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Clearly, QEiCP(A,B,C) reduces to EiCP(B,−C) when A = O. The wide applications of
QEiCP attract many scholars to study [3, 4, 15, 23]. When A,B,C are symmetric, QEiCP
(1.2) is symmetric, which has been well studied in [15].

It is well-known that tensor eigenvalue complementarity problem (TEiCP), as a gener-
alization of EiCP (1.1) on higher order matrices [29], has been studied extensively [5, 7, 14,
22, 28, 47, 48]. TEiCP is an emerging subject from the tensor community and has closed
relation with the tensor complementarity problem. Tensor complementarity problem (TCP)
is a class of nonlinear complementarity problems with the involved function being defined by
a tensor [34]. Complementarity problems have been developed well due to the wide applica-
tions in economics, engineering and related fields. In the last few years, TCP has attracted
a lot of attention, and has been studied extensively, from theory [2, 11, 19, 40, 43, 44, 45] to
solution methods [12, 17, 46] and applications [20, 21, 36]. In the last decades, the research
on tensor eigenvalue problems has also received extensive attention [6, 8, 34, 35, 39]. From
the above analysis, we can see that EiCP, TEiCP and TCP are well studied and used widely
in engineering problems and related optimization problems. Naturally, we will think about
whether we can extend QEiCP from matrices to tensors. If yes, how to express the mathe-
matical model of the QEiCP with tensor? Motivated by these questions, we introduce the
tensor quadratic eigenvalue complementarity problem (TQEiCP) in this paper and study
its solvability.

Now, we collect some basic notations and definitions, which will be used in this paper.
A real mth order n-dimensional tensor A = (ai1...im) is a multi-array of real entries ai1...im ,
where ij ∈ Jn for j ∈ Jm, Jm := {1, . . . ,m}. The set of all real mth order n-dimensional
tensors is denoted as R[m,n]. A ∈ R[m,n] is called a symmetric tensor if its entries ai1...im
are invariant under any permutation of its indices. For a vector x = (x1, x2, . . . , xn)

T ∈ Rn

and a tensor A ∈ R[m,n], Axm−1 and x[m−1] are two vectors in Rn with the ith component
defined by

(Axm−1)i =

n∑
i2,...,im=1

aii2...imxi2 . . . xim and (x[m−1])i = xm−1
i ,

respectively. Axm is a value at x of a homogeneous polynomial defined by

Axm =

n∑
i1,...,im=1

ai1i2...imxi1 . . . xim .

Axm−2 is a matrix in Rn×n with its (i, j)-th component defined by

(Axm−2)i,j =

n∑
i3,...,im=1

aiji3...imxi3 . . . xim .

With the above basic notations and definitions, we propose the formal definition of
TQEiCP as follows. Given A,B, C ∈ R[m,n], TQEiCP(A,B, C) is to find (λ, x) ∈ R × Rn

such that 
ω = (λ2A+ λB + C)xm−1,
ω ≥ 0, x ≥ 0,
xTω = 0,
1T
nx = 1,

(1.3)

where 1n = (1, . . . , 1)T ∈ Rn. From the last equality, we know that x ̸= 0. Certainly, the
last equality can be replaced with xTx = 1, which also ensures x ̸= 0. The solution λ of
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(1.3) is called a tensor quadratic complementarity eigenvalue of (A,B, C). TQEiCP(A,B, C)
is called symmetric when A,B, C are symmetric tensors.

We know that QEiCP has rich theoretical results and numerical methods. Here, can we
obtain more interesting and important properties and simple, direct and efficient methods
for TQEiCP (1.3)? Given tensors A,B, C, when does TQEiCP (1.3) have a solution? In the
following of this paper, we will study the above interesting questions about TQEiCP (1.3).
We will give a sufficient condition to guarantee that TQEiCP (1.3) has solutions based on
structured tensors, and we will present a semismooth Newton-type method to solve TQEiCP
(1.3).

The rest of this paper is organized as follows. In Section 2, we recall some definitions and
existing results on tensors and TEiCP. In Section 3, we establish a sufficient condition for
the existence of solutions to TQEiCP (1.3). In Section 4, we propose a Newton-type method
for solving TQEiCP (1.3), and some preliminary numerical results are reported. Finally, we
give some conclusions in Section 5.

2 Preliminaries

In this section, we recall some definitions on tensors and some existing results on TEiCP.
Given A,B ∈ R[m,n], TEiCP(A,B) is to find (λ, x) ∈ R× Rn \ {0} such that ω = (λA− B)xm−1,

ω ≥ 0, x ≥ 0,
xTω = 0.

(2.1)

The solution (λ, x) is called a Pareto eigenvalue-eigenvector pair of (A,B), and λ is called a
complementarity eigenvalue. TEiCP has been also extensively studied [5, 7, 14, 22, 28, 47,
48]. Particularly, Chang [5] extended QEiCP (1.2) from matrix to tensor and introduced a
class of tensor generalized higher-degree eigenvalue complementarity problem (TGHDEiCP).
TGHDEiCP(A,B, C) is to find (λ, x) ∈ R× Rn \ {0} such that (λkA+ λlB + C)xm−1 ≥ 0,

x ≥ 0,
xT (λkA+ λlB + C)xm−1 = 0,

(2.2)

where A,B, C ∈ R[m,n], m is even and k, l are natural numbers satisfying m ≥ k > l ≥ 1. The
(λ, x) satisfying (2.2) is called a (k, l) degree eigenpair of (A,B, C). Note that TGHDEiCP
(2.2) reduces to tensor high-degree eigenvalue complementarity problem (THDEiCP) [28]
and QEiCP when A = O and m = 2, respectively. Chang [5] proved that TGHDEiCP can
be transformed into THDEiCP under some mild conditions and established the relationship
between the solutions of TGHDEiCP and THDEiCP when k = 2l, where l is odd and m is
even. It follows from (1.3) and (2.2) that TQEiCP is a special class of TGHDEiCP. But,
some nice properties of TQEiCP (1.3) can be shown in this paper which differ from those
given in [5]. Moreover, Yan and Ling [47] introduced QEiCP of tensor on second-order cone,
which is to find (λ, x) ∈ R× Rn \ {0} such that

x ∈ K, ω = (λ2A+ λB + C)xm−1 ∈ K, xTω = 0,

where A,B, C ∈ R[m,n], K = Kn1 × Kn2 × · · · × Knr is the second-order cone in Rn with
Σr

i=1ni = n, Kni = {xi = (xi
•, (x

i
◦)

T )T ∈ R × Rni−1|xi
• ≥ ∥xi

◦∥}, and ∥ · ∥ is Euclidean
norm. The authors proposed the the nonlinear programming models related with QEiCPs
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of tensor. Under mild conditions, the authors also proved the relations between the solutions
of QEiCPs of tensor and the optimal solutions or stable points of the corresponding nonlinear
programming problems. In this paper, we will choose an approach with different form to
discuss the solutions of TQEiCP (1.3) without the symmetry assumptions on the tensors
involved in the problem.

In order to establish a sufficient condition for existence of solutions of TQEiCP (1.3)
in the next section, we recall some definitions on tensors. For more details, please refer to
[29, 33, 41, 42] and the references therein.

Definition 2.1. A tensor A ∈ R[m,n] is called a strictly copositive tensor, if Axm > 0 for
any x ∈ Rn \ {0} with x ≥ 0.

Definition 2.2. A tensor A ∈ R[m,n] is called an S0-tensor, if there exists x ∈ Rn \ {0}
with x ≥ 0 such that Axm−1 ≥ 0.

The following proposition was given in [29].

Proposition 2.3. Given A,B ∈ R[m,n] and assume that A is a strictly copositive tensor,
then TEiCP(A,B) is solvable for any B.

In the next section, we will establish a connection between TQEiCP and TEiCP. Based
on the connection, we will give a condition to guarantee the solvability of TQEiCP.

3 The Solvability of TQEiCP

In this section, we present a sufficient condition for the existence of solutions of TQEiCP
(1.3).

We consider TQEiCP (1.3) with A = (ai1...im), B = (bi1...im), C = (ai1...im) ∈ R[m,n].
Define D,G,H ∈ R[m,2n] as

D = (di1i2...im) =

 ai1...im , i1, i2, . . . , im ∈ Jn,
1, i1 = i2 = · · · = im ∈ J2n \ Jn,
0, otherwise,

(3.1)

G = (gi1i2...im) =


−bi1...im , i1, i2, . . . , im ∈ Jn,
−ci1(i2−n)...(im−n), i1 ∈ Jn, i2, . . . , im ∈ J2n \ Jn,
1, i1 ∈ J2n \ Jn, i1 − n = i2 = · · · = im ∈ Jn,
0, otherwise,

(3.2)

H = (hi1i2...im) =


bi1...im , i1, i2, . . . , im ∈ Jn,
−ci1(i2−n)...(im−n), i1 ∈ Jn, i2, . . . , im ∈ J2n \ Jn,
1, i1 ∈ J2n \ Jn, i1 − n = i2 = · · · = im ∈ Jn,
0, otherwise.

(3.3)
The following simple example illustrates the structures of D,G,H defined by (3.1), (3.2)

and (3.3), respectively.

Example 3.1. Let A,B, C ∈ R[3,2] be defined as

A(1, :, :) =

(
1 0
0 −2

)
, A(2, :, :) =

(
−2 0
0 1

)
, B(1, :, :) =

(
1 0
0 −1

)
,
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B(2, :, :) =
(

−1 0
0 1

)
, C(1, :, :) =

(
2 0
0 −2

)
, C(2, :, :) =

(
−2 0
0 2

)
.

Then, it follows from (3.1)-(3.3) that D,G,H take their components as

D(1, :, :) =

(
A(1, :, :) 0

0 0

)
, D(2, :, :) =

(
A(2, :, :) 0

0 0

)
,

D(3, :, :) =

(
0 0
0 E11

)
, D(4, :, :) =

(
0 0
0 E22

)
,

G(1, :, :) =
(

−B(1, :, :) 0
0 −C(1, :, :)

)
, G(2, :, :) =

(
−B(2, :, :) 0

0 −C(2, :, :)

)
,

G(3, :, :) =
(

E11 0
0 0

)
, G(4, :, :) =

(
E22 0
0 0

)
,

H(1, :, :) =

(
B(1, :, :) 0

0 −C(1, :, :)

)
, H(2, :, :) =

(
B(2, :, :) 0

0 −C(2, :, :)

)
,

H(3, :, :) =

(
E11 0
0 0

)
, H(4, :, :) =

(
E22 0
0 0

)
,

where 0 ∈ R2×2 denotes zero matrix and Eii ∈ R2×2 denotes the matrix whose entries are
0 except (i, i)-element being 1 for i = 1, 2.

Consider TEiCP(D,G), which is to find (λ, z) ∈ R× R2n such that
ω = (λD − G)zm−1,
ω ≥ 0, z ≥ 0,
zTω = 0,
1T
2nz = 1.

(3.4)

Let z = (u1, u2, . . . , un, v1, . . . , vn)
T . With the structures of D and G, the entries of ω ∈ R2n

are given by (3.4) as follows

ωi =

{
((λA+ B)um−1 + Cvm−1)i, i ∈ Jn,
λvm−1

i−n − um−1
i−n , i ∈ J2n \ Jn.

(3.5)

Then we have

zTω = (λA+ B)um + uT Cvm−1 + vT (λv[m−1] − u[m−1]). (3.6)

Similarly, TEiCP(D,H) is to find (λ, z) ∈ R× R2n such that
ω = (λD −H)zm−1,
ω ≥ 0, z ≥ 0,
zTω = 0,
1T
2nz = 1.

(3.7)

Let z = (u1, u2, . . . , un, v1, . . . , vn)
T . With the structures of D and H, the entries of ω ∈ R2n

in (3.7) are given as follows

ωi =

{
((λA− B)um−1 + Cvm−1)i, i ∈ Jn,
λvm−1

i−n − um−1
i−n , i ∈ J2n \ Jn.

(3.8)
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Then we have

zTω = (λA− B)um + uT Cvm−1 + vT (λv[m−1] − u[m−1]). (3.9)

Next we establish a relationship between the solution sets of TQEiCP (1.3) and
TEiCP(D,G), TEiCP(D,H), respectively.

Proposition 3.2. Suppose that (λ, x) ∈ R× Rn is a solution of TQEiCP(A,B, C) given in
(1.3) and D,G,H ∈ R[m,2n] are defined by (3.1), (3.2) and (3.3), respectively. Then we have
the following statements:

(i) If λ = 0, then (λ, z), with z = (0, x) ∈ R2n, solves both TEiCP(D,G) and TEiCP(D,H).

(ii) If λ > 0, then (λ, z), with z = (1 + λ
1

m−1 )−1(λ
1

m−1x, x) ∈ R2n, solves TEiCP(D,G).

(iii) If λ < 0, then (−λ, z), with z = (1 + (−λ)
1

m−1 )−1((−λ)
1

m−1x, x) ∈ R2n, solves
TEiCP(D,H).

Proof. For (i), we need to verify whether (0, (0, x)) satisfies both (3.4) and (3.7) or not. Com-
bining (3.5), (3.6), (3.8) and (3.9), we only need to check whether the following formulation
holds:

Cxm−1 ≥ 0, x ≥ 0, Cxm = 0, 1T
nx = 1. (3.10)

Since (0, x) satisfies (1.3), it is obvious that (3.10) holds.

For (ii), we need to verify whether (λ, z) ∈ R × R2n with z = (1 + λ
1

m−1 )−1(λ
1

m−1x, x)
satisfies (3.4). Combining (3.5) and (3.6), it is equivalent to verifying whether the following
system of inequalities holds:

(1 + λ
1

m−1 )1−m(λ2A+ λB + C)xm−1 ≥ 0,

(1 + λ
1

m−1 )1−m(λxm−1
j − λxm−1

j ) ≥ 0,

λ
1

m−1

(1+λ
1

m−1 )m
(λ2A+ λB + C)xm = 0,

1T
nx = 1, x ≥ 0.

(3.11)

Since (λ, x) with λ > 0 satisfies (1.3), we immediately obtain (3.11).

For (iii), since (λ, x) with λ < 0 satisfies (1.3), we have (−λ, x) being a solution of
TQEiCP(A,−B, C). By (ii) and −λ > 0, we can replace λ with −λ and B with −B in (3.5)
and (3.6), and then we immediately obtain (3.8) and (3.9). Hence, we get the desired result
in (iii) by taking into account the definitions of z and H.

Proposition 3.3. Let TQEiCP(A,B, C) be given in (1.3) and D,G,H ∈ R[m,2n] be defined
by (3.1), (3.2) and (3.3), respectively. Then the following statements holds:

(i) If (λ, z) is a solution of TEiCP(D,G) with z = (y, x) ∈ Rn×Rn and λ ̸= 0, then λ > 0

and (λ, (1 + λ
1

m−1 )x) is a solution of TQEiCP(A,B, C).

(ii) If (λ, z) is a solution of TEiCP(D,H) with z = (y, x) ∈ Rn × Rn and λ ̸= 0, then

λ > 0 and (−λ, (1 + λ
1

m−1 )x) is a solution of TQEiCP(A,B, C).
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Proof. Let x∗ = (1 + λ
1

m−1 )x. To prove (i), we need to confirm whether we can get x∗ ≥ 0, (λ2A+ λB + C)xm−1
∗ ≥ 0,

(λ2A+ λB + C)xm
∗ = 0,

1T
nx∗ = 1.

(3.12)

Since (λ, z) satisfies (3.4), it follows from (3.5) that (λA+ B)ym−1 + Cxm−1 ≥ 0, λx[m−1] − y[m−1] ≥ 0, y ≥ 0, x ≥ 0,
yT ((λA+ B)ym−1 + Cxm−1) + xT (λx[m−1] − y[m−1]) = 0,
1T
ny + 1T

nx = 1.
(3.13)

Since λx[m−1] − y[m−1] ≥ 0, y ≥ 0, x ≥ 0 and λ ̸= 0, we have λ > 0. From the first two
expressions in (3.13), we get

xT (λx[m−1] − y[m−1]) = 0.

Hence, xi(λx
m−1
i − ym−1

i ) = 0 for all i ∈ Jn. If xi > 0, then λxm−1
i − ym−1

i = 0 which

implies that yi = λ
1

m−1xi. If xi = 0, we have −yi ≥ 0 from λxm−1
i − ym−1

i ≥ 0. It follows

from the fact y ≥ 0 that yi = 0. Hence, yi = λ
1

m−1xi also holds in this case. Thus, we have

λ > 0 and y = λ
1

m−1x. By (3.13) and the definition of x∗, (3.12) holds.

We next prove (ii). Since the difference between G and H is the sign of B, it follows from
(i) that λ > 0 and (λ, (1+λ

1
m−1 )x) solves TQEiCP(A,−B, C). Therefore, (−λ, (1+λ

1
m−1 )x)

is a solution of TQEiCP(A,B, C).

We have some remarks on Propositions 3.2 and 3.3.

Remark 3.4. Propositions 3.2 and 3.3 show the following results on complementarity eigen-
values:

(i) Each tensor quadratic complementarity eigenvalue for (A,B, C) is either a complemen-
tarity eigenvalue for (D,G) or a complementarity eigenvalue for (D,H).

(ii) All nonzero complementarity eigenvalues for (D,G) are positive, and are tensor
quadratic complementarity eigenvalues for (A,B, C).

(iii) All nonzero complementarity eigenvalues for (D,H) are positive, and their additive
inverse are tensor quadratic complementarity eigenvalues for (A,B, C).

Remark 3.5. The conclusions of Propositions 3.2 and 3.3 can also be extended to TGHDE-
iCP (2.2). Consequently, we have the following conclusions for TGHDEiCP (2.2):

(i) Every (k, l) degree eigenvalue for (A,B, C) is either an l degree eigenvalue for (D,G)
or a complementarity eigenvalue for (D,H).

(ii) All nonzero l (l is odd and k = 2l) degree eigenvalues for (D,G) are positive, and are
tensor quadratic complementarity eigenvalues for (A,B, C).

(iii) All nonzero l (l is odd and k = 2l) degree eigenvalues for (D,H) are positive, and
their additive inverse are tensor quadratic complementarity eigenvalues for (A,B, C).
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Clearly, Propositions 3.2 and 3.3 provide us a way to establish a sufficient condition for
the existence of solutions of TQEiCP (1.3). It is equivalent to find a sufficient condition for
the solvability of TEiCP(D,G) or TEiCP(D,H). We also need to impose some conditions
to guarantee that 0 is a tensor quadratic complementarity eigenvalue of (A,B, C) or that
0 is a complementarity eigenvalue of neither (D,G) nor (D,H). Thus, by Proposition 2.3
and Definition 2.2, we can obtain a sufficient condition for existence of solutions of TQEiCP
(1.3). We first propose the following lemma.

Lemma 3.6. Given A,B, C ∈ R[m,n] and let D,G,H ∈ R[m,2n] be defined as (3.1), (3.2)
and (3.3), respectively. Suppose that tensor C is not an S0-tensor, then 0 is neither a tensor
complementarity eigenvalue of (D,G) nor that of (D,H).

Proof. Suppose by contradiction that 0 is a complementarity eigenvalue of TEiCP(D,G)
and the corresponding complementarity eigenvector is z = (u, v) ∈ Rn × Rn. Then, (0, z)
satisfies (3.4). Combining (3.4) and (3.5), we have{

Bum−1 + Cvm−1 ≥ 0,
u ≥ 0, v ≥ 0, −u[m−1] ≥ 0.

(3.14)

The second inequality in (3.14) yields u = 0. Since z = (u, v) ̸= 0, we have v ̸= 0.
Furthermore, the first inequality in (3.14) implies that there exists a vector v ∈ Rn \ {0}
with v ≥ 0 such that Cvm−1 ≥ 0 holds. By Definition 2.2, C is an S0-tensor, which contradicts
with the hypothesis that C is not an S0-tensor. Hence, 0 is not a complementarity eigenvalue
of (D,G). Similarly, we can easily prove that the conclusion also holds for (D,H).

Given TQEiCP(A,B, C), the following theorem shows that it is solvable under the as-
sumptions that A is a strictly copositive tensor and C is not an S0-tensor.

Theorem 3.7. For any given tensors A,B, C ∈ R[m,n], assume that A is a strictly copositive
tensor and C is not an S0-tensor, then TQEiCP (1.3) has a solution. Moreover, (A,B, C)
admits at least one positive tensor quadratic complementarity eigenvalue and one negative
tensor quadratic complementarity eigenvalue.

Proof. By (3.1), we know that strict copositivity of A implies strict copositivity of D. Hence,
by Proposition 2.3, TEiCP(D,G) and TEiCP(D,H) are solvable. Since C is not an S0-
tensor, by Lemma 3.6, (D,G) and (D,H) have nonzero tensor complementarity eigenvalues.
By Proposition 3.3, there exist at least one positive and one negative tensor quadratic
complementarity eigenvalue for (A,B, C).

4 Method and numerical results

In this section, firstly, we also collect some definitions and results from [10, 13, 30, 32], which
will be used in the sequel.

Let G : Rn → Rn be locally Lipschitzian. The B-subdifferential of G at x is defined as

∂BG(x) = {H : ∃xk, xk ∈ DG, limxk→xG
′(xk) = H},

where DG is the differentiable set of G. The Clarke subdifferential of G at x is defined as

∂G(x) = co∂BG(x),

where co denotes the convex hull of a set. The related definitions of semismooth function
and strongly semismooth function are also can be found in [30, 32]. We also know that a
semismooth function G is BD-regular at x if all H ∈ ∂BG(x) are nonsingular.
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From [10, 13, 30, 32], we can see that the semismooth Newton-type method is a class
of effective methods for solving linear and nonlinear complementarity problems. Next, we
will apply a semismooth Newton-type method to solve TQEiCP (1.3) and will give some
preliminary numerical results. Now, we rewrite TQEiCP (1.3) as follows: Find (λ, x, y) ∈
R× Rn × Rn such that

y = (λ2A+ λB + C)xm−1 ≥ 0, x ≥ 0, xT y = 0, 1T
nx = 1. (4.1)

Define a function Φ : R2n+1 → R2n+1 by

Φ(z) = Φ(x, y, λ) :=

 ϕ(x, y)
(λ2A+ λB + C)xm−1 − y

1T
nx− 1

 , (4.2)

where ϕ(x, y) = (φ(x1, y1), . . . , φ(xn, yn))
T with [16]

φ(xi, yi) = xi + yi −
√

x2
i + y2i ∀i ∈ Jn.

It is obvious that Φ(z) = 0 at a point z = (x, y, λ) if and only if z is a solution of (4.1).
Since the function Φ is semismooth for any (x, y, λ) ∈ R2n+1, we can apply semismooth
Newton-type methods to solve the system of semismooth equations Φ(z) = 0.

In order to introduce the framework of a semismooth Newton-type method, we also need
some existing results on tensor function. For any tensor A = (ai1...im) ∈ R[m,n] and a
vector x ∈ Rn, by [31, Lemma 2.1], there is the unique semi-symmetric tensor Â ∈ R[m,n]

such that Âxm−1 = Axm−1 for all x ∈ Rn. Hence, we always assume that A ∈ Tm,n is
semi-symmetric. By [31, Lemma 3.3], the Jacobian of Axm−1 at x is given by

(m− 1)Axm−2. (4.3)

Define a merit function for (4.2)

Ψ(z) =
1

2
∥Φ(z)∥2.

Clearly, Ψ is continuously differential for any z ∈ R2n+1. From (4.3), the gradient of Ψ at z
is given by

∇Ψ(z) = HTΦ(z),

where

H ∈ ∂Φ(z) =

 Da Db 0
(m− 1)(λ2A+ λB + C)xm−2 −I (2λA+ B)xm−1

1T
n 0 0

 ,

and
Da := diag{a1, . . . , an}, Db := diag{b1, . . . , bn},

with

(ai, bi) :=

{
(1− xi√

x2
i+y2

i

, 1− yi√
x2
i+y2

i

), if(xi, yi) ̸= (0, 0),

(1− ζ, 1− ς), if(xi, yi) = (0, 0),

where (ζ, ς) satisfies ∥(ζ, ς)∥ ≤ 1, for any i ∈ Jn.
Now, we give the following method.

Algorithm 4.1 (A semismooth Newton-type method)
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Step 0 Choose ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2 and ϵ ≥ 0. Let z0 ∈ R2n+1 be an
arbitrary vector. Set k := 0.

Step 1 If ∥Φ(zk)∥ ≤ ϵ, stop.

Step 2 Choose an element Hk ∈ ∂Φ(zk) and compute ∆zk = (∆xk,∆yk,∆λk) ∈ Rn ×
Rn × R by

Hk∆zk = −Φ(zk). (4.4)

If the system (4.4) has no solution or the following condition

∇Ψ(zk)T∆zk ≤ −ρ∥∆zk∥p

is not satisfied, set ∆zk := −∇Ψ(zk).

Step 3 Let αk be the maximum of the values {1, β, β2, . . . } such that

Ψ(zk + αk∆zk) ≤ Ψ(zk) + σαk∇Ψ(zk)T∆zk.

Step 4 Set zk+1 := zk + αk∆zk and k := k + 1. Go to Step 1.

The above algorithmic framework was proposed in [30]. We also have the following
convergence theorem from [30, Theorem 11].

Theorem 4.1. Let sequence {zk} be generated by Algorithm 4.1. If Φ defined as (4.2) is
BD-regular, then any accumulation point of {zk} is a stationary point of Ψ and hence a
solution of TQEiCP(A,B, C).

In the following, we give some preliminary numerical results of Algorithm 4.1. From
these numerical results, we can see that Algorithm 4.1 is effective for solving TQEiCPs.
By referring to some examples in [29], we construct some numerical examples for TQEiCP.
Throughout our experiments, the parameters used in Algorithm 4.1 are chosen as ϵ = 10−6,
ρ = 0.1, β = 0.2, σ = 0.4 and p = 2.1. We also set a maximum iteration step for the
algorithm, i.e., Nmax= 500. In our numerical experiments, all codes are run in Matlab
Version R2014a and Tensor Toolbox on a laptop with an Intel(R) Core(TM) i5-2520M
CPU(2.50GHz) and RAM of 4.00GB.

Example 4.2. Consider TQEiCP (1.3) with symmetric tensors A,B, C ∈ R[4,2] and C = −A,
where A,B are given by

A(:, :, 1, 1) =

(
1.6324 1.1880
1.1880 1.5469

)
, A(:, :, 1, 2) =

(
1.1880 1.5469
1.5469 1.9340

)
,

A(:, :, 2, 1) =

(
1.1880 1.5469
1.5469 1.9340

)
, A(:, :, 2, 2) =

(
1.5469 1.9340
1.9340 1.0318

)
,

B(:, :, 1, 1) =
(

0.8147 0.5164
0.5164 0.9134

)
, B(:, :, 1, 2) =

(
0.5164 0.9134
0.9134 0.9595

)
,

B(:, :, 2, 1) =
(

0.5164 0.9134
0.9134 0.9595

)
, B(:, :, 2, 2) =

(
0.9134 0.9595
0.9595 0.3922

)
.

We use Algorithm 4.1 to solve the corresponding TQEiCP (1.3) with random initial point
(λ0, x0) uniformly distributed in (0, 1) and y0 = ((λ0)2A+λ0B+C)(x0)m−1. In order to get
all possible solutions, 50 random initial points are used. The numerical results are reported
in Table 1, where No denotes number of each solution detected by the method within 50
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Table 1: The numerical results of Example 4.2

No Eigvalue Eigvector Niter Time(sec.)
28 0.8278 (0.0000, 1.0000)T 12.3 0.3559
10 0.7851 (0.9911, 0.1330)T 9.1 0.2229
7 0.7750 (0.7045, 0.7097)T 6.8 0.1767
1 -1.2802 (1.0000, 0.0000)T 42 1.3185
4 failure

random initial points. Eigvalue denotes the tensor quadratic eigenvalue, Eigvector denotes
the corresponding eigenvector, Niter denotes the average number of iterations, and Time
denotes the average elapsed CPU time in seconds.

From Table 1, we can see that Algorithm 4.1 is able to detect three positive tensor
quadratic complementarity eigenvalues, and one negative tensor quadratic complementarity
eigenvalue. We also find that Algorithm 4.1 has 8% points which can not detect the tensor
quadratic complementarity eigenvalues for (A,B, C) in Example 4.2.

Example 4.3. Consider TQEiCP (1.3) with symmetric tensors A,B, C ∈ R[4,2], where
A,B, C are given by

A(:, :, 1, 1) =

(
0.0109 0.4967
0.4967 0.5465

)
, A(:, :, 1, 2) =

(
0.4967 0.5465
0.5465 0.4407

)
,

A(:, :, 2, 1) =

(
0.4967 0.5465
0.5465 0.4407

)
, A(:, :, 2, 2) =

(
0.5465 0.4407
0.4407 0.4074

)
,

B(:, :, 1, 1) =
(

0.4873 0.6825
0.6825 0.2822

)
, B(:, :, 1, 2) =

(
0.6825 0.2822
0.2822 0.3345

)
,

B(:, :, 2, 1) =
(

0.6825 0.2822
0.2822 0.3345

)
, B(:, :, 2, 2) =

(
0.2822 0.3345
0.3345 0.1159

)
,

C(:, :, 1, 1) = −
(

0.8147 0.6557
0.6557 0.5615

)
, C(:, :, 1, 2) = −

(
0.6557 0.5615
0.5615 0.7008

)
,

C(:, :, 2, 1) = −
(

0.6557 0.5615
0.5615 0.7008

)
, C(:, :, 2, 2) = −

(
0.5615 0.7008
0.7008 0.1419

)
.

We use Algorithm 4.1 to solve the corresponding TQEiCP (1.3) with 50 random initial
points (λ0, x0) uniformly distributed in (0, 1) and y0 = ((λ0)2A+λ0B+C)(x0)m−1. The last
equality 1T

nx = 1 in (1.3) is used to ensure x ̸= 0. We find that this condition is ill-condition
for (4.4). Here, we use xTx = 1 to replace 1T

nx = 1 to ensure x ̸= 0. The numerical results
with different initial points are reported in Table 2.

From Table 2, we can see that Algorithm 4.1 is able to detect three positive tensor
quadratic complementarity eigenvalues. We also find that Algorithm 4.1 has 24% points
which can not detect the tensor quadratic complementarity eigenvalues for (A,B, C) in Ex-
ample 4.3.

Example 4.4. Consider TQEiCP (1.3) with symmetric tensors A,B, C ∈ R[6,2], where
A,B, C are given by

A(:, :, 1, 1, 1, 1) =

(
0.1518 0.4321
0.4321 0.4093

)
, A(:, :, 1, 1, 1, 2) =

(
0.4321 0.4093
0.4093 0.3593

)
,
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Table 2: The numerical results of Example 4.3

No Eigvalue Eigvector Niter Time(sec.)
19 0.7994 (0.5039, 0.8637)T 10.7 0.3869
15 0.7933 (0.7636, 0.6457)T 11.2 0.4341
4 1.6140 (1.0000, 0.0000)T 10 0.3728
12 failure

A(:, :, 1, 1, 2, 1) =

(
0.4321 0.4093
0.4093 0.3593

)
, A(:, :, 1, 1, 2, 2) =

(
0.4093 0.3593
0.3593 0.4671

)
,

A(:, :, 1, 2, 1, 1) =

(
0.4321 0.4093
0.4093 0.3593

)
, A(:, :, 1, 2, 1, 2) =

(
0.4093 0.3593
0.3593 0.4671

)
,

A(:, :, 1, 2, 2, 1) =

(
0.4093 0.3593
0.3593 0.4671

)
, A(:, :, 1, 2, 2, 2) =

(
0.3593 0.4671
0.4671 0.2735

)
,

A(:, :, 2, 1, 1, 1) =

(
0.3593 0.4671
0.4671 0.2735

)
, A(:, :, 2, 1, 1, 2) =

(
0.4093 0.3593
0.3593 0.4671

)
,

A(:, :, 2, 1, 2, 1) =

(
0.4093 0.3593
0.3593 0.4671

)
, A(:, :, 2, 1, 2, 2) =

(
0.3593 0.4671
0.4671 0.2735

)
,

A(:, :, 2, 2, 1, 1) =

(
0.4093 0.3593
0.3593 0.4671

)
, A(:, :, 2, 2, 1, 2) =

(
0.3593 0.4671
0.4671 0.2735

)
,

A(:, :, 2, 2, 2, 1) =

(
0.3593 0.4671
0.4671 0.2735

)
, A(:, :, 2, 2, 2, 2) =

(
0.4671 0.2735
0.2735 0.9138

)
,

B(:, :, 1, 1, 1, 1) =
(

0.0366 0.7056
0.7056 0.5357

)
, B(:, :, 1, 1, 1, 2) =

(
0.7056 0.5357
0.5357 0.5043

)
,

B(:, :, 1, 1, 2, 1) =
(

0.4321 0.4093
0.4093 0.3593

)
, B(:, :, 1, 1, 2, 2) =

(
0.5357 0.5043
0.5043 0.5231

)
,

B(:, :, 1, 2, 1, 1) =
(

0.4321 0.4093
0.4093 0.3593

)
, B(:, :, 1, 2, 1, 2) =

(
0.5357 0.5043
0.5043 0.5231

)
,

B(:, :, 1, 2, 2, 1) =
(

0.5357 0.5043
0.5043 0.5231

)
, B(:, :, 1, 2, 2, 2) =

(
0.5043 0.5231
0.5231 0.3836

)
,

B(:, :, 2, 1, 1, 1) =
(

0.4321 0.4093
0.4093 0.3593

)
, B(:, :, 2, 1, 1, 2) =

(
0.5357 0.5043
0.5043 0.5231

)
,

B(:, :, 2, 1, 2, 1) =
(

0.5357 0.5043
0.5043 0.5231

)
, B(:, :, 2, 1, 2, 2) =

(
0.5043 0.5231
0.5231 0.3836

)
,

B(:, :, 2, 2, 1, 1) =
(

0.5357 0.5043
0.5043 0.5231

)
, B(:, :, 2, 2, 1, 2) =

(
0.5043 0.5231
0.5231 0.3836

)
,

B(:, :, 2, 2, 2, 1) =
(

0.5043 0.5231
0.5231 0.3836

)
, B(:, :, 2, 2, 2, 2) =

(
0.5231 0.3836
0.3836 0.0875

)
,

C(:, :, 1, 1, 1, 1) = −
(

0.6401 0.3181
0.3181 0.5562

)
, C(:, :, 1, 1, 1, 2) = −

(
0.3181 0.5562
0.5562 0.5425

)
,

C(:, :, 1, 1, 2, 1) = −
(

0.3181 0.5562
0.5562 0.5425

)
, C(:, :, 1, 1, 2, 2) = −

(
0.5562 0.5425
0.5425 0.5029

)
,

C(:, :, 1, 2, 1, 1) = −
(

0.3181 0.5562
0.5562 0.5425

)
, C(:, :, 1, 2, 1, 2) = −

(
0.5562 0.5425
0.5425 0.5029

)
,

C(:, :, 1, 2, 2, 1) = −
(

0.5562 0.5425
0.5425 0.5029

)
, C(:, :, 1, 2, 2, 2) = −

(
0.5425 0.5029
0.5029 0.6992

)
,

C(:, :, 2, 1, 1, 1) = −
(

0.3181 0.5562
0.5562 0.5425

)
, C(:, :, 2, 1, 1, 2) = −

(
0.5562 0.5425
0.5425 0.5029

)
,
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C(:, :, 2, 1, 2, 1) = −
(

0.5562 0.5425
0.5425 0.5029

)
, C(:, :, 2, 1, 2, 2) = −

(
0.5425 0.5029
0.5029 0.6992

)
,

C(:, :, 2, 2, 1, 1) = −
(

0.5562 0.5425
0.5425 0.5029

)
, C(:, :, 2, 2, 1, 2) = −

(
0.5425 0.5029
0.5029 0.6992

)
,

C(:, :, 2, 2, 2, 1) = −
(

0.5425 0.5029
0.5029 0.6992

)
, C(:, :, 2, 2, 2, 2) = −

(
0.5029 0.6992
0.6992 0.5118

)
.

We use Algorithm 4.1 to solve the corresponding TQEiCP (1.3) with 50 random initial
points (λ0, x0) uniformly distributed in (0, 1) and y0 = ((λ0)2A+λ0B+C)(x0)m−1. Here, we
also use xTx = 1 to replace 1T

nx = 1 to ensure x ̸= 0. The numerical results with different
initial points are reported in Table 3.

Table 3: The numerical results of Example 4.4

No Eigvalue Eigvector Niter Time(sec.)
19 0.7919 (0.1795, 0.9838)T 15.7 0.7150
19 0.6412 (0.9074, 0.4202)T 19.3 0.8152
12 failure

From Table 3, we can see that Algorithm 4.1 is able to detect two positive tensor quadratic
complementarity eigenvalues. We also find that Algorithm 4.1 has 24% points which can
not detect the tensor quadratic complementarity eigenvalues for (A,B, C) in Example 4.4.

Example 4.5. Consider TQEiCP (1.3) with symmetric tensors A,B, C ∈ R[4,3], where
C = −A and A,B are given by

A(:, :, 1, 1) =

 0.6954 0.4018 0.1406
0.4018 0.9957 0.0483
0.1406 0.0483 0.0988

 , A(:, :, 1, 2) =

 0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665

 ,

A(:, :, 1, 3) =

 0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390

 , A(:, :, 2, 2) =

 0.3608 0.3941 0.5230
0.3941 0.6822 0.5516
0.5230 0.5516 0.7091

 ,

A(:, :, 2, 3) =

 0.4632 0.2043 0.2823
0.2043 0.7282 0.7400
0.2823 0.7400 0.9369

 , A(:, :, 3, 3) =

 0.8200 0.5914 0.4983
0.5914 0.0762 0.2854
0.4983 0.2854 0.1266

 ,

B(:, :, 1, 1) =

 0.6229 0.2644 0.3567
0.2644 0.0475 0.7367
0.3567 0.7367 0.1259

 , B(:, :, 1, 2) =

 0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725

 ,

B(:, :, 1, 3) =

 0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711

 , B(:, :, 2, 2) =

 0.7689 0.3941 0.6034
0.3941 0.3577 0.3465
0.6034 0.3465 0.4516

 ,

B(:, :, 2, 3) =

 0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608

 , B(:, :, 3, 3) =

 0.7581 0.7205 0.9044
0.7205 0.0782 0.7240
0.9044 0.7240 0.3492


We use Algorithm 4.1 to solve the corresponding TQEiCP(A,B, C) (1.3) with 50 random

initial points (λ0, x0) uniformly distributed in (0, 1) and y0 = ((λ0)2A + λ0B + C)(x0)m−1.
The numerical results with different initial points are reported in Table 4.

From Table 4, we can see that Algorithm 4.1 is able to detect three positive tensor
quadratic complementarity eigenvalues and one negative tensor quadratic complementarity
eigenvalue. We also find that Algorithm 4.1 has 56% points which can not detect the tensor
quadratic complementarity eigenvalues for (A,B, C) in Example 4.5.
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Table 4: The numerical results of Example 4.5

No Eigvalue Eigvector Niter Time(sec.)
12 0.4898 (0.1769, 0.1262, 0.6969)T 27.6 0.8023
4 0.7716 (0.0000, 1.0000, 0.0000)T 6.8 0.2303
5 0.5267 (0.0000, 0.1998, 0.8002)T 11.6 0.3481
1 -2.0418 (0.1767, 0.1262, 0.6971)T 38 1.2279
28 failure

Example 4.6. Consider TQEiCP (1.3) with symmetric tensors A,B, C ∈ R[9,4], where
A,B, C are randomly generated by using the following commands

X=tenrand([4, 4, 4, 4, 4, 4, 4, 4, 4]);A=symmetrize(X)

Y=tenrand([4, 4, 4, 4, 4, 4, 4, 4, 4]);B=symmetrize(Y )

Z=tenrand([4, 4, 4, 4, 4, 4, 4, 4, 4]);C=symmetrize(Z)

We use Algorithm 4.1 to solve the corresponding TQEiCP (1.3) with 50 random initial
points (λ0, x0) uniformly distributed in (0, 1) and y0 = ((λ0)2A + λ0B + C)(x0)m−1. Here,
we use xTx = 1 to replace 1T

nx = 1 to ensure x ̸= 0. The numerical results with different
initial points are reported in Table 5. From Table 5, we can see that Algorithm 4.1 is able
to detect one positive tensor quadratic complementarity eigenvalue.

Table 5: The numerical results of Example 4.6

No Eigvalue Eigvector Niter Time(sec.)
5 0.6181 (0.5296, 0.1064, 0.5627, 0.6257)T 35.6 18.0563
45 failure

Example 4.7. Consider TQEiCP (1.3) with symmetric tensors A,B, C ∈ R[4,10], where
A,B, C are randomly generated by using the following commands

X=tenrand([10, 10, 10, 10]);A=symmetrize(X)

Y=tenrand([10, 10, 10, 10]);B=symmetrize(Y )

Z=tenrand([10, 10, 10, 10]);C=symmetrize(Z)

We use Algorithm 4.1 to solve the corresponding TQEiCP (1.3) with 50 random initial
points (λ0, x0) uniformly distributed in (0, 1) and y0 = ((λ0)2A + λ0B + C)(x0)m−1. Here,
we use xTx = 1 to replace 1T

nx = 1 to ensure x ̸= 0. The numerical results with different
initial points are reported in Table 6.

From Table 6, we can see that Algorithm 4.1 is able to detect seven approximate positive
tensor quadratic complementarity eigenvalue. We also find that Algorithm 4.1 has 86%
points which can not detect the tensor quadratic complementarity eigenvalues for (A,B, C)
in Example 4.7.
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Table 6: The numerical results of Example 4.7

No Eigvalue Eigvector Niter Time(sec.)
1 0.6516 (0.1877, 0.0212, 0.0000, 0.1956, 0.0000, 0.7778, 0.0000, 0.1432, 0.0000, 0.5482)T 15 1.4591

1 0.6302 (0.6527, 0.5674, 0.0000, 0.1135, 0.0000, 0.0869, 0.4812, 0.0000, 0.0000, 0.0078)T 18 1.7809

1 0.6334 (0.4921, 0.0157, 0.0000, 0.0000, 0.0000, 0.5855, 0.0000, 0.1883, 0.4926, 0.3698)T 9 0.8143

1 0.6292 (0.7503, 0.3593, 0.0000, 0.0837, 0.0000, 0.1520, 0.5271, 0.0000, 0.0000, 0.0000)T 22 2.2438

1 0.6153 (0.5456, 0.2394, 0.0000, 0.0590, 0.5186, 0.0000, 0.6104, 0.0000, 0.0000, 0.0000)T 8 0.6169

1 0.6880 (0.0000, 0.0000, 0.0569, 0.9756, 0.0000, 0.2048, 0.0000, 0.0550, 0.0000, 0.0000)T 183 20.0649

1 0.6227 (0.0000, 0.0000, 0.0000, 0.7463, 0.2747, 0.1558, 0.0000, 0.2529, 0.5258, 0.0218)T 9 0.6709

43 failure

5 Conclusions

In this paper, we proposed a class of TQEiCPs, which is an interesting extension of a class
of QEiCPs on tensors. We showed that this problem can be reduced to two corresponding
TEiCPs. Based on this result, we established a sufficient condition for the existence of
solutions of this problem. For any given TQEiCP(A,B, C), if A is a strictly copositive
tensor and C is not an S0-tensor, then TQEiCP(A,B, C) is soluble. Finally, we reformulated
TQEiCP(A,B, C) as an equivalent seimsmooth equation and applied a semismooth Newton-
type method to solve it. Some preliminary numerical results showed the efficiency of the
proposed method.
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