first-order optimality condition (4.6), i.e., it is a stationary point of

(1.7)

Proof. (i) Recalling the LP form (4.3) of the subproblem at the kth iteration, we get
(", d" ) = [ly — AP+ AW = (xFTL V), (4.9)
where v¥ € 9||WxF¥||5. Tt is easy to see that |[Wx¥||y = (x¥, vF). Hence,
F(x") = |ly = Ax"[l + A(IWx"[[y = 4(x*,v*)) = (c*,d"). (4.10)
Combining (4.9) and (4.10), we obtain
F(xF) — F(xF1) = (¢ dF — @) + My ([P | — (kBT vR)). (4.11)

If x! = 0, Algorithm 4.1 will stop at k& = 1 and produce the solution % = 0. Otherwise, it
follows from (4.11) that

F(0) - F(x') = (c°,d” —d") + Mx"[|2 > Myllx' [l > 0,

where the inequality holds since d! is the optimal solution of (4.3) associated with the first
iteration and d° is its feasible solution. Hence, by Lemma 4.3, we have F(0) > F(x*) for
all k=1,2..., which derives x* £ 0 forall k =1,2....

By Lemma 4.3, the sequence {F(x*)} is nonincreasing. Since F(x*) > 0 for all k =
1,2..., the sequence {F(x*)} is convergent. By Cauchy-Schwartz inequality,

M = v = g ([t - (5, W7x>> 20 (412)
W

Note that d**! minimizes the LP (4.3) with ¢ = c¢¥ and then we have

(c",d" —a*) >0,
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which, together with the convergence of {F(x*)}, (4.11) and (4.12), implies that

lim (cF,d¥ —d*™1) =0, lim [[WxFF|y — (x* vF) = 0.
k—o0 k—o00

Since {x*} is bounded from Lemma (4.3), then as k — oo, we have

(a:f“x? — x?“xf)Q — 0, Vi,je[m]. (4.13)

Let EY be the extreme point set of the feasible region
{d e R"**"| Bd < w,d > 0}.
By the representation theorem of convex set, EV is finite. Let
E={W(kx"—x7)| (s;x";x7) € E°).

So F is finite and 0 ¢ E. Divide F into several parts E7, Fs, ..., E, such that each part is
a subset of one-dimensional linear space. Define

§ = min{||[Wx;||3|Wxal||3 — (Wx1, Wx2)?| Wxy, Wxy are in different parts}.

Then, § > 0 from the fact that F is finite and nonempty. Hence, it follows from (4.13) that
for sufficiently large k,

B = (W) < 6

Note that the sequence {Wx*} C E. By the definition of §, there exists ko such that the
sequence {Wx*};>, is in a same subset of one-dimensional linear space. Without loss of
generality, we assume that {ka} k>ko C E1. Since I is a subset of one-dimensional linear
space, there exists only one normalized base vector W ~1v* such that Wx* = 6, W~!v* for
all k > ko, where 0y, is a representation coefficient. Consequently, we obtain for all k& > kg,

E_ WQXk -
Wt

*

v v,

which implies that c¢* = ¢* is a constant vector for all k& > ky. This shows that when k
sufficiently large, the cost coefficient vector c¢*, the coefficient matrix B and the right-hand
side w in (4.3) at the kth iteration are constant. Hence, the optimal solution sequence {x*}
will be a constant vector when k large enough. Therefore, there exists an integer N large
enough such that x* = %X when k > N.

(ii) By (i), we assume that {x*} converges to % and hence %X is the optimal solution of
the convex optimization as follows:

W2k
i — A+ A (I = (%, 72 ) )
sy = s+ A(Wxl = (x )

which yields

N N W2x
0 € dlly — Ax[[1 + A (8|WX||1 - ’YW> .

This shows that x is a stationary point of (1.7). |
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Remark 4.5. From the numerical experiments, we see that the iterative number of Algo-
rithm 4.1 is 2 or 3 in general. So, the computational complexity of Algorithm 4.1 is about
O((n + 2m)3-5) when the interior-point method is used to solve the subproblem (4.3).
In addition, if x is an optimal solution of (1.7), the first-order necessary optimality
condition shows
0 € dlly — A%[|1 + A (a||W5<|| - LZX)
y 1 1 Y || W)A(”Q )

which is a necessary and sufficient condition for

. . W2k
X € argmin lly — Ax||1 + A (||Wx|1 — ’y<x, W—&2>) .

Consequently, the corresponding d with % is an optimal solution of (4.3). By Theorem 4.4,
Algorithm 4.1 can produce an optimal solution of (1.7) with high probability.

Construction of the reweighted matrix W and DCA-RPLAD

It follows from Remark 3.7 that the significant elements in primal signal x* could be selected.
To strengthen this option, we know from [8] that the reweighted method wants to give
the weights to approximately become inversely proportional to the true signal magnitude,
and then make the model (1.7) chooses the optimal solution % such that the reweighted
penalization ||[Wx||; — v|[Wx||2 could be regard as an approximation of ||X||¢,.

In this subsection, we detail the way, which is referenced from [8], to construct the
reweighted matrix W and describe an iteration algorithm based on Algorithm 4.1. The
associated parameters are taken as the choice rule given in [8]. Numerical experiments show
that [ hax = 2 is a great selection for the maximum number of iterations.

Algorithm 4.6. DCA-RPLAD

Step 1. Let lyax be a specified maximum number of iterations. Set [ := 1 and W® = I.
Step 2. Solve the following problem using Algorithm 4.1

x € arg min [ly — Ax|s + AW x| o[ Ox2).

Let ig = n/[4log(m/n)] and |xV |, be the igth largest magnitude in |x()|. Set
e = max{|x"|(;,), 107°}.
Step 3. Update the weighted matrix W1 = diag(wilﬂ), e ,wgfl)):

1
w™=_—— ¢ [m].

V) e’

Step 4. Terminate on convergence or when [ = ;.. Otherwise, set [ := 1+ 1 and go to
Step 2.

Numerical Experiments

In this section, we present numerical experiments to demonstrate the efficiency of the DCA-
RPLAD method (see Algorithms 4.1 and 4.6). We will first investigate the effect of different
selections of the penalty level A and the parameter v, and then compare it with the popular
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methods such as Lasso [2, 25] and ¢1-LAD [26] for the high-dimensional sparse linear re-
gression (1.1) in both Gaussian noise case and Cauchy noise case, where the Lasso method
solves (1.3) and the £;-LAD method solves (1.4). Throughout this section, we use ¢ = 1077,
n = 100 and m = 400. We set each row of the design matrix A is generated by N(0,X)
distribution with Toeplitz correlation matrix ;; = 0.5/"=7 and then normalize the jth
column A ; of A such that ||A |2 = /n for all j € [m]. In addition, all codes were written
by using Matlab R2017b and the numerical experiments were done on a laptop with 16 GB
RAM and a 3.60-GHz Intel Core i7 CPU.

Selection of parameters

From theoretical analysis, the choice rule of A is discussed in Proposition 2.2 and ~ is given
in (3.2), but these values are hard to calculate. Now we will investigate the effect of their
different choices on the DCA-RPLAD method from computational viewpoint. We consider
their following special values to investigate the numerical performance of the DCA-RPLAD
method:

A1 =1/0.0lnlogp, Ay =+/0.1Inlogp, A3 = +/0.15n logp, Ay = +/0.5nlogp,

and

As =/ 2nlogp, A¢ = +/4nlogp, 71 =0.25, 72 =0.5, 13 =0.75, 1 =1

In this subsection, we set k = 5 and the primal signal x* with x5, _;,1 < i < 5 being
random numbers between 1 and 10 and other components zero. For each setting, we run
the experiment 100 times in both Gaussian noise case and Cauchy noise case and average
the estimation errors || —x*||2. The obtained numerical results are summarized in Table 1.

Table 1: The average of estimation error ||x* — X||2 over 100 simulations with different A,~y
and noise distributions

Noise distributions "1 Yo Y3 Ya
A\ N(0,1) 0.8497 0.8578 0.8652 0.8774
! Cauchy 28.4543 29.8448 30.5477 30.9958
A\ N(0,1) 0.3122 0.3160 0.3177 0.3208
2 Cauchy 1.2773 1.3248 1.3622 1.4112
A\ N(0,1) 0.2963 0.2956 0.2971 0.2967
3 Cauchy 0.6985 0.7118 0.7386 0.7489
A\ N(0,1) 0.3215 0.3138 0.3055 0.2988
4 Cauchy 0.4951 0.4719 0.4620 0.4534
A\ N(0,1) 0.5339 0.4764 0.4347 0.3912
5 Cauchy 1.43199 1.1496 0.9679 0.8958
A\ N(0,1) 6.4115 4.9274 4.3036 3.9292
6 Cauchy 8.8558 7.9454 7.0776 6.9795

From Table 1 we can see that A; is too small and Ag is too large in Cauchy noise case.
And in Gaussian noise case, the change in estimating error with different A choice is the
same as Cauchy noise case. Obviously, the selections of parameter v will not change the
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estimating error drastically. It can be seen that among the six penalty levels, A3 and A4
have relatively better results in the estimation error ||x* — x||3. According to the numerical
results, we usually choose A = Ay and v = 2, V4.

Numerical performance

In this subsection, we present numerical experiments to demonstrate the efficiency of the
DCA-RPLAD method for the high-dimensional sparse linear regression (1.1) in both Gaus-
sian noise case and Cauchy noise case. We compare it with the Lasso method [2, 25] and
the ¢1-LAD method [26]. For the parameters of the DCA-RPLAD method, we choose the
following setting as the default values:

A=+1/0.5nlogm, v=050r1l, Ilp.x=2.

In the DCA-RPLAD method, if v = 0.5 is adopted, we denote it “RPLAD-half”; if vy =1 is
adopted, we denote it “RPLAD-1”.

For the ¢;-LAD method, we use two penalty levels A = 1/0.5bnlogm and \g = v/2nlogm
which is selected in [26]. If A\ = /0.5nlogm is adopted, we denote the £;-LAD method
“LADLI1-new”; if A = /2nlogm is adopted, we denote “LADLI1-0ld”. For the classical
Lasso method, the standard deviation o is generally known in the Gaussian distribution
case, we choose the o X Ay as the penalty level A\, where the method is denoted as “Lasso”.
In the noiseless case or Cauchy noise case, we use 0.01 x \g or the cross validation to select
the penalty level, where lasso method is denoted as “CV-Lasso”.

For each simulation, we set the sparsity levels kK = 5,7,9,...,17 and set x* as x5, _;,1 <
i < Kk being random numbers between 1 and 10 and other components zero. For each
setting, we run the simulation 200 times in both Gaussian noise N(0,1) and Cauchy noise
C(1,0). We summarizes the average estimation error and variable selection results for the
different distributions. The numerical results about variable selections are reported in Table
2, where “AVERR1” means the average number of significant variables which are unselected
in the 200 simulations, and “AVERR?2” means the average number of insignificant variables
which are selected in 200 simulations. The change of the average value of estimation errors
|Ix* — x||2 is depicted in Figure 2.

The numerical results reported in Table 2 show that for both Gaussian noise and Cauchy
noise, the numerical performance of the DCA-RPLAD method (Algorithm 4.6) in variable
selections is better than the £1-LAD method and the Lasso method. It is worth mentioning
that for Gaussian noise, the performance of the DCA-RPLAD method is best in terms of
“AVERR2”, which shows that this method can usually identify insignificant variables. On
the other hand, for Canchy noise, the DCA-RPLAD method outperforms the other method,
its performance is best on both picking out significant variables and identifying insignificant
variables. In addition, the Lasso method is not suitable for dealing with Canchy noise. But
for Gaussian noise, it can completely pick out significant variables. For both Cauchy noise
and Gaussian noise, the £1-LAD method with the new penalty level outperforms the old one
in picking out significant variables, but the converse in identifying insignificant variables.

It is to see from Figure 2 that the DCA-RPLAD method outperforms than the Lasso
method [2, 25] and the ¢;-LAD method [26]. Especially, the reweighted new penalized LAD
model (1.7) is very suitable for the more sparsity data with Cauchy noise.
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Table 2: The numerical performance in variable selections of the DCA-RPLAD method, the
£1-LAD method and the Lasso method for both Gaussian noise and Cauchy noise

Method | Noise | Error ‘ k=5 k=7 k=9 k=11 k=13 k=16 kK=17
| N, 1) | AVERRL | 0 0 0 0 0 0.020  0.005
RPLAD-half | | AVERR2 | 0 0 0 0.005  0.005 0.030 0.515
| Cauchy | AVERRI | 0.025 0.050 0.055 0.180 0270 0.280  0.435
| | AVERR2 | 0.050 0.070 0.225 0420 0930 2180  8.625
| N(0,1) | AVERRL | 0 0 0 0.005  0.005 0 0.010
RPLAD-1 | | AVERR2 | 0 0 0 0 0 0.005  0.090
| Cauchy | AVERRI | 0.035 0.060 0.035 0.090 0.225 0.355  0.515
| | AVERR2 | 0.025 0.045 0.070 0205 0575 1525 5390
| N(0,1) | AVERRI | 0.010 0.685 3.185 6.195 9.045 11.61  14.02
LADL1-0ld | | AVERR2 | 0.735 1.060 1.060 1.005  0.975  0.970  0.805
| Cauchy | AVERRI | 0.360 1.760 4.355 6.965  9.450  11.90  14.27
| | AVERR2 | 0.830 0.975 0930 0930 0.750 0.835  0.870
| N, 1) | AVERRL | 0 0 0 0 0 0.020  0.105
LADLI-new | | AVERR2 | 20.76 20.50 20.85 20.54  20.17  19.68  19.70
| Cauchy | AVERRL | 0 0015 0035 0120 0335 0470 1185
| | AVERR2 | 20.62 20.78 20.51 20.23 19.78  20.18  19.85

| N(0,1) | AVERRL | 0 0 0 0 0 0 0
Lasso | | AVERR2 | 1.755 2.920 3.955 5.785  7.375  9.400  11.76
| Cauchy | AVERRI | 0.990 1.410 1.960 2410 2760 3.685  3.810
| | AVERR2 | 1043 1027 1014 99.53 9819 9685  95.55

| N, 1) | AVERRL | 0 0 0 0 0 0 0
CV-Lasso | | AVERR2 | 1554 2257 2432 2625 27.17 2657  26.05
| Cauchy | AVERRI | 1.545 2140 2970 3370 3.795 5145 5230
| | AVERR2 | 1244 1510 18.73 2340 26.17 2726  31.70




A NEWLAD MODEL FOR HDSLR 247

@ Conclusions

We have studied the high-dimensional sparse linear regression (1.1). For the purpose of
proposing a new method suitable for data in the presence of outliers and with more sparsity
structure, we adopt the advantages of the LAD method and the nonconvex regularization,
and then present a new penalized LAD method based on the difference of #; and /5 norms. To
enhance the sparsity, we use the reweighted strategy given in [8] and propose the reweighted
penalized LAD method (1.7). From theoretical analysis, we give the choice rule of the
penalty level A and the parameter . Especially, we establish an estimation error bound
(1.8) for the proposed model (1.7). From computational analysis, we propose an iterative
method (Algorithm 4.6) based on a DC-type algorithm (Algorithm 4.1) to solve (1.7). The
largest advantage of Algorithm 4.1 is to solve only one linear program at each iteration. We
prove that the sequence generated by Algorithm 4.1 converges to a stationary point of (1.7).
Numerical results illustrate that our method outperforms some popular methods such as the
Lasso method [2, 25] and the ¢;-LAD method [26] for solving (1.1).
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Figure 2: Estimation errors provided by the six methods for (1.1) with Gaussian noise or
Cauchy noise.





