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of VI(A,C) [17]. To reduce the convergence conditions, Korpelevich [24] introduced the
extragradient algorithm: 

x0 ∈ C

yk = PC

(
xk − λA(xk)

)
xk+1 = PC

(
xk − λA(yk)

)
.

(1.2)

This algorithm is convergent under the assumption that A is pseudomonotone and Lipschitz
continuous. One drawback of the extragradient algorithm is that it requires to compute the
projection onto C two times per iteration. When the feasible set C has complicated form
and its projection is computationally expensive, this drawback may seriously affect to the
performance of the algorithm. To over come this drawback, Censor et al. [10] proposed the
subgradient extragradient algorithm, replacing the second projection onto C in (1.2) by the
one onto a half space:

x0 ∈ C

yk = PC

(
xk − λA(xk)

)
Tk =

{
z ∈ Rm :

⟨
xk − λA(xk)− yk, z − yk

⟩
≤ 0

}
xk+1 = PTk

(
xk − λA(yk)

)
.

(1.3)

Since the projection onto Tk has an explicit form and can be computed easily, (1.3) can be
considered as an one-projection algorithm. When A is monotone and Lipschitz continuous on
Rm, the sequence {xk} is convergent to a desired solution. Another one-projection algorithm
with the same assumption is the Tseng’s one [30]:

x0 ∈ C

yk = PC

(
xk − λA(xk)

)
xk+1 = yk + λ

[
A(xk)−A(yk)

]
.

(1.4)

Compared to (1.2), both the algorithms (1.3) and (1.4) are more advanced from a compu-
tational point of view. However, these algorithms have a disadvantage: they require the
mapping A being Lipschitz continuous on the whole space. This is a rather strict condition.

On the other hand, in [28] Solodov and Svaiter proposed the Armijo line search algorithm,
which does not require the Lipschitz continuity of the mapping A. But at each step of this
algorithm, we need to check an inequality many times (the line-search procedure). This
make the algorithm very computationally expensive.

Motivated by the Censor et al. [10], Tseng [30] and Solodov et al. [28], in this paper we
introduce two new algorithms for solving VI(A,C). Our algorithms preserve the advantages
and overcome the disadvantage of the works in [10, 30, 28]. On the one hand, convergence
conditions of our algorithms are as mild as the ones of the Armijo line-search algorithm,
i.e., we only need the mapping A being pseudomonotone but is not necessarily Lipschitz
continuous. On the other hand, the new algorithms are computationally cheap: they require
to compute the projection onto C only one time per iteration and do not use the line-search
procedure.

The rest of the article is organized as follows. Section 2 is devoted to some definitions
and preliminary results. Our algorithms and their convergence analysis are described in
Section 3. Some further analysis on the convergence conditions of the proposed algorithms
are presented in Section 4. In the last section, we compare the new algorithms with the
existing ones and present an application to the traffic network.
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2 Preliminaries

In this section, we recall some basic properties and definitions that will be used in the
subsequent sections. We refer the reader to [7, 19, 27] for more details.

Let C ⊂ Rm be a nonempty, closed and convex set, and x ∈ Rm be an arbitrary point.
There exists a uniquely point in C, denoted by PC(x), satisfying ‖x−PC(x)‖ ≤ ‖x− y‖ for
all y ∈ C. The mapping x 7→ PC(x) is called the projection onto C.

Proposition 2.1 ([7]). For all x, y ∈ Rm, we have

(i) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖,

(ii) 〈y − PC(x), x− PC(x)〉 ≤ 0.

Definition 2.2. A mapping A : C → Rm is said to be

1. pseudomonotone on C, iff for all x, y ∈ C, we have

〈A(y), x− y〉 ≥ 0 ⇒ 〈A(x), x− y〉 ≥ 0.

2. Lipschitz continuous on C with modulus L > 0, iff for all x, y ∈ C, we have

‖A(x)−A(y)‖ ≤ L‖x− y‖.

Lemma 2.3 ([6]). Let {ak}, {bk} ⊂ (0,∞) be two sequences satisfying

ak+1 ≤ ak + bk ∀k ≥ 0 and

∞∑
k=0

bk < ∞.

Then, the sequence {ak} is convergent.

Lemma 2.4. [13] Suppose that the mapping A : C → Rm is continuous. Then, for all
bounded sequences {xk}, {yk} ⊂ C satisfying ‖xk−yk‖ → 0, it holds that ‖A(xk)−A(yk)‖ →
0.

Let I ⊂ N, denote by |I| the number of elements in I.

3 Main Results

Assumption 3.1. We investigate problem VI(A,C) under the following conditions:

(A1) The mapping A is pseudomonotone on C;

(A2) There exist constants µ, δ > 0 such that for all x ∈ H, y ∈ C, we have

‖x− y‖ ≤ δ ⇒ ‖A(x)−A(y)‖ ≤ µ;

(A3) The mapping A is continuous on Rm;

(A4) Sol(A,C) 6= ∅.
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Assumption 3.1 is rather mild. Some practical models satisfying this assumption can be
found in [1, 3, 29, 2, 16, 23].

Algorithm 3.1 (Subgradient extragradient algorithm for VI(A,C) without Lipschitz con-
tinuity).

Step 0. Choose x0 ∈ C, ξ, ρ ∈ (0, 1), α0 ∈
(
0, δ

1+µ

)
. Set k = 0.

Step 1. Compute:

λk =
αk

max {1; ‖A(xk)‖}
yk+1 = PC

(
xk − λkA(xk)

)
xk+1 = PTk

(
xk − λkA(yk+1)

)
,

where Tk =
{
z ∈ Rm :

⟨
xk − λkA(xk)− yk+1, z − yk+1

⟩
≤ 0

}
.

If λk‖A(xk)−A(yk+1)‖ ≤ ρ‖xk − yk+1‖ then set αk+1 = αk else set αk+1 = ξαk.
Step 2. If yk+1 = xk, then STOP, else update k := k + 1 and GOTO Step 1.

Theorem 3.2. Suppose that Assumption 3.1 is satisfied. Then, the sequence {xk} generated
by Algorithm 3.1 converges to a solution of VI(A,C).

Proof. Since
yk+1 = PC

(
xk − λkA(xk)

)
,

we have ⟨
xk − λkA(xk)− yk+1, z − yk+1

⟩
≤ 0 ∀z ∈ C. (3.1)

Hence C ⊂ Tk. Since
xk+1 = PTk

(
xk − λkA(yk+1)

)
,

it implies that ⟨
xk − λkA(yk+1)− xk+1, z − xk+1

⟩
≤ 0 ∀z ∈ C ⊂ Tk

or ⟨
xk − xk+1, z − xk+1

⟩
≤ λk

⟨
A(yk+1), z − xk+1

⟩
∀z ∈ C. (3.2)

On the other hand, noting that xk+1 ∈ Tk, we get⟨
xk − λkA(xk)− yk+1, xk+1 − yk+1

⟩
≤ 0

or ⟨
xk − yk+1, xk+1 − yk+1

⟩
≤ λk

⟨
A(xk), xk+1 − yk+1

⟩
. (3.3)

From (3.2) and (3.3), it follows that for any z ∈ C,

‖xk+1 − z‖2 = ‖xk − z‖2 − ‖xk+1 − yk+1‖2 − ‖yk+1 − xk‖2+
+ 2

⟨
xk+1 − xk, xk+1 − z

⟩
+ 2

⟨
yk+1 − xk, yk+1 − xk+1

⟩
≤ ‖xk − z‖2 − ‖xk+1 − yk+1‖2 − ‖yk+1 − xk‖2+
+ 2λk

⟨
A(yk+1), z − xk+1

⟩
+ 2λk

⟨
A(xk), xk+1 − yk+1

⟩
= ‖xk − z‖2 − ‖xk+1 − yk+1‖2 − ‖yk+1 − xk‖2+
+ 2λk

⟨
A(yk+1), z − yk+1

⟩
+ 2λk

⟨
A(xk)−A(yk+1), xk+1 − yk+1

⟩
. (3.4)



LINESEARCH-FREE ALGORITHMS FOR SOLVING VIS 273

Let z = x∗ ∈ Sol(A,C), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − yk+1‖2 − ‖yk+1 − xk‖2

+ 2λk

⟨
A(xk)−A(yk+1), xk+1 − yk+1

⟩ (3.5)

Denote
I :=

{
k ∈ N : λk‖A(xk)−A(yk+1)‖ > ρ‖xk − yk+1‖

}
.

Consider two cases:
Case 1: |I| = ∞. Let I = {kn}∞n=1 ⊂ N. We have

λkn‖A(xkn)−A(ykn+1)‖ > ρ‖xkn − ykn+1‖ ∀n ≥ 0.

For x ∈ Rm, denote dist(x,C) := ‖x− PC(x)‖.
Claim 1: limk→∞dist(xk, C) = 0.
Since |I| = ∞, we have limk→∞ αk = 0. From the definition of Tk, it is easy seen that
yk+1 = PTk

(xk − λkA(xk)). For all k ≥ 0, we have

dist(xk+1, C) ≤ ‖xk+1 − yk+1‖
= ‖PTk

(
xk − λkA(yk+1)

)
− PTk

(
xk − λkA(xk)

)
‖

≤ λk‖A(xk)−A(yk+1)‖
≤ αk‖A(xk)−A(yk+1)‖. (3.6)

On the other hand, it holds that

‖xk − yk+1‖ ≤ ‖xk − PC(x
k)‖+ ‖PC(x

k)− PC(x
k − λkA(xk))‖

≤ dist(xk, C) + λk‖A(xk)‖
≤ dist(xk, C) + αk. (3.7)

We will prove that ‖xk − yk+1‖ ≤ δ for all k ≥ 0. Indeed, from (3.7), we have ‖x0 − y1‖ ≤
α0 < δ. Suppose that ‖xj − yj+1‖ ≤ δ for some j ≥ 0. Using assumption (A2), we get
‖A(xj)−A(yj+1)‖ ≤ µ, and hence (3.6) implies that

dist(xj+1, C) ≤ αj‖A(xj)−A(yj+1)‖ ≤ α0µ <
µδ

1 + µ
,

where the last inequality follows from the definition of α0, i.e., α0 < δ
1+µ . From (3.7), we

have

‖xj+1 − yj+2‖ ≤ dist(xj+1, C) + αj+1

<
µδ

1 + µ
+

δ

µ+ 1
= δ.

By induction, it implies that ‖xk − yk+1‖ ≤ δ for all k ≥ 0. Using assumption (A2) and
(3.6), we get dist(xk, C) ≤ αk−1µ → 0 and hence

‖xk − yk+1‖ ≤ αk + dist(xk, C) → 0. (3.8)

Claim 2 : The sequence {xk} is bounded.
Take k ≥ 0 arbitrarily. If k /∈ I, then from (3.19), we get

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖. (3.9)
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If k ∈ I, from (3.6) and (3.7), we have

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖+ ‖xk+1 − xk‖
≤ ‖xk − x∗‖+ ‖xk+1 − yk+1‖+ ‖xk − yk+1‖
≤ ‖xk − x∗‖+ αk‖A(xk)−A(yk+1)‖+ dist(xk, C) + αk

≤ ‖xk − x∗‖+ αkµ+ αk−1‖A(xk−1)−A(yk)‖+ αk

≤ ‖xk − x∗‖+ αkµ+
αk

ξ
µ+ αk. (3.10)

Combinning (3.9) and (3.10), we have

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖+ τk,

where

τk :=

{
0 if k /∈ I,

α0

(
µ+ µ

ξ + 1
)
ξn−1 if k = kn ∈ I.

Hence,
∑∞

k=0 τk =
∑

k∈I τk = α0

(
µ+ µ

ξ + 1
)∑∞

n=0 ξ
n < ∞. Using Lemma 2.3, we deduce

that the sequence {‖xk−x∗‖} is convergent, and hence, the sequence {xk} is bounded. Since
{‖xk − yk+1‖} → 0, it implies that the sequence {yk} is also bounded.
Claim 3: The sequence {xk} converges to a solution of VI(A,C).
We have

λkn‖A(xkn)−A(ykn+1)‖ > ρ‖xkn − ykn+1‖ ∀n ≥ 0. (3.11)

The sequence {xkn} is bounded, hence there exists a subsequence {xknt } ⊂ {xkn} such that
xknt → x̄. Since limk→∞ dist(xk, C) = 0, it implies that x̄ ∈ C. From (3.1), we have⟨

xk − yk+1, z − yk+1
⟩
≤ λk

⟨
A(xk), z − yk+1

⟩
∀z ∈ C. (3.12)

From (3.11) and (3.12), we get

⟨
A(xk), z − yk+1

⟩
≥ − 1

λk
‖xk − yk+1‖‖z − yk+1‖

≥ −1

ρ
‖A(xk)−A(yk+1)‖‖z − yk+1‖ ∀z ∈ C, k ∈ I.

In the last inequality, letting k = knt
, t → ∞, using the continuity of A, the boundedness

of {yk}, the fact that ‖xk − yk+1‖ → 0 and Lemma 2.4, we obtain

〈A(x̄), z − x̄〉 ≥ 0 ∀z ∈ C.

It implies that x̄ ∈ Sol(A,C), and hence, the sequence ‖xk − x̄‖ is convergent. Thus,

lim
k→∞

‖xk − x̄‖ = lim
t→∞

‖xknt − x̄‖ = 0.

Case 2: |I| < ∞. Let i0 = max{i+ 1 : i ∈ I}. It implies that αk = αi0 for all k ≥ i0. From
(3.19), we have

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−(1− ρ) ‖xk+1−yk+1‖2−(1− ρ) ‖yk+1−xk‖2 ∀k ≥ i0. (3.13)
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It follows that the sequence
{
‖xk − x∗‖

}
is convergent and

lim
k→∞

‖xk − yk‖ = lim
k→∞

‖yk+1 − xk‖ = 0. (3.14)

The sequence {xk} is bounded, and hence, there exists a subsequence {xkm} ⊂ {xk} such
that limm→∞ xkm = x̄. Since {yk} ⊂ C and ‖xk − yk‖ → 0, it implies that x̄ ∈ C. From
(3.2), for all z ∈ C we have⟨
xk − xk+1, z − xk+1

⟩
≤ αk

max{1; ‖A(xk)‖}
(⟨
A(yk+1), z − yk+1

⟩
+

⟨
A(yk+1), yk+1 − xk+1

⟩)
.

Letting k = km → ∞, using (3.14) and the continuity of A, we get

αi0

max{1; ‖A(x̄)‖}
〈A(x̄), z − x̄〉 ≥ 0 ∀z ∈ C,

or x̄ ∈ Sol(A,C). Since the sequence {‖xk − x̄‖} is convergent, we obtain

lim
k→∞

‖xk − x̄‖ = lim
m→∞

‖xkm − x̄‖ = 0.

Algorithm 3.3 (Tseng-type algorithm for VI(A,C) without Lipschitz continuity).

Step 0. Choose x0 ∈ C, ξ, ρ ∈ (0, 1), α0 ∈
(
0, δ

1+µ

)
. Set k = 0.

Step 1. Compute:

λk =
αk

max {1; ‖A(xk)‖}
yk = PC

(
xk − λkA(xk)

)
xk+1 = yk + λk

[
A(xk)−A(yk)

]
,

If λk‖A(xk)−A(yk)‖ ≤ ρ‖xk − yk‖ then set αk+1 = αk else set αk+1 = ξαk.
Step 2. If yk+1 = xk, then STOP, else update k := k + 1 and GOTO Step 1.

Theorem 3.4. Suppose that Assumption 3.1 is satisfied. Then, the sequence {xk} generated
by Algorithm 3.1 converges to a solution of VI(A,C).

Proof. Since yk = PC(x
k − λA(xk)), using the property of the projection, we have⟨
x− yk, yk − xk + λkA(xk)

⟩
≥ 0 ∀x ∈ C. (3.15)

Let x∗ ∈ Sol(A,C), it holds that⟨
x∗ − yk, yk − xk + λkA(xk)

⟩
≥ 0. (3.16)

On the other hand, since F is pseudomonotone, then

λk

⟨
yk − x∗, A(yk)

⟩
≥ 0 (3.17)

Adding (3.16) and (3.17), we get⟨
x∗ − yk, yk − xk + λk

[
A(xk)−A(yk)

]⟩
≥ 0.
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From the definition of xk+1, it implies that⟨
x∗ − yk, xk+1 − xk

⟩
≥ 0.

Thus,⟨
xk+1 − x∗, xk+1 − xk

⟩
≤

⟨
xk+1 − yk, xk+1 − xk

⟩
= ‖xk+1 − xk‖2 +

⟨
xk − yk, xk+1 − xk

⟩
= ‖xk+1 − xk‖2 +

⟨
xk − yk, yk + λk[A(xk)−A(yk)]− xk

⟩
= ‖xk+1 − xk‖2 − ‖yk − xk‖2 + λk

⟨
xk − yk, A(xk)−A(yk)

⟩
.

(3.18)

Applying the equality a2 + b2 − (a− b)2 = 2 〈a, b〉, we get

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 + ‖xk+1 − xk‖2 = 2
⟨
xk+1 − x∗, xk+1 − xk

⟩
. (3.19)

From (3.18) and (3.19), we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 + 2
⟨
xk+1 − x∗, xk+1 − xk

⟩
≤ ‖xk − x∗‖2 + ‖xk+1 − xk‖2 − 2‖yk − xk‖2

+ 2λk

⟨
xk − yk, A(xk)−A(yk)

⟩
= ‖xk − x∗‖2 + ‖yk + λk(A(xk)−A(yk))− xk‖2 − 2‖yk − xk‖2

+ 2λk

⟨
xk − yk, A(xk)−A(yk)

⟩
= ‖xk − x∗‖2 − ‖yk − xk‖2 + λ2

k‖A(xk)−A(yk)‖2. (3.20)

Denote
I := {k ∈ N : λk‖A(xk)−A(yk)‖ > ρ‖xk − yk‖}.

Consider two cases:
Case 1 : |I| < ∞. There exists a number k0 ∈ N such that

λk‖A(xk)−A(yk)‖ ≤ ρ‖xk − yk‖ and αk = αk0
∀k ≥ k0.

From (3.20), it follows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− ρ2)‖xk − yk‖2 ∀k ≥ k0.

So, the sequence {‖xk − x∗‖} is convergent for all x∗ ∈ Sol(F,C). It implies that the
sequence {xk} is bounded and

lim
k→∞

‖xk − yk‖ = 0.

There exists a subsequence {xki} ⊂ {xk} such that xki → x̄ ∈ Rm. Since {yk} ⊂ C and
‖xk − yk‖ → 0, we obtain x̄ ∈ C. Next, we will prove that x̄ is a solution of VI(A,C). From
(3.15), we have ⟨

A(xk), x− yk
⟩
≥ − 1

λk
‖x− yk‖‖yk − xk‖ ∀x ∈ C. (3.21)

Since λk = αk

max{1;∥A(xk)∥} , αk = αk0
for all k ≥ k0 and the sequence {A(xk)} is bounded, we

deduce that the sequence {λk} is bounded away from zero. In (3.21), letting k = ki, i → ∞,
using the continuity of A, the boundedness of {xk} and the fact ‖yk − xk‖ → 0, we obtain

〈A(x̄), x− x̄〉 ≥ 0 ∀x ∈ C,
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or x̄ ∈ Sol(F,C). The sequence {‖xk − x̄‖} is convergent, hence

lim
k→∞

‖xk − x̄‖ = lim
i→∞

‖xki − x̄‖ = 0.

Case 2 : |I| = ∞. Let I = {kj}nj=1 ⊂ N, then

λkj‖A(xkj )−A(ykj )‖ > ρ‖xkj − ykj‖ ∀j ≥ 0.

It is easy seen that the sequence {αk} is decreasing and tending to zero. Denote dist(x,C) :=
‖x− PC(x)‖ for all x ∈ Rm. We will prove that dist(xk, C) → 0 and ‖xk − yk‖ → 0. For all
k ≥ 0, we have

dist(xk+1, C) ≤ ‖xk+1 − yk‖
= λk‖A(xk)−A(yk)‖
≤ αk‖A(xk)−A(yk)‖ (3.22)

and

‖xk − yk‖ ≤ ‖xk − PC(x
k)‖+ ‖PC(x

k)− yk‖
= dist(xk, C) + ‖PC(x

k)− PC(x
k − λkA(xk))‖

≤ dist(xk, C) + λk‖A(xk)‖
≤ dist(xk, C) + αk. (3.23)

Analogously to the proof of Theorem 3.2, from (3.22) and (3.23), by induction, we can prove
that ‖xk − yk‖ ≤ δ for all k ≥ 0. Using condition (A2) and (3.22), we get dist(xk, C) ≤
αk−1µ → 0 and hence

‖xk − yk‖ ≤ αk + dist(xk, C) → 0. (3.24)

The rest of the proof is similar to the one of Theorem 3.2 and hence, is omitted.

Remark 3.5. (a) Algorithm 3.1 and Algorithm 3.3 are improved from the Censor’s algo-
rithm [10] and Tseng’s algorithm [30] for solving non-Lipschitz variational inequalities
but it can solve Lipschitz variational inequalities as efficiently as the original ones do.
Indeed, when the mapping A is Lipschitz continuous, there exists a number k0 > 0 such
that αk = αk0 for all k ≥ k0, i.e., the steps-sizes of the new algorithms are bounded
away from zero as in the original ones. Moreover, in this case, compared the algo-
rithms in [10, 30], the new ones have a clear advantage: it does not require to know
the Lipschitz constant of the mapping A.

(b) When the mapping A is pseudomonotone but is not Lipschitz continuous, the Armijo
line search algorithm (ALA) [28] is often referred to as a typical method for solving
VI(A,C). In comparison with (ALA), our algorithms have the following advantages.
First, to compute the value of the step size λk, we only have to check an inequality
one time instead of many time as in (ALA). This means, our algorithms do not use the
line-search procedure, which is very computationally expensive. Second, at each step
of our algorithms, we only have to perform one projection onto the feasible set instead
of two projection as in (ALA). This feature also helps to reduce the computational cost
of our algorithms.

(c) Condition (A2) and (A3) can be replaced by the uniform continuity of A. Moreover,
from the proofs of Theorems 3.2 and 3.4, it is easy seen that Condition (A2) can be
omitted if C is bounded or {xk} ⊂ C.
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4 Further Analysis

In this section, we study the possibility of eliminating the conditions in the proposed algo-
rithms.

4.1 The non-emptiness of the solution set

To prove the convergence of Algorithm 3.1 and Algorithm 3.3, we need to assume that the
solution set is not empty. In practice, this condition is rather difficult to verify. Thanks to
the following corollary, we can implement our algorithms without checking this condition.

Corollary 4.1. Suppose that Conditions (A1), (A2) and (A3) are satisfied, {xk} is the
sequence generated by Algorithm 3.1 or Algorithm 3.3. Then, the solution set Sol(A,C) is
not empty if and only if the sequence {xk} is convergent.

Proof. We will prove for the case of Algorithm 3.1. The rest case is proved similarly. Obvi-
ously, it is sufficient to show that

the sequence {xk} is convergent ⇒ Sol(A,C) 6= ∅.

Define
I :=

{
i ∈ N : λi‖A(xi)−A(yi+1)‖ > ρ‖xi − yi+1‖

}
.

Let limk→∞ xk = x̄. Consider two cases:
Case 1: |I| < ∞. There exists i0 > 0 such that

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − (1− ρ) ‖xk+1 − yk+1‖2 − (1− ρ) ‖yk+1 − xk‖2+

+ 2
αi0

max{1; ‖A(xk)‖}
⟨
A(yk+1), x− yk+1

⟩
∀k ≥ i0, x ∈ C. (4.1)

Similarly to the proof of Theorem 3.2, it holds that ‖xk−yk+1‖ ≤ δ for all k ≥ 0. Combinning
this and the fact limk→∞ xk = x̄, we have that the sequence {yk} is bounded. There exists
a subsequence {ykn} ⊂ {yk} such that ykn → ȳ ∈ C. In (4.1), let k = kn − 1 → ∞, notting
that {xk} is convergent and using the continuity of A, we get

αi0

max{1; ‖A(x̄)‖}
〈A(ȳ), x− ȳ〉 ≥ 0 ∀x ∈ C.

Hence, ȳ ∈ Sol(A,C). In (4.1), let x = ȳ, k = kn − 1 → ∞, we obtain

2(1− ρ)‖x̄− ȳ‖2 ≤ αi0

max{1; ‖A(x̄)‖}
〈A(ȳ), ȳ − ȳ〉 = 0.

Hence, limk→∞ xk = x̄ ∈ Sol(A,C).
Case 2: |I| = ∞. There exists a subsequence {ykn} ⊂ {yk} such that

λkn
‖A(xkn)−A(ykn+1)‖ > ρ‖xkn − ykn+1‖ ∀n ≥ 0. (4.2)

On the other hand, from the definition of yk+1, we have⟨
xk − yk+1, x− yk+1

⟩
≤ λk

⟨
A(xk), x− yk+1

⟩
∀x ∈ C, k ≥ 0. (4.3)

Combinning (4.2) and (4.3), we get

−ρ+ 1

ρ
‖A(xkn)−A(ykn+1)‖‖x− ykn+1‖ ≤

⟨
A(ykn+1), x− ykn+1

⟩
. (4.4)
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Analogously to (3.24), we get

‖xk − yk+1‖ ≤ dist(xk, C) + αk → 0.

Hence, limk→∞ xk = limk→∞ yk = x̄. From Lemma 2.4, it follows that ‖A(xk)−A(yk+1)‖ →
0. In (4.4), let n → ∞, using the continuity of A, we obtain

〈A(x̄), x− x̄〉 ≥ 0 ∀x ∈ C.

This means limk→∞ xk = x̄ ∈ Sol(A,C).

Remark 4.2. Thanks to Corollary 4.1, we can implement Algorithm 3.1 and Algorithm 3.3
without checking the solvability of VI(A,C) (Condition (A4)). If the generated sequence
{xk} is convergent, we can claim that its limit is a desired solution. Otherwise, we claim
that the solution set is empty.

4.2 The pseudomonotonicity of A

To prove the convergence of the proposed algorithms, the pseudomonotonicity of A cannot
be omitted. Considered the following example: C = Rm, A : Rm → Rm, A(x) = −x for all
x ∈ Rm. Then, A is Lipschitz continuous but is not pseudomonotone. It is easy seen that
Sol(A,C) = {0}. Algorithm 3.1 now becomes

yk+1 = PC

(
xk − λkA(xk)

)
= (1 + λk)x

k,

xk+1 = PTk

(
xk − λkA(yk+1)

)
= xk + λky

k+1 = xk
(
λ2
k + λk + 1

)
.

Since λk > 0, we have ‖xk+1‖ > ‖xk‖ for all k ≥ 0, and hence, the sequence {xk} does not
converge to the unique solution x∗ = 0 of VI(A,C).

We have shown that the pseudomonotonicity condition in Theorem 3.2 and Theorem 3.4
cannot be omitted. However, it may happen that A is not pseudomonotone but the sequence
{xk} generated by the proposed algorithms is convergent. From the proof of Corollary 4.1,
it follows that in this case, the limit of {xk} is a solution of VI(A,C).

Corollary 4.3. Suppose that Conditions (A2) and (A3) in Assumption 3.1 are satisfied and
the sequence {xk} generated by Algorithm 3.1 or Algorithm 3.3 converges to x̄. Then, x̄ is
a solution of VI(A,C).

4.3 Closedness and convexity of the feasible set

From the proof of Theorem 3.2 and Theorem 3.4, it is easy seen that we can change the
projection onto C in Step 1 of the proposed algorithms by the one onto any close, convex
subset D ⊂ C containing a solution. One of ways to construct D is:

D =
∩
z∈K

{x ∈ C : 〈A(z), x− z〉 ≤ 0} , (4.5)

where K is an arbitrary subset of C. Note that we can choose the set K such that the
projection onto D is calculated easier than the one onto C. For example, let

C = {x ∈ R2 : x1, x2 ≥ 0, x1x2 < 2},
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A : C → C defined by A(x) = x for all x ∈ C. It is easy seen that C is neither closed nor
convex, and hence, the projection onto C cannot be computed. Choose K = {(1, 0); (0, 1)} ⊂
C. According to (4.5), the set D is

D = {x ∈ R2 : 0 ≤ x1, x2 ≤ 1}.

We see that the projection onto D can be calculated explicitly.

5 Numerical Experiments

Figure 1: Performance of the algorithms in Problem 1, Example 5.1 with different m

To test the effectiveness of the new algorithms, we implement them in MATLAB to solve
variational inequality problems. Also, we compare them with the Armijo-line search algo-
rithm (ALA) [28], which has the same conditions. We do not compare with the extragradient-
type ones [24, 32, 10] because these algorithms need the Lipschitz continuity, which is omitted
in our algorithms. We use MATLAB version R2010b on a PC with Intel®Core2TM Quad
Processor Q9400 2.66Ghz 4GB Ram.

Example 5.1. The algorithms are tested in the following problems:

• Problem 1: C = [−5, 5]m ⊂ Rm, F : Rm → Rm, F (x) = x for all x ∈ Rm.

• Problem 2: C = [−5, 5]m ⊂ Rm, F : Rm → Rm, F (x) = Ax for all x ∈ Rm, A = (aij),



LINESEARCH-FREE ALGORITHMS FOR SOLVING VIS 281

Figure 2: Performance of the algorithms in Problem 2, Example 5.1 with different m

where

aij =


−1 if j = m+ 1− i, j > i

1 if j = m+ 1− i, j < i

0 otherwise.

• Problem 3: C = Rm, F : Rm → Rm, F (x) = Bx + q for all x ∈ Rm, where q =
(1, . . . , 1)T and B = (bij),

bij =

{
2 if j = i,

1 otherwise.

• Problem 4. This is an extreme problem. Let C = [−5, 5]m ⊂ Rm, F : Rm → Rm,
F (x) = Ax for all x ∈ Rm, A is the diagonal matrix whose diagonal entries are
10−5, 105, 1, , 1, . . . , 1. The mapping F in this problem is strongly monotone and Lips-
chitz continuous, hence the Projection Algorithm (PA) [17] is the most suitable one for
solving this problem. It should give better results than our algorithms and (ALA). But
we found that in this problem, even (PA) does not work effectively. We will explain
why. It is well known that the Projection Algorithm{

x0 ∈ C,

xk+1 = PC(x
k − λF (xk))

(PA)

converges linearly under the assumption that λ ∈ (0, 2 γ
L2 ), where γ is the strong

monotonicity constant and L is the Lipschitz constant of F [17]. We have γ = 10−5
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Figure 3: Performance of the algorithms in Problem 3, Example 5.1 with different m

and L = 105, hence λ < 2.10−15. Since the step-size λ is too small, the algorithm
converges very slowly. Our primary calculations show that: to obtain the accuracy
‖xk − x∗‖ ≤ 10−3, (PA) needs to perform at least 3.1020 iterations. The similar
problem occurs with our algorithms and (ALA). Since A has extreme eigenvalues, the
stepsizes tend zero very fast, and hence, slow down the algorithms. We have tried to
test our algorithms and (ALA) with this problem. The result is that these algorithms
have not obtained the accuracy ‖xk − x∗‖ ≤ 10−3 after 6 hours of CPU time.

Since we can not compare the algorithms in such an extreme problem, we test them in
a less extreme one. That is Problem 4 with A is the diagonal matrix whose diagonal
entries are 10−2, 102, 1, , 1, . . . , 1.

The unique solution of Problem 1, 2 and 4 is x∗ = (0, . . . , 0)T . Meanwhile, in Problem 3,
it is x∗ = B−1.q. It is easy seen that in these problems, the convergence conditions are
satisfied. We implement the algorithms with the same starting point x0, which is randomly
generated and the same stopping rule ‖xk − x∗‖ ≤ 10−4, where x∗ is the unique solution of
the problem. The parameters are chosen as follows:

• For (ALA): since γ, σ ∈ (0, 1), we have tested the algorithm with γ, σ = 0.1, 0.2, . . . , 0.9
and found that among these options, (ALA) performs the best with γ = 0.5, σ = 0.3.
These values of γ, σ also have been used in [28]. Hence, in our tests, we will use γ = 0.5,
σ = 0.3.

• In Algorithm 3.1 and 3.3, ρ = 0.7, ξ = 0.7 and α0 = ‖x0‖.
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We test the algorithms with different m. The results are presented in Figures 1, 2, 3 and
Table 1. We can see that the computational time of the new algorithms is smaller than
that of (ALA). This happened because in our algorithms, we do not have to perform the
line-search procedure, which is very computationally expensive. Moreover, in (ALA), one
has to compute two projections onto the feasible set and its intersection with a half-space.
Meanwhile, in the new algorithms, we only have to compute one projection onto C.

Algorithm 3.1 Algorithm 3.3 (ALA)

Times(s) Iter. Times(s) Iter. Times(s) Iter.

m=50 22.3890 111809 20.2758 111818 73.0360 12832
m=100 25.8910 112931 23.7800 112945 - -
m=500 28.6792 147044 27.7840 147080 - -

Table 1: Comparison of Algorithm 3.1 and 3.3 with the Armijo line search algorithm in
Problem 4, Example 5.1. Dash - indicates that the algorithm did not stop after 1000 seconds
of CPU time.

Example 5.2. (Application to traffic networks)
Consider a transportation network with nodes {a, b, . . .}, connected by oriented links q ∈ L
[20]. Denote by W the set of pairs of origins and destinations. For each element w = (a →
b) ∈ W , Pw is the set of all paths with the origin a and the destination b. Let Θ be the set
of all paths in the transportation network:

Θ = ∪w∈WPw.

The paths in Θ are numbered:

Θ = {p1, p2, . . . , pn}.

Denote by xi the traffic flow on the path pi and let x = (x1, x2, . . . , xn) - the vector flow of
the whole transportation network. For w = (a → b) ∈ W , let bw be the amount of vehicles
that need to go from a to b, and define

C :=

x ∈ Rn
+ :

∑
p∈Pw

xp = bw ∀w ∈ W

 .

The flow on a link q is equal to the sum of the flows on all paths containing this link, that
is:

uq =
∑
p∈Θ

δpqxp,

where

δpq :=

{
1 if the link q in path p,

0 otherwise.

The user cost tq on the link q depends on its flow uq by the formula

tq :=

{
τquq + σq if 0 ≤ uq ≤ νq;

ρquq + τqνq + σq − ρqνq if uq > νq.
(5.1)
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In (5.1), νq is the maximum capacity of the road q. When the traffic flow uq exceeds this
capacity, the user cost increases with the huge rate ρq (traffic jam). The cost of the path p
is equal to the total cost of all its link:

Gp(x) :=
∑
q∈L

δpqtq.

A flow vector x∗ with the components x∗
q (q ∈ Pw, w ∈ W ) is an equilibrium pattern if, once

established, no user want to change his/her path. In other words, when the traffic network
attains an equilibrium state, among all path of Pw, the path with traffic has the lowest cost.
This means, for all w ∈ W and for all r ∈ Pw, it holds that

x∗
r > 0 ⇒ Gr(x

∗) = min
p∈Pw

Gp(x
∗). (5.2)

The problem of finding x∗ satisfying (5.2) is equivalent to the variational inequality VI(G,C)
[20], where G(x) = (G1(x), G2(x), . . . , Gn(x)). The cost functions defined by (5.1) are
increasing, hence the mapping G is monotone [20]. Moreover, it is continuous on C. All the
conditions of Assumption 3.1 are satisfied, we will apply Algorithm 3.1 to find the equilibrium
state of the transportation network. Assume that the traffic network has 5 nodes, joined by
links q1, q2, . . . , q8 as shown in Figure 4. Let W = {(1 → 5)} and b(1→5) = 1000. From node
1 to node 5, there are 5 paths: p1 = q1 + q6, p2 = q3 + q8, p3 = q2 + q7, p4 = q2 + q5 + q8,
p5 = q2 + q4 + q6. The constants of the cost functions are provided in Table 2.

Figure 4: Traffic network with 5 nodes

In Algorithm 3.1, we choose x0 = (200, 200, 200, 200, 200), ρ = ξ = 0.7, α0 = ‖x0‖.
Since the exact solution of the problem is unknown, we use the stopping criterion: ‖yk −
PC

[
yk −G(yk)

]
‖ < 10−4. Note that x∗ is a solution of the problem if and only if x∗ −

PC [x∗ −G(x∗)] = 0. After 138 iterations, the algorithm find the approximate solution:

x∗ = (338.9726, 342.2060, 283.7184, 28.1883, 6.9147)
T
.

In Table 3 and Figure 5, we present the comparison results of the proposed algorithms with
the Armijo line search algorithm (ALA). The parameters of these algorithms are chosen as
in Example 5.1. As we can see, in this example, the new algorithms have a better behavior
in terms of the computational time.
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q τq σq νq ρq

q1 1 100 100 10
q2 1.1 120 120 11
q3 0.9 80 80 9
q4 0.1 150 150 8
q5 0.1 70 70 11
q6 0.7 140 210 12
q7 1.2 150 150 13
q8 0.6 160 250 14

Table 2: Constants of the cost functions.

Alg. 3.1 Alg. 3.3 (ALA)

Times(s) Iter. Times(s) Iter. Times(s) Iter.

x0 = (200, 200, 200, 200, 200) 1.2203 138 1.8120 219 6.0115 140
x0 = (1000, 0, 0, 0, 0) 1.2567 175 1.6086 238 4.3766 117
x0 = (0, 0, 1000, 0, 0) 0.8163 112 1.6248 236 4.2734 127
x0 = (100, 150, 200, 250, 300) 0.9663 135 1.5722 235 4.5473 133

Table 3: Performance of the algorithms in Example 5.2 with different starting points.

Figure 5: Comparision of the algorithms in Example 5.2
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6 Conclusion

In this article, two novel projection algorithms have been proposed for solving pseudomono-
tone variational inequalities. In contrast to the existing algorithms mentioned in the intro-
duction, the new ones have the followings advantages:

1. The involving mapping A need not to be Lipschitz continuous. We prove the conver-
gence of our algorithms under the assumption that A is pseudomonotone and some
suitable conditions.

2. At each iteration, we only have to compute one projection onto the feasible set. Also,
the new algorithms do not use the Armijo line search as the existing ones. These
features help to speed-up our algorithm.

3. To implement the new algorithms, we do not have to verify the nonemptiness of the
solution set. We prove that the solvability of the problem is equivalent to the convergent
of the generated sequence.

The effectiveness of the new algorithms have been confirmed by numerical experiments.
Also, an application to the traffic network equilibrium problem has been presented.
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