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Abstract: In this paper we study the nonemptiness and boundedness of the solution set of a perturbed
generalized vector variational inequality. We obtain an existence result when the mapping involved is
perturbed by a nonlinear mapping. When the mapping is perturbed along a direction, we further establish
the boundedness of the solution set. We also discuss the nonemptiness and boundedness of the solution
set when the constraint set is perturbed by a unit ball. Finally, we investigate the nonemptiness and
boundedness of the solution set when the mapping and the constraint set are perturbed simultaneously. Our
results extend the existing results for the scalar perturbed generalized variational inequality to the vector
case.
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Introduction

Let X be a real reflexive Banach space with the dual space X* and Y be a real Banach space
with the dual space Y*. And let ||z||x (resp. ||y|ly) be the norm of z € X (resp. y € V). The
symbol — (resp. —) stands for the strong convergence (resp. weak convergence). Suppose
that K C X is a nonempty closed convex set and C' C Y is a closed convex and pointed cone
with int C' # 0, where int C' denotes the topological interior of C. Let F : K — 2L(XY) be
a set-valued mapping where L(X,Y") is the space of all continuous linear mappings from X
into Y. We consider the following generalized vector variational inequality associated with
(F,K):
GVVI(F,K) find xz € K, 3¢ € F(x) such that

(,y—z) g —int C, Vye€ K.

When YV = R and C = Ry, GVVI(F, K) reduces to the following generalized variational
inequality:
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GVI(F,K) find z € K, 3¢ € F(x) such that
(Ey—x)>0, Vyek.

When F is a single-valued mapping, GVVI(F, K) reduces to the following vector variational
inequality introduced in [12]:
VVI(F,K) find 2 € K such that

(F(z),y—x) ¢ —int C, VyeK.

Denoted by SOLgyvi(F, K) the solution set of GVVI(F, K). There are a large amount
of papers investigating vector variational inequalities, its variants and applications in the
literature. For details, we refer the reader to [3, 29, 14, 15, 10, 34, 35, 2, 16].

Perturbation analysis is one of important and interesting topics in variational inequali-
ties and related problems. Fang, et al. [11] studied the well-posedness by perturbations of
mixed variational inequalities in Banach spaces. Li and He [20] investigated the solvability
of a perturbed generalized variational inequality in a finite dimensional space without as-
suming any kind of monotonicity. When the mapping is perturbed by a nonlinear mapping
(resp. a direction in the interior of the barrier cone of the constraint set), they proved
that the scalar perturbed generalized variational inequality with a coercivity assumption
has a solution. Tang and Li [30] extended the results of Li and He [20] to the scalar per-
turbed mixed generalized variational inequality. Wang [32] improved the results of Li and
He [20] by proving that the solution set of the scalar perturbed generalized variational in-
equality in a reflexive Banach space is nonempty and bounded. Recently, Luo [23] further
investigated the nonemptiness and boundedness of the solution set of the scalar perturbed
generalized variational inequality with the mapping and the constraint set being perturbed
simultaneously in a reflexive Banach space. For more results on perturbation analysis of
variational inequalities, we refer the reader to [28, 31, 13, 17, 21, 36]. Motivated by the
works in [20, 23, 32, 30], in this paper, we attempt to discuss the perturbation analysis of
the generalized vector variational problem in Banach spaces.

The rest of this paper is organized as follows: In Section 2, we present some notations
and preliminary results. In Section 3, we investigate nonemptiness and boundedness of the
solution set of GVVI(F, K) when the mapping F is perturbed. In Section 4, we further
investigate nonemptiness and boundedness of the solution set of GVVI(F, K) when the
mapping F' and the constraint set K are perturbed simultaneously.

Preliminaries

In this section, we recall some concepts and results that are used in this paper. Denoted by
B, the closed ball centered at zero with radius r > 0. Set K, := K N B,..

Definition 2.1 (See [5]). Let P C X be a closed convex cone.

(i) The weak C-dual cone PY of P is defined by

PY ={ve L(X,Y) | (v,y) ¢ int C, Vy<c P}.

(ii) The strong C-dual cone P35 of P is defined by

Pg ={ve L(X,)Y)]| (v,y) € =C, VYye€ P}.
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Remark 2.2. When Y = R and C = Ry, both P and Pg reduce to the classical polar
cone P~ of P which is defined by

P ={ve X" |(v,y) <0, VyeP}.
Set Pt = —P~. It is known that
r€ int P& (v,z) >0, Yve P\ {0}

Definition 2.3 (See [13]). The recession cone K, and the barrier cone barr(K) of K in X
are defined respectively as follows:

Ko ={ve X |3t,|0and z, € K such that t,z, — v};
barr(K) ={¢ € X* | sup(§,x) < +o0}.
rzeK

It is known that K is a closed, convex cone, Koo = {d € X |z + Ad € K, VA > 0} with
x € K and Ky, = (barr(K))~

Definition 2.4 (See [4]). A mapping T: K C X — Y is said to be completely continuous,
iff it maps weakly convergent sequence to strongly convergent sequence. Denote by L.(X,Y)
the space of all completely continuous linear mappings from X into Y. Clearly, L.(X,Y) is
a closed subspace of L(X,Y) and so L.(X,Y) is also a Banach space.

Definition 2.5 (See [30]). A set-valued mapping F : K — 2X(XY) s said to be upper
semi-continuous at x € K, iff for any neighborhood U of F(z), there exists a neighborhood
V of z, such that

F@@)CU, Vi'eVnK.

F' is upper semi-continuous on K, iff F' is upper semi-continuous at every point of K. We
say that F' is completely upper semi-continuous iff it is upper semi-continuous with respect
to the weak topology of X and the norm topology of L(X,Y).

Lemma 2.6 (See [3]). For any x,y,z € Y, the following conclusions are true:

(i) fe—yg—intC andy—z € C, thenz — z ¢ —int C.
(i) fe—y¢&¢Candy—2z€C, thenx —z¢ —C.

(i) Ify—ax ¢ —intC and x —z € int C, theny —z & —C.
(

iv) Ify—axe€C andx—z€intC, theny —z € int C.

Definition 2.7 (See [7]). Let E be a Hausdorff topological real vector space and S C E.
A set-valued mapping H : S — 2F is called a KKM mapping, iff for every finite set
{z1,22,..., 2} C S, one has

co{w1, oy ...,xn} C U H(x;),

i=1
where co means the convex hull of a set.

Lemma 2.8 (See [7]). Let E be a Hausdorff topological real vector space, S C E be a
nonempty subset and H : S — 2F be a KKM mapping. If H(x) is closed for every x € S,
and 3x1 € S such that H(xy) is compact, then (|, cq H(z) # 0.
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Lemma 2.9 (See [8]). Let E be a compact Hausdorff space and D be an arbitrary set. Let
f be a real-valued function on E x D such that, for any x € E,y € D, f(-,y) is lower semi-
continuous and conver on E and f(zx,-) is concave on D. Then the following conclusion
holds:

min sup f(x,y) = sup min f(x,y).
IeEyeDf( y) yereEﬂ )
Lemma 2.10 (See [13]). Let K be a nonempty, closed and convex set in a real reflexive
Banach space X. If int barr(K) # (), then there does not exist {x,} C K with ||z, || — 400
such that 22 — 0. If K is also a cone, then there does not exist {y,} C K with each

[

lynll = 1 such that {y,} — 0.

Results for GVVI(F, K) with F' Being Perturbed

In this section, we investigate the nonemptiness and boundedness of the solution set of
GVVI(F,K) with F being perturbed. First, we prove an existence result when F' is per-
turbed by a nonlinear mapping. Then, we prove that the solution set is nonempty and
bounded when F' is perturbed by an interior point of C'—completely dual cone of K., which
is defined in Definition 3.6.

Lemma 3.1. Let K be a nonempty, bounded and closed convexr subset of a real reflexive
Banach space X and'Y be a real Banach space ordered by a closed convex and pointed cone
C with intC # 0. Let F : K — 28<(XY) be o completely upper semi-continuous mapping
with nonempty and compact values. Then for each y € K,

My)={ze K| {u,y —x) € —intC, Vue F(x)}
is open in K with respect to the weak topology of X.
Proof. Given y € K, define f, : K x L.(X,Y) =Y by
fylz,w) = (u,y — ), Ve e K,u € L(X,Y).

We claim that the mapping f,(z,u) is a continuous mapping with respect to the weak
topology of X, the norm topology of L.(X,Y) and the norm topology of Y. Indeed, for
any given xg € K, uyp € L.(X,Y) and € > 0, since K is bounded, there exists a norm
neighborhood Uy of up in L.(X,Y’) such that

€
2 b
On the other hand, there exists a weak neighborhood Vj of xy in X such that

{u —uo,y — 2)|ly < Yu € Uy, z € K.

g
||<U0,l’0—l‘>”y<§’ Ve e VoNK.

It follows that

[,y = x) = (uo,y — zo) Iy < [[{u— w0,y — )|y + [[{uo, zo — )|y <e

for all w € Uy and « € VyN K. This proves that f,(-,-) is a continuous mapping with respect

to the weak topology of X, the norm topology of L.(X,Y) and the norm topology of Y.
For any y € K, let wg € M(y) and u € F(wy). Then one has fy(u,wy) € — int C.

Since fy(-,-) is continuous with respect to the weak topology of X, the norm topology of
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L.(X,Y) and the norm topology of Y, there exist a norm neighborhood U(u) of u and a
weak neighborhood V,, N K of wy in K such that

(W ,y—x)ye—int C, Vu' €U(u),VzeV,NK.
Because F'(wg) is a compact set, there exist uy,us, ..., ug such that

{U(u1)7 U(u2)7 R U(uk)}

is an open cover of F(wp). Since F is completely upper semi-continuous, there exists a weak
neighborhood Vo N K of wy in K such that

k
F(z)c |JU(u), YzeVonK.

i=1

Set V.=V1ynN (ﬂle Vu;) N K. Then, for any € V and any u € F(x), there exists ¢ such
that u € U(u;). This yields
(u,y —x) € — int C.

As a consequence, one has z € M(y) for all x € V. O

Remark 3.2. In [35], a set-valued mapping F : K — 2Le(XY) is said to be completely
semi-continuous iff for each y € K, M(y) ={z € K | (u,y —x) € —int C, VYu € F(x)} is
open in K with respect to the weak topology X. Lemma 3.1 gives a sufficient condition for
F being a completely semi-continuous mapping.

Theorem 3.3. Let K C X be a nonempty, bounded and closed convex subset of a real
reflexive Banach space X and Y be a real Banach space ordered by a closed convex and
pointed cone C with int C' # (). Let F : K — 2L<(XY) be o completely upper semi-continuous
mapping with nonempty, compact and convex values. Then SOLgyvi(F,K) # 0.

Proof. Let 2* € C*\{0} and y € K. By Lemma 3.1, N(y) = {z € K | (z*ou,y — z) <
0, Yu € F(x)} is an open set in K with respect to the weak topology of X. Define
T:K — 2K by

T(y) ={z € K| Ju € F(x),suchthat (z* ou,y —z) >0}, Vye K.

Clearly, T'(y) is a nonempty closed set in K with respect to the weak topology of X. Since
K is a weakly compact set, T(y) is weakly compact. We claim that T is a KKM mapping.
Indeed, if it is not true, then there exist w1, uo, ...,y with p, € [0,1],n = 1,2,... k,

Zizl pn =1 and yo = Zﬁ:l UnYn With y1,vy2,...,y, € K such that yo ¢ Uﬁ:l T(yn). So
(x* ou,yn —yo) <O forall u € T(yp) and n =1,2,..., k. Let u € T(yo). It follows that

k k
0> pin{z” 0, yn — o) = (&" 0u, Y pintn — Y0) = (" 0 1,50 — yo) = 0,

n=1 n=1

a contradiction. So, by Lemma 2.8, (), cx T'(y) # 0. Let 24+ € (\,cx T'(y). Then, for any
y € K, there exists u* € F(z,+) such that (x*ou*,y —x,+) > 0. Define f : K X F(xz«) = R
by

fly,u) = (x" ou,y — x4+), Yy € K,u € F(ay).
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It follows from Lemma 2.9 that

max m min ma > 0.
ueF(z}i*)yelgf(y’ u) = min max )f(y, u) >

Since F'(x,-) is compact, there exists ug € F(x,+) such that
(" oug,y —xz) >0, VyekK.
By Remark 2.2, one has z,« € SOLgyvi(F, K). O

Let m > 0 and € > 0. Suppose that p. : K, = L.(X,Y) is completely continuous such
that ||p(x)|| < e for Vx € K,,. The family of such mappings is denoted by C(e, K,,). Now
we prove an existence result when F is perturbed by p. € C(e, K,).

Theorem 3.4. Let K be a nonempty, closed convex subset of a finite dimensional space X
andY be a real Banach space ordered by a closed convex and pointed cone C' with int C' # ()
and F : K — 2L5Y) be an upper semi-continuous mapping with nonempty, compact and
convex values. Suppose that F satisfies the following coercivity condition (C4): there exists
r > 0 such that for every x € K\ K., there is y, € K with ||y.| < ||z| satisfying:

(€,yz —x) € —int C, VE e F(x).
Then for every m > r, there exists € > 0 such that

SOLcvvi(F+p-, K ﬂB # 0.

Proof. 1f it is not true, then there exists m > r such that for every € > 0,
SOLgvvi(F+pe, K an = 0.

Let * € CT\{0}. Consider the scalar problem GV I(z*o(F+p.), K,,,) of GVVI(F+p., K,,).
By Theorem 3.3, SOLgy(x* o (F + pe), Kp) # 0. Let . € SOLgy(z* o (F + pe), Kin).
Then ||z.|| < m. Consider the following two cases.

(a) There exists some € > 0 such that ||zc| < m. In this case, we claim that x. €
SOLgvi(x* o (F + pe), K). Indeed, for each y € K, if y € K,,, then, for Vt € (0,1), there
is z¢ = . + t(y — zc) € K, by the convexity of K,,,. If y € K\ K,,, it is obvious that
is |ly — x| # 0. So zp = xe +t(y — z.) € Ky, for any t € (0 77|r H;E“l‘) C (0,1). Thus,
for each y € K, there exists ¢ € (0,1) such that zz = x. + t(y — z.) € K,,. Because
e € SOLgy(x* o (F + pe), Ki), one has that there exists £ € F(x.) such that

(@ 0 (& +p=(2:)), 2t — ) = ta” o (& +pe(2:)), y —2e) 20,
which implies
(% 0 (& +pe(®c)),y —w) >0, Vye€K.
This yields
Te € SOLGVVI F +p€7 ﬂBma
a contradiction.
(D) ||ze]] = m for any € > 0. In this case, without loss of generality, we assume that

ze — d ase — 0%, It is easy to see that d € K and ||d| = m > r. By the coercivity
condition (C7), there exists y; € K with ||yg]| < ||d|| = m such that

<§d7yd - d> € — int 07 Vfd S F(d)
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By the compactness of F(d) and Remark 2.2, one has

sup {(x*o0&y,yq —d) <O0.
§aE€EF(d)

Since F is upper semi-continuous and compact-valued, the mapping z — supgc F(w)@c* o
&,yq — x) is upper semi-continuous. It follows that

limsup{ sup [(z" o0&, ya— zc)| + (z" o (pe(2c)), ya — 7))}
e—=0 Ec€F (xc)

<limsup{ sup [(z* o0&, yq— )]} + lim(z* o (p-(2.)),yq — xc)
e—0 e GF(CES) €0

S sup <Z‘*O€d,yd—d> < 0.
§4€F(d)

Therefore, there exists § > 0 such that

(2" 0 Gea —22) + (3" 0 (pe(r) va — w2) <0, Ve € (0,0),
Ee€F (ze

Since |lyq4|| < m, by same arguments as in case (a), for any y € K, there exists ¢t € (0,1)
such that a; = yq + t(y — ya) € K. Since z. € SOLgy(z* o (F +p.), Kp), it follows that
for any ¢ € (0, 9),

t[ sup <J?* o (ge +p6(x8))7y - 335)]

EcEF (ze)
> t[ sSup <$* © (ga +pa(x£))>y - $E>]
E.EF(ze)
+(1 - t)[ sup <$* © (58 +p6($a))7yd - -T€>]
EcEF (ze)
> sup (27 o (& +pe(:)), ya + t(y — ya) — @)
§e€F (22)
= Ssup <‘T*O(€6 +pe(xs))aat7$6> > 0.
EEF (xe)

This implies that x. € SOLgy(z*o(F+p:), K). By Remark 2.2, z. € SOLgyv(F+pe, K).
Therefore,

e € SOLgyvi(F +pe, K) (| Bm # 0,
a contradiction. O
Remark 3.5. Theorem 3.4 generalizes Theorem 3.1 of [20] to the vector case.
Next we need the concepts of weak and strong C-completely dual cones of K.

Definition 3.6. Given a set K C X, the C—completely dual cones(in short C.-dual cones)
of K are defined as follows:

(i) The weak C,-dual cone K gﬁ of K is defined by:

KY ={veL(X,Y)|(v,y) & int C, Vye K}

ii) The strong C,-dual cone K2, of set K is defined by:
Ce

K2 ={veL(X)Y)|(v,y) e -C, VyeK}.
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The following result gives characterizations of weak and strong C.-dual cones of K, which
is a slight modification of Lemma 3.3 of [10]. Here we omit its proof since it is similar as
the one of Lemma 3.3 of [10].

Lemma 3.7. Let K be a nonempty, closed and convex cone of a real reflexive Banach space
X and Y be a real Banach space ordered by a proper closed convexr and pointed cone C with
int C' # 0 and int barr(K) # 0. Then the following conclusions are true:

(i) int Kg ={v e L(X,Y) | (v,y) € —int C, Vye K\ {0}};
(i) int K ={v e L (X,Y) | (v,y) € C, Vye K\{0}}.

Remark 3.8. It is worth mentioning that a superfluous condition named Property C' is
assumed in Lemma 3.3 of [10]. Recall that in [10], a pair (-,-) between L.(X,Y) and X is
said to satisfy Property (C) iff (I,x) ¢ — int C for all [ € L.(X,Y), implies that x = 0. In
fact, Property (C) always holds in the setting of real Banach spaces. Indeed, suppose on
the contrary that there exists x; # 0 such that (I,z1) ¢ —intC for all l € L.(X,Y"). Choose
x* € X* with (x*, 1) = 1. Then for any fixed y € —intC, define [(-) = (z*, -)y. Let zy € X.
For any € > 0, there exist § = W and the weak neighborhood of xg denoted by U(zg) =
{z € X : |{z*,z) — (z*,30)| < &} such that ||I(z) — I(zo)|ly < |{z*,z) — (", z0)| - |lylly <
Olylly = € for any = € U(xp). Thus, for any fixed y € —intC, I(-) = (z*,-)y € L.(X,Y).
Then [(z1) =y € — int C, which is a contradiction.

Lemma 3.9. Let K be a nonempty subset of a real reflexive Banach space X and
int barr(K) # 0, Then int barr(Ks) # 0.

Proof. By Proposition 2.1 of [1], int (Ko)t = — int barr(K) # 0. Next, we assert
(Koo)t = —barr(Ks). Indeed, it is obvious that (K. )T C —barr(Ks). Assume that
Jv € —barr(Ks) such that v ¢ (Ko )™. Then there exists 2* € K, such that (v, z*) < 0.
Because K is a cone, one has ez* € K for Ve > 0. So (v,ez*) - —oo with € — +o0.
This implies v ¢ —barr(K ), which is a contradiction. Therefore, (Kuoo)™ 2 —barr(Ky)-
Thus, —barr(Keo) = (Kso)™ 2 —barr(K) 2 — int barr(K) # 0. O

Theorem 3.10. Let K be a nonempty, closed and convex subset of a real reflexive Banach
space X with intbarr(K) # 0 and Y be a real Banach space ordered by a proper closed
convex and pointed cone C with int C' # 0. Suppose that F : K — 2L<(X5Y) 45 o completely
upper semi-continuous mapping with nonempty, compact and convex values and satisfies the
coercivity condition (Cy): there exists r > 0 such that for every x € K\ K,., there is y, € K,
satisfying:
Then for any p € int (Koo)gc, there exists m > r such that

(1) SOLGVV[(F —€p, K) 7é [Z), Ve € (07 %),

(ii) SOLgyvyi(F —ep, K) QB;, Ve € (0,%).

Proof. To prove (i), suppose on the contrary that there exists p € int(Koo)%c such that for
any m > r, there exists e, € (0, =) such that

1
*m

SOLGVV](F — EmPp, K) = @
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It is clear that K 1 := {r e K| |z|| < } is a nonempty, bounded and closed convex
set for all sufﬁmently large m. By Theorem 3.3, SOLgyvi(F — epmp, K ) # (. Let
T € SOLgyvi(F — emp, K_1). Consider the following cases.

(@) Jlzm] < i for some m. In this case we obtain z,, € SOLgyvi(F — enp, K) by
same arguments as case (a) in the proof of Theorem 3.4. This arrives a contradiction.

(b) Jlxm| = = for all m > r. Since i > m > r, we have z,, € K \ K,. By the
coercivity condition (C3), there exists y,,, € K, such that
EmyYm — Tm) € —C, V&, € F(ay,). (3.1)

Without loss of generality, we assume that ”z T d € Ko as m — 4oo. Since

mt barr(K) # 0, we get d # 0 (by Lemma 2.10) and int barr(Ks) # @ (by Lemma
3.9). Since p € int (K)g , from Lemma 3.7 we get (p,d) € — int C. Let y € K Then
2t = Ym +t(y — ym) € K 1 for all sufficiently small ¢ € (0,1) since ||y,|| < r < =—. Since

Em

Tm € SOLgvvi(F — emp, K ) there exists fm € F(x,,) such that

’

<£;n —Emp, 2t — xm> = <§m —EmPs Ym + t(y - ym) - xm>
=& — mpyy — ) + (1= 1) (s Y — ) + Em (1 — (D Zm) — (D, Ym))
¢ — int C. (3.2)

It follows from (3.1) and (3.2) that

’

t<§m —&mDP,Y — fm) + 5m(1 - t)(<p, xm> - <pv ym>) ¢ — int C. (33)

Since e (p, Tm) = (p, ﬁ) — (p,d) € — int C and €, (p, ym) — 0 (as m — +00), we get

m((D, Tm) = (D, Ym)) — (p,d) € —int C (‘as m — +0o0).

This implies that
5m(<p7 xm> - <pa ym>) € —int C, (34)

for all sufficiently large m. It follows from Lemma 2.6, (3.3) and (3.4) that for all sufficiently
large m,

’

<€m_5mp7y_$m>¢_int Cv VyEK,

which is a contradiction.

Next, we prove (). By (i), there exists m > r such that for any k > m and any € € (0, 1),
SOLgyvvi(F —ep, K) # (. Suppose on the contrary that there exists p € int (Koo)gc such
that for any k& > m, there are g, € (0, k) and xr € SOLgyyi(F — eip, K) such that
v, € B 2. Then z; € K\ K, since |zk| > Z- > k> m > r. By the coercivity condition,

there ex1sts yr € K, such that
(Ekryk — x1) € —=C, V& € F(xy). (3.5)
Since x € SOLgyv(F — exp, K), there exists 5,; € F(xx) such that
<£;c>yk - xk> + 5k(<p,1'k> - <pa yk>) - <£;c —EkDy Yk — xk> ¢ — int C. (36)
It follows from (3.5) and (3.6) that

er({pxx) — (pyyr)) & — int C. (3.7)
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Without loss of generality, we assume that = — e € K, \{0} as k¥ — +oo. Since

[EA

{yr} € K, is bounded and ||zg|| — 400 as k — 400, it follows that

Tk Yk .
(p, ) — (P, ) — (p,e) € —int C
(74| (74| ’ ’
as k — 4oc0. This implies that
Ty Yk .
<p7 > - <p7 *> € — int C
(e (e

for all sufficiently large k. This yields

ex((ps k) — (p.yr)) € — int C,
for all sufficiently large k, a contradiction to (3.7). 0

Remark 3.11. When Y = R and C = R, Theorem 3.10 reduces to Theorem 3.1 of [32]
and Theorem 3.1 of [21].

Results for GVVI(F, K) with F and K Being Perturbed Simulta-
neously

In this section we investigate nonemptiness and boundedness of the solution set of
GVVI(F, K) with F and K being perturbed simultaneously. Given § > 0, set K° = K +Bj;.
Let C.(X,Y) be the space of all completely continuous mappings from X to Y. Given ¢ > 0,
let p: K% — C.(X,Y) be a mapping such that ||p(z)|| < ¢ for Vo € K°. The set of all such
mappings is denoted by C(e, K?).

Theorem 4.1. Let K be a nonempty, closed, convex and subset of a finite dimensional
space X and'Y be a real Banach space ordered by a pointed, closed and convex cone C with
intC # 0. Given § > 0, suppose that F : K% — 2L=(XY) s o completely upper semi-
continuous mapping with nonempty, compact and convex values and satisfies the coercivity
condition (C1) on K, i.e., there exists r > 0 such that for every x € K \ K,., there exists
Yo € K with ||y, < ||lz|| satisfying:

&y, —x) € —int C, V¢ € F(x).
Then for every m > r, there exist € > 0 and 09 € (0,9) such that
SOLgvvi(F +p, K%) ﬂBm 20, VYpeCle, K%),Ya € (0,d).

Proof. Suppose on the contrary that there exists m > r such that for each ¢ > 0 and
' € (0,0), there exist p. 5 € C(e, K°) and a € (0,6') such that

SOLcvvi(F + pes, K%) ﬂBm =0.

Let z* € CT\{0}. Set (K%),, = {z € K“| ||z|| < m}. By Theorem 3.3, SOLgy(z*o (F +
pE,é’)a (Ka)m) # 0.

Let z. 50 € SOLgyi(z*o(F+ps o), (K*)m). Clearly, ||z 5| < m. Consider the following
two cases.

(a) |lmesl] < m for some € > 0 and &’ € (0,0). By same arguments as case (a) in the
proof of Theorem 3.4, we have z. 5+ € SOLgyv(F + pe s, K*), a contradiction.
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(0) |lzes|| =mforalle > 0 and &’ € (0,6). Without loss of generality, we assume that
zo5 — d with ||d|| = m as e — 0T and & — 0F. Since z. 5 € K + By, there exists 7 € K
such that lims__,o+ ||zc,5 —Z2' || = 0. This together with z. 5 — d yields {#'} — d € K\ K,
as ¢ — 07 and & — 0T. By the coercivity condition (C;) on K, there exists yq € K with
llyall < [|d]l = m such that

(€arya —d) € — int C,  Veq € F(d).
Since F(d) is compact and z* € C*T\{0}, we get

sup (" o0&y, yq —d) <O0. (4.1)
£a€F(d)

It follows from sup,¢(ga),, [|[Pe,s' ()] < € that

lim <‘(I’.}k © (pa,é’(xsﬁ’))v Ya — x5,6’> =0. (42)

e—0t,68/—=0t
Since F' is upper semi-continuous and compact-valued, the mapping z — supgc F(z) (x* o

&,yq — x) is upper semi-continuous. It follows from (4.1) and (4.2) that

limsup { sup [(2* 0 & ,yq —zes)] + (2" 0 (Do (Tes))Ya — Tesr)}
e=0",8'=0% g8 eF(x, 4)

< limsup { sup [(z¥o 53 2Yd — Te5)|}
e—0+,8’—=0+ §S'EF(I5,51)

+  lim (2" o (pes(xes)), ya — Tesr)

e—0t1,6’—=0t

< sup (2" 0&,yq —d) <O.

§4€EF(d)

Therefore, there exist g > 0 and dg > 0 such that

sup (270 & ya— ze o) + (2 0 (Pe.sr (T267)),Ya — Te ) <O, (4.3)
e er(z, 5)

for Ve € (0,e9),0" € (0,dp). Let y € K Then a; := yq + t(y — ya) € (K<), for all
sufficiently small ¢ € (0,1) since yq € (K)p, with ||yq|| < m. Since x. 5 € SOLgyvi(x* o
(F + pes)s (K¥)m), it follows from (4.3) that

tf sup (270 (& +pey(Tes)),y — Tesr)]
S EF (. 41)

>t sup (270 (& +pes (), y — Tes)]
& eF(z, 5)

(1=t sup (2% 0 (& + pe g (es)) Ya — Tes)]
&V EeF(a, 5)

> sup (2% 0 (& + pey (2e5)), ya + Hy — ya) — zes)
fg/EF(xs,a/)

= sup (z* o (fg + Pes(Te,s0)), ar — e 51) > 0.
gV EeF(z, o)

This implies z. 5+ € SOLgv(z* o (F + pes), K*). As a consequence, we get
ze 50 € SOLgyvi(F 4 pe s, K<) ﬂBma

a contradiction. O
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Remark 4.2. When Y = R and C = R, Theorem 4.1 reduces to Theorem 6 of [23].

Theorem 4.3. Let K be a nonempty, closed and convex set of a real reflexive Banach space
X with intbarr(K) # 0 and Y be a Banach space ordered by a pointed, closed and convex
cone C with int C # 0. Given § > 0, suppose that F : K0 — 2L(XY) s o completely
upper semi-continuous mapping with nonempty, compact and convex values and satisfies the
following coercivity condition (C3): there exist v > 0 and 5y € (0,8) such that for every
x € K% \ K., there exists y, € K, such that

Let p € int (Koo)2, . Then there exists m > max{r, t} such that
(i) SOLgvvi(F —ep, K%) #0, for any e € (0, 1) and any &' € (0, 2);
(ii) SOLgvvI(F — ep, K‘Sl) C B, for any ¢ € (0, %) and any &' € (0, %)

Proof To prove (i), suppose on the contrary that for any m > max{r, (15} there exist
€ (0,1) and 6, € (0, 1) such that SOLgvv(F — epnp, KO) = 0. Set T, = {z €

K‘sm | =] < = -}. We have T},, # 0 for all sufficiently large m > max{r, }. Indeed, for
any fixed z € K one hasz € K C K + B(;1 for any 0; € (0,0). And there ex1sts sufficiently
large m' > max{r £} such that [lz]| <m’ < . Soz € K ({z | |lzf| < —} =Ty for
all sufficiently large m’ > max{r, } By Theorem 3 3, SOLgvvi(F — Emp, m) # 0. Let
xom € SOLGVVI(F emP, Tin)- Clearly, |9 < . Consider the following two cases.

(@) ||zlm]| < ; for some m. In this case we obtaln 29m € SOLgvvi(F — emp, Ko)
by same arguments as case (a) in the proof of Theorem 3.4. This arrives a contradiction.

() |2l = i for all m > max{r, %} Since i > m > max{r, %} > rand 25 €
K% we get z0m € K°»\K,. By 6, € (0,1), we have 6,, < & for all sufficiently large
m. Thus, K% C K%. So z0» € K%»\K, C K%\K, for all sufficiently large m. By the
coercivity condition (Cj3), there exists y,,, € K, such that

My Ym — xf;;l> e —-C, Vnn€ F(xi;”) (4.4)

5
Without loss of generality, we assume that oo ol — d as m — +o00. Since 20 € K%m there

exist #%m € K and k9= € B (the closed unit ball) such that 20w = 2%m 4 §,,k%. Because B

is bounded and d,, G( L), it is easy to verify that hmm_H_OO ||xm —2%m || = 0. Tt follows
that
. wfr'l]ln /x\’é”f;L . xfr’;ln /x\g’/le /-,I:\%n /x\%'L
lim == - —F— | < lim [|—— - —F—|+|—5—— —5—Il
motee || @ || e || [l | [Ei (e
— 1 1 Sm _ 76
= i pledy |
1 1
: =5
(5 |- |5 = =5
mee BN
— Om _ 20m
= i lety |
[ el

+

mehee [y
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S ml_lg_l 25me 2 || =0.
Z6m
This together with B 57” | — d yields H;‘;ﬁ —d € Ky as m — +oo. Since int barr(K) #

0, we get d # 0 (by Temma 2. 10) and int barr(Ks) # 0 (by Lemma 3.9). Since p €
int (Ko)g, , from Lemma 3.7 we get (p,d) € — int C.

Let y € K% . Then 2 = ym + t(y — ym) € T}, for all sufficiently small t € (0,1)
since ||ym\ <r< i and y,, € K% . Since 2% € SOLgyv(F — mp,T)n), there exists

m
¢, € F(z?m) such that

<£':n —Emp, 2t — x?ﬁn> = <£/ —EmDP,Ym + t<y ym) - xfﬁn>
&

= <§;n —&EmD,Y — a:,,;") + (1 - t><§m7ym - xf;;) + Em(l - t)(<p, xgrbn> - <p7 ym>)
¢ — int C. (4.5)

It follows from (4.4) and (4.5) that

’

HEn —empy = 7) +em(1 = ((p.27) = (P ym)) ¢ — int C. (4.6)

28m

Since &, (p, x3m) = (p, ng;n H> — (p,d) € —int C and € (p, Ym) — 0 (as m — +00), we

have

em((p.a0) = (pyym)) = (p,d) € — int C,  (m — +00).
This implies that
6m(<pa mfr;n> - <pa ym>) €-C (47)
for all sufficiently large m. It follows from Lemma 2.6, (4.6) and (4.7) that for all sufficiently
large m, )
<§m7€mp7yizf);n>¢ilnt C? vy€K6m7
which is a contradiction.
Next, we prove (i7). By (i), there exists m > max{r, } such that for any k& > m, any
e €(0,1) and any &' € (0, 1), SOLgvv(F —ep, K + (Z) Suppose on the contrary that
there ex1sts p € int (Koo )C such that for any k > m, there are ¢, € (0, £), 6 € (0, 1) and
e SOLgvvi(F — 8kp,K6") such that x, ¢ B i Then xi’“ € K%\ K, C K%\K, for
all sufficiently large k > m since [|z3*| > L >k >m > max{r, } >r and 6 € (0, 7).
By the coercivity condition Cj3, there ex1sts yr € K, such that

(M yr — 20K € =C, Vg € F(a2). (4.8)

Because y, € K C K% and :r € SOLgyv(F — eyxp, K%), there exists 51; € F(xi’“) such
that

€y =2 Fer(pag’) — (o) = (& —ewpyr —ap) ¢ —imt C. (4.9)
It follows from (4.8) and (4.9) that
er(p,23") — (p,y)) ¢ — int C. (4.10)

2
ll= ‘kH (k - +OO)~ By similar argu-

ments as in the proof of (i), there exists xk € K such that

Without loss of generality,

— e € Ky as (k — +00).

HAE"‘H
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Since int barr(K) # 0, we get e # 0 (by Lemma 2.10) and int barr(K.) # 0 (by Lemma
3.9). Then, for p € int (Koo)gc, we get (p,e) € — int C by the lemma 3.7. Since {y;} € K,

is bounded and [|z3*|| — +oo as k — +o0, it follows that

mi’“ Yk .
<p7 Ok >7<7 Sk >*><p,€>€*lntc.

[Ergl [l

This implies that
p Yk .

(P, —5—) = (p, —5—) € —int C

for all sufficiently large k. This yields
5 5 p Yk
er((p, 23f) — (poyk)) = exllz* [((p, —5—) — (s —5—)) € —int C

for all sufficiently large k, a contradiction to (4.10). O

Remark 4.4. Recently, Luo [23] investigated nonemptiness and boundedness of the solu-
tion set of the scalar generalized variational inequality with the mapping being perturbed
by p € int (barrK) and the constraint set K being perturbed by K., \{0} under coercivity
and stable quasimonotonicity conditions ([23, Theorem 9]). As a comparison, we established
nonemptiness and boundedness of the solution set of the generalized vector variational in-
equality with the mapping being perturbed by p € int (Koo)gc and the constraint set K
being perturbed by the closed unit ball without assuming any monotonicity.

Conclusion

In this paper we study the perturbed generalized vector variational inequality in the setting
of Banach spaces. Under coercivity condition we prove nonemptiness and boundedness
of the solution set of the perturbed vector variational inequality without assuming any
monotonicity. Our results extend and improve the corresponding results of [20, 23, 21],
where nonemptiness and boundedness of the solution set of the scalar perturbed variational
inequality were established.
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