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GV I(F,K) find x ∈ K, ∃ξ ∈ F (x) such that

〈ξ, y − x〉 ≥ 0, ∀y ∈ K.

When F is a single-valued mapping, GV V I(F,K) reduces to the following vector variational
inequality introduced in [12]:

V V I(F,K) find x ∈ K such that

〈F (x), y − x〉 6∈ − int C, ∀y ∈ K.

Denoted by SOLGV V I(F,K) the solution set of GV V I(F,K). There are a large amount
of papers investigating vector variational inequalities, its variants and applications in the
literature. For details, we refer the reader to [3, 29, 14, 15, 10, 34, 35, 2, 16].

Perturbation analysis is one of important and interesting topics in variational inequali-
ties and related problems. Fang, et al. [11] studied the well-posedness by perturbations of
mixed variational inequalities in Banach spaces. Li and He [20] investigated the solvability
of a perturbed generalized variational inequality in a finite dimensional space without as-
suming any kind of monotonicity. When the mapping is perturbed by a nonlinear mapping
(resp. a direction in the interior of the barrier cone of the constraint set), they proved
that the scalar perturbed generalized variational inequality with a coercivity assumption
has a solution. Tang and Li [30] extended the results of Li and He [20] to the scalar per-
turbed mixed generalized variational inequality. Wang [32] improved the results of Li and
He [20] by proving that the solution set of the scalar perturbed generalized variational in-
equality in a reflexive Banach space is nonempty and bounded. Recently, Luo [23] further
investigated the nonemptiness and boundedness of the solution set of the scalar perturbed
generalized variational inequality with the mapping and the constraint set being perturbed
simultaneously in a reflexive Banach space. For more results on perturbation analysis of
variational inequalities, we refer the reader to [28, 31, 13, 17, 21, 36]. Motivated by the
works in [20, 23, 32, 30], in this paper, we attempt to discuss the perturbation analysis of
the generalized vector variational problem in Banach spaces.

The rest of this paper is organized as follows: In Section 2, we present some notations
and preliminary results. In Section 3, we investigate nonemptiness and boundedness of the
solution set of GV V I(F,K) when the mapping F is perturbed. In Section 4, we further
investigate nonemptiness and boundedness of the solution set of GV V I(F,K) when the
mapping F and the constraint set K are perturbed simultaneously.

2 Preliminaries

In this section, we recall some concepts and results that are used in this paper. Denoted by
B̄r the closed ball centered at zero with radius r > 0. Set Kr := K ∩ B̄r.

Definition 2.1 (See [5]). Let P ⊂ X be a closed convex cone.

(i) The weak C-dual cone PW
C of P is defined by

PW
C = {v ∈ L(X,Y ) | 〈v, y〉 6∈ int C, ∀y ∈ P}.

(ii) The strong C-dual cone PS
C of P is defined by

PS
C = {v ∈ L(X,Y ) | 〈v, y〉 ∈ −C, ∀y ∈ P}.
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Remark 2.2. When Y = R and C = R+, both PW
C and PS

C reduce to the classical polar
cone P− of P which is defined by

P− = {v ∈ X∗ | 〈v, y〉 ≤ 0, ∀y ∈ P}.

Set P+ = −P−. It is known that

x ∈ int P ⇔ 〈v, x〉 > 0, ∀v ∈ P+ \ {0}.

Definition 2.3 (See [13]). The recession cone K∞ and the barrier cone barr(K) of K in X
are defined respectively as follows:

K∞ = {v ∈ X | ∃tn ↓ 0 and xn ∈ K such that tnxn ⇀ v} ;

barr(K) = {ξ ∈ X∗ | sup
x∈K

〈ξ, x〉 < +∞}.

It is known that K∞ is a closed, convex cone, K∞ = {d ∈ X | x+ λd ∈ K, ∀λ > 0} with
x ∈ K and K∞ = (barr(K))−.

Definition 2.4 (See [4]). A mapping T : K ⊂ X → Y is said to be completely continuous,
iff it maps weakly convergent sequence to strongly convergent sequence. Denote by Lc(X,Y )
the space of all completely continuous linear mappings from X into Y . Clearly, Lc(X,Y ) is
a closed subspace of L(X,Y ) and so Lc(X,Y ) is also a Banach space.

Definition 2.5 (See [30]). A set-valued mapping F : K → 2L(X,Y ) is said to be upper
semi-continuous at x ∈ K, iff for any neighborhood U of F (x), there exists a neighborhood
V of x, such that

F (x′) ⊆ U, ∀x′ ∈ V ∩K.

F is upper semi-continuous on K, iff F is upper semi-continuous at every point of K. We
say that F is completely upper semi-continuous iff it is upper semi-continuous with respect
to the weak topology of X and the norm topology of L(X,Y ).

Lemma 2.6 (See [3]). For any x, y, z ∈ Y , the following conclusions are true:

(i) If x− y 6∈ −intC and y − z ∈ C, then x− z 6∈ −intC.

(ii) If x− y 6∈ C and y − z ∈ C, then x− z 6∈ −C.

(iii) If y − x 6∈ −intC and x− z ∈ intC, then y − z 6∈ −C.

(iv) If y − x ∈ C and x− z ∈ intC, then y − z ∈ intC.

Definition 2.7 (See [7]). Let E be a Hausdorff topological real vector space and S ⊆ E.
A set-valued mapping H : S → 2E is called a KKM mapping, iff for every finite set
{x1, x2, ..., xn} ⊆ S, one has

co {x1, x2, ..., xn} ⊆
n⋃

i=1

H(xi),

where co means the convex hull of a set.

Lemma 2.8 (See [7]). Let E be a Hausdorff topological real vector space, S ⊆ E be a
nonempty subset and H : S → 2E be a KKM mapping. If H(x) is closed for every x ∈ S,
and ∃x1 ∈ S such that H(x1) is compact, then

⋂
x∈S H(x) 6= ∅.
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Lemma 2.9 (See [8]). Let E be a compact Hausdorff space and D be an arbitrary set. Let
f be a real-valued function on E ×D such that, for any x ∈ E, y ∈ D, f(·, y) is lower semi-
continuous and convex on E and f(x, ·) is concave on D. Then the following conclusion
holds:

min
x∈E

sup
y∈D

f(x, y) = sup
y∈D

min
x∈E

f(x, y).

Lemma 2.10 (See [13]). Let K be a nonempty, closed and convex set in a real reflexive
Banach space X. If int barr(K) 6= ∅, then there does not exist {xn} ⊆ K with ‖xn‖ → +∞
such that xn

∥xn∥ ⇀ 0. If K is also a cone, then there does not exist {yn} ⊆ K with each

‖yn‖ = 1 such that {yn} ⇀ 0.

3 Results for GVVI(F,K) with F Being Perturbed

In this section, we investigate the nonemptiness and boundedness of the solution set of
GV V I(F,K) with F being perturbed. First, we prove an existence result when F is per-
turbed by a nonlinear mapping. Then, we prove that the solution set is nonempty and
bounded when F is perturbed by an interior point of C−completely dual cone of K∞ which
is defined in Definition 3.6.

Lemma 3.1. Let K be a nonempty, bounded and closed convex subset of a real reflexive
Banach space X and Y be a real Banach space ordered by a closed convex and pointed cone
C with intC 6= ∅. Let F : K → 2Lc(X,Y ) be a completely upper semi-continuous mapping
with nonempty and compact values. Then for each y ∈ K,

M(y) = {x ∈ K | 〈u, y − x〉 ∈ −intC, ∀u ∈ F (x)}

is open in K with respect to the weak topology of X.

Proof. Given y ∈ K, define fy : K × Lc(X,Y ) → Y by

fy(x, u) = 〈u, y − x〉, ∀x ∈ K,u ∈ Lc(X,Y ).

We claim that the mapping fy(x, u) is a continuous mapping with respect to the weak
topology of X, the norm topology of Lc(X,Y ) and the norm topology of Y . Indeed, for
any given x0 ∈ K, u0 ∈ Lc(X,Y ) and ε > 0, since K is bounded, there exists a norm
neighborhood U0 of u0 in Lc(X,Y ) such that

‖〈u− u0, y − z〉‖Y <
ε

2
, ∀u ∈ U0, z ∈ K.

On the other hand, there exists a weak neighborhood V0 of x0 in X such that

‖〈u0, x0 − x〉‖Y <
ε

2
, ∀x ∈ V0 ∩K.

It follows that

‖〈u, y − x〉 − 〈u0, y − x0〉‖Y ≤ ‖〈u− u0, y − x〉‖Y + ‖〈u0, x0 − x〉‖Y < ε

for all u ∈ U0 and x ∈ V0∩K. This proves that fy(·, ·) is a continuous mapping with respect
to the weak topology of X, the norm topology of Lc(X,Y ) and the norm topology of Y .

For any y ∈ K, let w0 ∈ M(y) and u ∈ F (w0). Then one has fy(u,w0) ∈ − int C.
Since fy(·, ·) is continuous with respect to the weak topology of X, the norm topology of
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Lc(X,Y ) and the norm topology of Y , there exist a norm neighborhood U(u) of u and a
weak neighborhood Vu ∩K of w0 in K such that

〈u′, y − x〉 ∈ − int C, ∀u′ ∈ U(u), ∀x ∈ Vu ∩K.

Because F (w0) is a compact set, there exist u1, u2, . . . , uk such that

{U(u1), U(u2), . . . , U(uk)}

is an open cover of F (w0). Since F is completely upper semi-continuous, there exists a weak
neighborhood V0 ∩K of w0 in K such that

F (x) ⊂
k⋃

i=1

U(uk), ∀x ∈ V0 ∩K.

Set V = V0 ∩ (
⋂k

i=1 Vui
) ∩K. Then, for any x ∈ V and any u ∈ F (x), there exists i such

that u ∈ U(ui). This yields

〈u, y − x〉 ∈ − int C.

As a consequence, one has x ∈ M(y) for all x ∈ V .

Remark 3.2. In [35], a set-valued mapping F : K → 2Lc(X,Y ) is said to be completely
semi-continuous iff for each y ∈ K, M(y) = {x ∈ K | 〈u, y − x〉 ∈ − int C, ∀u ∈ F (x)} is
open in K with respect to the weak topology X. Lemma 3.1 gives a sufficient condition for
F being a completely semi-continuous mapping.

Theorem 3.3. Let K ⊆ X be a nonempty, bounded and closed convex subset of a real
reflexive Banach space X and Y be a real Banach space ordered by a closed convex and
pointed cone C with intC 6= ∅. Let F : K → 2Lc(X,Y ) be a completely upper semi-continuous
mapping with nonempty, compact and convex values. Then SOLGV V I(F,K) 6= ∅.

Proof. Let x∗ ∈ C+\{0} and y ∈ K. By Lemma 3.1, N(y) = {x ∈ K | 〈x∗ ◦ u, y − x〉 <
0, ∀u ∈ F (x)} is an open set in K with respect to the weak topology of X. Define
T : K → 2K by

T (y) = {x ∈ K | ∃u ∈ F (x), such that 〈x∗ ◦ u, y − x〉 ≥ 0}, ∀y ∈ K.

Clearly, T (y) is a nonempty closed set in K with respect to the weak topology of X. Since
K is a weakly compact set, T (y) is weakly compact. We claim that T is a KKM mapping.
Indeed, if it is not true, then there exist µ1, µ2, . . . , µn with µn ∈ [0, 1], n = 1, 2, . . . , k,∑k

n=1 µn = 1 and y0 =
∑k

n=1 µnyn with y1, y2, . . . , yn ∈ K such that y0 /∈
⋃k

n=1 T (yn). So
〈x∗ ◦ u, yn − y0〉 < 0 for all u ∈ T (y0) and n = 1, 2, . . . , k. Let u ∈ T (y0). It follows that

0 >

k∑
n=1

µn〈x∗ ◦ u, yn − y0〉 = 〈x∗ ◦ u,
k∑

n=1

µnyn − y0〉 = 〈x∗ ◦ u, y0 − y0〉 = 0,

a contradiction. So, by Lemma 2.8,
⋂

y∈K T (y) 6= ∅. Let xx∗ ∈
⋂

y∈K T (y). Then, for any
y ∈ K, there exists u∗ ∈ F (xx∗) such that 〈x∗ ◦u∗, y−xx∗〉 ≥ 0. Define f : K×F (xx∗) → R
by

f(y, u) = 〈x∗ ◦ u, y − xx∗〉, ∀y ∈ K,u ∈ F (xx∗).
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It follows from Lemma 2.9 that

max
u∈F (xx∗ )

min
y∈K

f(y, u) = min
y∈K

max
u∈F (xx∗ )

f(y, u) ≥ 0.

Since F (xx∗) is compact, there exists u0 ∈ F (xx∗) such that

〈x∗ ◦ u0, y − xx∗〉 ≥ 0, ∀y ∈ K.

By Remark 2.2, one has xx∗ ∈ SOLGV V I(F,K).

Let m > 0 and ε > 0. Suppose that pε : Km → Lc(X,Y ) is completely continuous such
that ‖pε(x)‖ ≤ ε for ∀x ∈ Km. The family of such mappings is denoted by C(ε,Km). Now
we prove an existence result when F is perturbed by pε ∈ C(ε,Km).

Theorem 3.4. Let K be a nonempty, closed convex subset of a finite dimensional space X
and Y be a real Banach space ordered by a closed convex and pointed cone C with intC 6= ∅
and F : K → 2L(X,Y ) be an upper semi-continuous mapping with nonempty, compact and
convex values. Suppose that F satisfies the following coercivity condition (C1): there exists
r > 0 such that for every x ∈ K \Kr, there is yx ∈ K with ‖yx‖ < ‖x‖ satisfying:

〈ξ, yx − x〉 ∈ −int C, ∀ξ ∈ F (x).

Then for every m > r, there exists ε > 0 such that

SOLGV V I(F + pε,K)
⋂

B̄m 6= ∅.

Proof. If it is not true, then there exists m > r such that for every ε > 0,

SOLGV V I(F + pε,K)
⋂

B̄m = ∅.

Let x∗ ∈ C+\{0}. Consider the scalar problem GV I(x∗◦(F+pε),Km) ofGV V I(F+pε,Km).
By Theorem 3.3, SOLGV I(x

∗ ◦ (F + pε),Km) 6= ∅. Let xε ∈ SOLGV I(x
∗ ◦ (F + pε),Km).

Then ‖xε‖ ≤ m. Consider the following two cases.
(a) There exists some ε > 0 such that ‖xε‖ < m. In this case, we claim that xε ∈

SOLGV I(x
∗ ◦ (F + pε),K). Indeed, for each y ∈ K, if y ∈ Km, then, for ∀t ∈ (0, 1), there

is zt = xε + t(y − xε) ∈ Km by the convexity of Km. If y ∈ K \ Km, it is obvious that

is ‖y − xε‖ 6= 0. So zt = xε + t(y − xε) ∈ Km for any t ∈ (0, m−∥xε∥
∥y−xε∥ ) ⊆ (0, 1). Thus,

for each y ∈ K, there exists t ∈ (0, 1) such that zt = xε + t(y − xε) ∈ Km. Because
xε ∈ SOLGV I(x

∗ ◦ (F + pε),Km), one has that there exists ξε ∈ F (xε) such that

〈x∗ ◦ (ξε + pε(xε)), zt − xε〉 = t〈x∗ ◦ (ξε + pε(xε)), y − xε〉 ≥ 0,

which implies
〈x∗ ◦ (ξε + pε(xε)), y − xε〉 ≥ 0, ∀y ∈ K.

This yields

xε ∈ SOLGV V I(F + pε,K)
⋂

B̄m,

a contradiction.
(b) ‖xε‖ = m for any ε > 0. In this case, without loss of generality, we assume that

xε → d as ε → 0+. It is easy to see that d ∈ K and ‖d‖ = m > r. By the coercivity
condition (C1), there exists yd ∈ K with ‖yd‖ < ‖d‖ = m such that

〈ξd, yd − d〉 ∈ − int C, ∀ξd ∈ F (d).
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By the compactness of F (d) and Remark 2.2, one has

sup
ξd∈F (d)

〈x∗ ◦ ξd, yd − d〉 < 0.

Since F is upper semi-continuous and compact-valued, the mapping x 7→ supξ∈F (x)〈x∗ ◦
ξ, yd − x〉 is upper semi-continuous. It follows that

lim sup
ε→0

{ sup
ξε∈F (xε)

[〈x∗ ◦ ξε, yd − xε〉] + 〈x∗ ◦ (pε(xε)), yd − xε〉}

≤ lim sup
ε→0

{ sup
ξε∈F (xε)

[〈x∗ ◦ ξε, yd − xε〉]}+ lim
ε→0

〈x∗ ◦ (pε(xε)), yd − xε〉

≤ sup
ξd∈F (d)

〈x∗ ◦ ξd, yd − d〉 < 0.

Therefore, there exists δ > 0 such that

sup
ξε∈F (xε)

〈x∗ ◦ ξε, yd − xε〉+ 〈x∗ ◦ (pε(xε)), yd − xε〉 < 0, ∀ε ∈ (0, δ).

Since ‖yd‖ < m, by same arguments as in case (a), for any y ∈ K, there exists t ∈ (0, 1)
such that at = yd + t(y− yd) ∈ Km. Since xε ∈ SOLGV I(x

∗ ◦ (F + pε),Km), it follows that
for any ε ∈ (0, δ),

t[ sup
ξε∈F (xε)

〈x∗ ◦ (ξε + pε(xε)), y − xε〉]

> t[ sup
ξε∈F (xε)

〈x∗ ◦ (ξε + pε(xε)), y − xε〉]

+(1− t)[ sup
ξε∈F (xε)

〈x∗ ◦ (ξε + pε(xε)), yd − xε〉]

≥ sup
ξε∈F (xε)

〈x∗ ◦ (ξε + pε(xε)), yd + t(y − yd)− xε〉

= sup
ξε∈F (xε)

〈x∗ ◦ (ξε + pε(xε)), at − xε〉 ≥ 0.

This implies that xε ∈ SOLGV I(x
∗◦(F+pε),K). By Remark 2.2, xε ∈ SOLGV V I(F+pε,K).

Therefore,

xε ∈ SOLGV V I(F + pε,K)
⋂

B̄m 6= ∅,

a contradiction.

Remark 3.5. Theorem 3.4 generalizes Theorem 3.1 of [20] to the vector case.

Next we need the concepts of weak and strong C-completely dual cones of K.

Definition 3.6. Given a set K ⊆ X, the C−completely dual cones(in short Cc-dual cones)
of K are defined as follows:

(i) The weak Cc-dual cone KW
Cc

of K is defined by:

KW
Cc

= {v ∈ Lc(X,Y ) | 〈v, y〉 6∈ int C, ∀y ∈ K};

(ii) The strong Cc-dual cone KS
Cc

of set K is defined by:

KS
Cc

= {v ∈ Lc(X,Y ) | 〈v, y〉 ∈ −C, ∀y ∈ K}.
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The following result gives characterizations of weak and strong Cc-dual cones of K, which
is a slight modification of Lemma 3.3 of [10]. Here we omit its proof since it is similar as
the one of Lemma 3.3 of [10].

Lemma 3.7. Let K be a nonempty, closed and convex cone of a real reflexive Banach space
X and Y be a real Banach space ordered by a proper closed convex and pointed cone C with
intC 6= ∅ and int barr(K) 6= ∅. Then the following conclusions are true:

(i) intKS
Cc

= {v ∈ Lc(X,Y ) | 〈v, y〉 ∈ −int C, ∀y ∈ K \ {0}};

(ii) intKW
Cc

= {v ∈ Lc(X,Y ) | 〈v, y〉 6∈ C, ∀y ∈ K \ {0}}.

Remark 3.8. It is worth mentioning that a superfluous condition named Property C is
assumed in Lemma 3.3 of [10]. Recall that in [10], a pair 〈·, ·〉 between Lc(X,Y ) and X is
said to satisfy Property (C) iff 〈l, x〉 /∈ − int C for all l ∈ Lc(X,Y ), implies that x = 0. In
fact, Property (C) always holds in the setting of real Banach spaces. Indeed, suppose on
the contrary that there exists x1 6= 0 such that 〈l, x1〉 /∈ −intC for all l ∈ Lc(X,Y ). Choose
x∗ ∈ X∗ with 〈x∗, x1〉 = 1. Then for any fixed y ∈ −intC, define l(·) = 〈x∗, ·〉y. Let x0 ∈ X.
For any ϵ > 0, there exist δ = ϵ

∥y∥Y
and the weak neighborhood of x0 denoted by U(x0) =

{x ∈ X : |〈x∗, x〉 − 〈x∗, x0〉| < δ} such that ‖l(x) − l(x0)‖Y ≤ |〈x∗, x〉 − 〈x∗, x0〉| · ‖y‖Y <
δ‖y‖Y = ϵ for any x ∈ U(x0). Thus, for any fixed y ∈ −intC, l(·) = 〈x∗, ·〉y ∈ Lc(X,Y ).
Then l(x1) = y ∈ − int C, which is a contradiction.

Lemma 3.9. Let K be a nonempty subset of a real reflexive Banach space X and
int barr(K) 6= ∅, Then int barr(K∞) 6= ∅.

Proof. By Proposition 2.1 of [1], int (K∞)+ = − int barr(K) 6= ∅. Next, we assert
(K∞)+ = −barr(K∞). Indeed, it is obvious that (K∞)+ ⊆ −barr(K∞). Assume that
∃v ∈ −barr(K∞) such that v /∈ (K∞)+. Then there exists x∗ ∈ K∞ such that 〈v, x∗〉 < 0.
Because K∞ is a cone, one has εx∗ ∈ K∞ for ∀ε > 0. So 〈v, εx∗〉 → −∞ with ε → +∞.
This implies v /∈ −barr(K∞), which is a contradiction. Therefore, (K∞)+ ⊇ −barr(K∞).
Thus, −barr(K∞) = (K∞)+ ⊇ −barr(K) ⊇ − int barr(K) 6= ∅.

Theorem 3.10. Let K be a nonempty, closed and convex subset of a real reflexive Banach
space X with int barr(K) 6= ∅ and Y be a real Banach space ordered by a proper closed
convex and pointed cone C with intC 6= ∅. Suppose that F : K → 2Lc(X,Y ) is a completely
upper semi-continuous mapping with nonempty, compact and convex values and satisfies the
coercivity condition (C2): there exists r > 0 such that for every x ∈ K \Kr, there is yx ∈ Kr

satisfying:

〈ξ, yx − x〉 ∈ −C, ∀ξ ∈ F (x).

Then for any p ∈ int (K∞)SCc
, there exists m > r such that

(i) SOLGV V I(F − εp,K) 6= ∅, ∀ε ∈ (0, 1
m );

(ii) SOLGV V I(F − εp,K) ⊆ B̄ 1
ε
, ∀ε ∈ (0, 1

m ).

Proof. To prove (i), suppose on the contrary that there exists p ∈ int(K∞)SCc
such that for

any m > r, there exists εm ∈ (0, 1
m ) such that

SOLGV V I(F − εmp,K) = ∅.



NONEMPTINESS AND BOUNDEDNESS of SOLUTION SETS FOR PERTURBED GVVI 297

It is clear that K 1
εm

:= {x ∈ K | ‖x‖ ≤ 1
εm

} is a nonempty, bounded and closed convex

set for all sufficiently large m. By Theorem 3.3, SOLGV V I(F − εmp,K 1
εm

) 6= ∅. Let

xm ∈ SOLGV V I(F − εmp,K 1
εm

). Consider the following cases.

(a) ‖xm‖ < 1
εm

for some m. In this case we obtain xm ∈ SOLGV V I(F − εmp,K) by
same arguments as case (a) in the proof of Theorem 3.4. This arrives a contradiction.

(b) ‖xm‖ = 1
εm

for all m > r. Since 1
εm

> m > r, we have xm ∈ K \ Kr. By the
coercivity condition (C2), there exists ym ∈ Kr such that

〈ξm, ym − xm〉 ∈ −C, ∀ξm ∈ F (xm). (3.1)

Without loss of generality, we assume that xm

∥xm∥ ⇀ d ∈ K∞ as m → +∞. Since

int barr(K) 6= ∅, we get d 6= 0 (by Lemma 2.10) and int barr(K∞) 6= ∅ (by Lemma
3.9). Since p ∈ int (K∞)SCc

, from Lemma 3.7 we get 〈p, d〉 ∈ − int C. Let y ∈ K. Then

zt = ym + t(y − ym) ∈ K 1
εm

for all sufficiently small t ∈ (0, 1) since ‖ym‖ ≤ r < 1
εm

. Since

xm ∈ SOLGV V I(F − εmp,K 1
εm

), there exists ξ
′

m ∈ F (xm) such that

〈ξ
′

m − εmp, zt − xm〉 = 〈ξ
′

m − εmp, ym + t(y − ym)− xm〉

=t〈ξ
′

m − εmp, y − xm〉+ (1− t)〈ξ
′

m, ym − xm〉+ εm(1− t)(〈p, xm〉 − 〈p, ym〉)
/∈ − int C. (3.2)

It follows from (3.1) and (3.2) that

t〈ξ
′

m − εmp, y − xm〉+ εm(1− t)(〈p, xm〉 − 〈p, ym〉) /∈ − int C. (3.3)

Since εm〈p, xm〉 = 〈p, xm

∥xm∥ 〉 → 〈p, d〉 ∈ − int C and εm〈p, ym〉 → 0 (as m → +∞), we get

εm(〈p, xm〉 − 〈p, ym〉) → 〈p, d〉 ∈ − int C ( as m → +∞).

This implies that
εm(〈p, xm〉 − 〈p, ym〉) ∈ − int C, (3.4)

for all sufficiently large m. It follows from Lemma 2.6, (3.3) and (3.4) that for all sufficiently
large m,

〈ξ
′

m − εmp, y − xm〉 6∈ − int C, ∀y ∈ K,

which is a contradiction.
Next, we prove (ii). By (i), there existsm > r such that for any k ≥ m and any ε ∈ (0, 1

k ),
SOLGV V I(F − εp,K) 6= ∅. Suppose on the contrary that there exists p ∈ int (K∞)SCc

such

that for any k ≥ m, there are εk ∈ (0, 1
k ) and xk ∈ SOLGV V I(F − εkp,K) such that

xk 6∈ B̄ 1
εk

. Then xk ∈ K \Kr since ‖xk‖ > 1
εk

≥ k ≥ m > r. By the coercivity condition,

there exists yk ∈ Kr such that

〈ξk, yk − xk〉 ∈ −C, ∀ξk ∈ F (xk). (3.5)

Since xk ∈ SOLGV V I(F − εkp,K), there exists ξ
′

k ∈ F (xk) such that

〈ξ
′

k, yk − xk〉+ εk(〈p, xk〉 − 〈p, yk〉) = 〈ξ
′

k − εkp, yk − xk〉 6∈ − int C. (3.6)

It follows from (3.5) and (3.6) that

εk(〈p, xk〉 − 〈p, yk〉) 6∈ − int C. (3.7)
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Without loss of generality, we assume that xk

∥xk∥ ⇀ e ∈ K∞\{0} as k → +∞. Since

{yk} ∈ Kr is bounded and ‖xk‖ → +∞ as k → +∞, it follows that

〈p, xk

‖xk‖
〉 − 〈p, yk

‖xk‖
〉 → 〈p, e〉 ∈ − int C,

as k → +∞. This implies that

〈p, xk

‖xk‖
〉 − 〈p, yk

‖xk‖
〉 ∈ − int C

for all sufficiently large k. This yields

εk(〈p, xk〉 − 〈p, yk〉) ∈ − int C,

for all sufficiently large k, a contradiction to (3.7).

Remark 3.11. When Y = R and C = R+, Theorem 3.10 reduces to Theorem 3.1 of [32]
and Theorem 3.1 of [21].

4 Results for GVVI(F,K) with F and K Being Perturbed Simulta-
neously

In this section we investigate nonemptiness and boundedness of the solution set of
GV V I(F,K) with F and K being perturbed simultaneously. Given δ > 0, set Kδ = K+B̄δ.
Let Cc(X,Y ) be the space of all completely continuous mappings from X to Y . Given ε > 0,
let p : Kδ → Cc(X,Y ) be a mapping such that ‖p(x)‖ ≤ ε for ∀x ∈ Kδ. The set of all such
mappings is denoted by C(ε,Kδ).

Theorem 4.1. Let K be a nonempty, closed, convex and subset of a finite dimensional
space X and Y be a real Banach space ordered by a pointed, closed and convex cone C with
intC 6= ∅. Given δ > 0, suppose that F : Kδ → 2Lc(X,Y ) is a completely upper semi-
continuous mapping with nonempty, compact and convex values and satisfies the coercivity
condition (C1) on K, i.e., there exists r > 0 such that for every x ∈ K \ Kr, there exists
yx ∈ K with ‖yx‖ < ‖x‖ satisfying:

〈ξ, yx − x〉 ∈ −intC, ∀ξ ∈ F (x).

Then for every m > r, there exist ε > 0 and δ0 ∈ (0, δ) such that

SOLGV V I(F + p,Kα)
⋂

B̄m 6= ∅, ∀p ∈ C(ε,Kδ0), ∀α ∈ (0, δ0).

Proof. Suppose on the contrary that there exists m > r such that for each ε > 0 and
δ′ ∈ (0, δ), there exist pε,δ′ ∈ C(ε,Kδ′) and α ∈ (0, δ′) such that

SOLGV V I(F + pε,δ′ ,K
α)

⋂
B̄m = ∅.

Let x∗ ∈ C+ \{0}. Set (Kα)m = {x ∈ Kα | ‖x‖ ≤ m}. By Theorem 3.3, SOLGV I(x
∗ ◦ (F +

pε,δ′), (K
α)m) 6= ∅.

Let xε,δ′ ∈ SOLGV I(x
∗◦(F+pε,δ′), (K

α)m). Clearly, ‖xε,δ′‖ ≤ m. Consider the following
two cases.

(a) ‖xε,δ′‖ < m for some ε > 0 and δ′ ∈ (0, δ). By same arguments as case (a) in the
proof of Theorem 3.4, we have xε,δ′ ∈ SOLGV V I(F + pε,δ′ ,K

α), a contradiction.
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(b) ‖xε,δ′‖ = m for all ε > 0 and δ′ ∈ (0, δ). Without loss of generality, we assume that

xε,δ′ → d with ‖d‖ = m as ε → 0+ and δ′ → 0+. Since xε,δ′ ∈ K+ B̄δ′ , there exists x̂
δ′

ε ∈ K

such that limδ−→0+ ‖xε,δ′−x̂δ′

ε ‖ = 0. This together with xε,δ′ → d yields {x̂δ′

ε } → d ∈ K\Kr

as ε → 0+ and δ′ → 0+. By the coercivity condition (C1) on K, there exists yd ∈ K with
‖yd‖ < ‖d‖ = m such that

〈ξd, yd − d〉 ∈ − int C, ∀ξd ∈ F (d).

Since F (d) is compact and x∗ ∈ C+\{0}, we get

sup
ξd∈F (d)

〈x∗ ◦ ξd, yd − d〉 < 0. (4.1)

It follows from supx∈(Kα)m ‖pε,δ′(x)‖ ≤ ε that

lim
ε→0+,δ′→0+

〈x∗ ◦ (pε,δ′(xε,δ′)), yd − xε,δ′〉 = 0. (4.2)

Since F is upper semi-continuous and compact-valued, the mapping x 7→ supξ∈F (x)〈x∗ ◦
ξ, yd − x〉 is upper semi-continuous. It follows from (4.1) and (4.2) that

lim sup
ε→0+,δ′→0+

{ sup
ξδ′ε ∈F (xε,δ′ )

[〈x∗ ◦ ξδ
′

ε , yd − xε,δ′〉] + 〈x∗ ◦ (pε,δ′(xε,δ′)), yd − xε,δ′〉}

≤ lim sup
ε→0+,δ′→0+

{ sup
ξδ′ε ∈F (xε,δ′ )

[〈x∗ ◦ ξδ
′

ε , yd − xε,δ′〉]}

+ lim
ε→0+,δ′→0+

〈x∗ ◦ (pε,δ′(xε,δ′)), yd − xε,δ′〉

≤ sup
ξd∈F (d)

〈x∗ ◦ ξd, yd − d〉 < 0.

Therefore, there exist ε0 > 0 and δ0 > 0 such that

sup
ξδ′ε ∈F (xε,δ′ )

〈x∗ ◦ ξδ
′

ε , yd − xε,δ′〉+ 〈x∗ ◦ (pε,δ′(xε,δ′)), yd − xε,δ′〉 < 0, (4.3)

for ∀ε ∈ (0, ε0), δ
′ ∈ (0, δ0). Let y ∈ Kα. Then at := yd + t(y − yd) ∈ (Kα)m for all

sufficiently small t ∈ (0, 1) since yd ∈ (Kα)m with ‖yd‖ < m. Since xε,δ′ ∈ SOLGV I(x
∗ ◦

(F + pε,δ′), (K
α)m), it follows from (4.3) that

t[ sup
ξδ′ε ∈F (xε,δ′ )

〈x∗ ◦ (ξδ
′

ε + pε,δ′(xε,δ′)), y − xε,δ′〉]

> t[ sup
ξδ′ε ∈F (xε,δ′ )

〈x∗ ◦ (ξδ
′

ε + pε,δ′(xε,δ′)), y − xε,δ′〉]

+(1− t)[ sup
ξδ′ε ∈F (xε,δ′ )

〈x∗ ◦ (ξδ
′

ε + pε,δ′(xε,δ′)), yd − xε,δ′〉]

≥ sup
ξδ′ε ∈F (xε,δ′ )

〈x∗ ◦ (ξδ
′

ε + pε,δ′(xε,δ′)), yd + t(y − yd)− xε,δ′〉

= sup
ξδ′ε ∈F (xε,δ′ )

〈x∗ ◦ (ξδ
′

ε + pε,δ′(xε,δ′)), at − xε,δ′〉 ≥ 0.

This implies xε,δ′ ∈ SOLGV I(x
∗ ◦ (F + pε,δ′),K

α). As a consequence, we get

xε,δ′ ∈ SOLGV V I(F + pε,δ′ ,K
α)

⋂
B̄m,

a contradiction.
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Remark 4.2. When Y = R and C = R+, Theorem 4.1 reduces to Theorem 6 of [23].

Theorem 4.3. Let K be a nonempty, closed and convex set of a real reflexive Banach space
X with int barr(K) 6= ∅ and Y be a Banach space ordered by a pointed, closed and convex
cone C with intC 6= ∅. Given δ̄ > 0, suppose that F : K δ̄ → 2Lc(X,Y ) is a completely
upper semi-continuous mapping with nonempty, compact and convex values and satisfies the
following coercivity condition (C3): there exist r > 0 and δ0 ∈ (0, δ̄) such that for every
x ∈ Kδ0 \Kr, there exists yx ∈ Kr such that

〈ξ, yx − x〉 ∈ −C, ∀ξ ∈ F (x).

Let p ∈ int (K∞)SCc
. Then there exists m > max{r, 1

δ̄
} such that

(i) SOLGV V I(F − εp,Kδ′) 6= ∅, for any ε ∈ (0, 1
m ) and any δ′ ∈ (0, 1

m );

(ii) SOLGV V I(F − εp,Kδ′) ⊆ B̄ 1
ε
, for any ε ∈ (0, 1

m ) and any δ′ ∈ (0, 1
m ).

Proof. To prove (i), suppose on the contrary that for any m > max{r, 1
δ̄
}, there exist

εm ∈ (0, 1
m ) and δm ∈ (0, 1

m ) such that SOLGV V I(F − εmp,Kδm) = ∅. Set Tm = {x ∈
Kδm | ‖x‖ ≤ 1

εm
}. We have Tm 6= ∅ for all sufficiently large m > max{r, 1

δ̄
}. Indeed, for

any fixed x ∈ K, one has x ∈ K ⊆ K + B̄δ1 for any δ1 ∈ (0, δ̄). And there exists sufficiently
large m′ > max{r, 1

δ̄
} such that ‖x‖ ≤ m′ < 1

εm′
. So x ∈ Kδm′

⋂
{x | ‖x‖ ≤ 1

εm′
} = Tm′ for

all sufficiently large m′ > max{r, 1
δ̄
}. By Theorem 3.3, SOLGV V I(F − εmp, Tm) 6= ∅. Let

xδm
m ∈ SOLGV V I(F − εmp, Tm). Clearly, ‖xδm

m ‖ ≤ 1
εm

. Consider the following two cases.

(a) ‖xδm
m ‖ < 1

εm
for some m. In this case we obtain xδm

m ∈ SOLGV V I(F − εmp,Kδm)
by same arguments as case (a) in the proof of Theorem 3.4. This arrives a contradiction.

(b) ‖xδm
m ‖ = 1

εm
for all m > max{r, 1

δ̄
}. Since 1

εm
> m > max{r, 1

δ̄
} ≥ r and xδm

m ∈
Kδm , we get xδm

m ∈ Kδm\Kr. By δm ∈ (0, 1
m ), we have δm ≤ δ0 for all sufficiently large

m. Thus, Kδm ⊆ Kδ0 . So xδm
m ∈ Kδm\Kr ⊆ Kδ0\Kr for all sufficiently large m. By the

coercivity condition (C3), there exists ym ∈ Kr such that

〈ηm, ym − xδm
m 〉 ∈ −C, ∀ηm ∈ F (xδm

m ). (4.4)

Without loss of generality, we assume that
xδm
m

∥xδm
m ∥

⇀ d as m → +∞. Since xδm
m ∈ Kδm , there

exist x̂δm
m ∈ K and kδmm ∈ B̄ (the closed unit ball) such that xδm

m = x̂δm
m + δmkδmm . Because B̄

is bounded and δm ∈ (0, 1
m ), it is easy to verify that limm→+∞ ‖xδm

m − x̂δm
m ‖ = 0. It follows

that

lim
m→+∞

‖ xδm
m

‖xδm
m ‖

− x̂δm
m

‖x̂δm
m ‖

‖ ≤ lim
m→+∞

[‖ xδm
m

‖xδm
m ‖

− x̂δm
m

‖xδm
m ‖

‖+ ‖ x̂δm
m

‖xδm
m ‖

− x̂δm
m

‖x̂δm
m ‖

‖]

= lim
m→+∞

1

‖xδm
m ‖

‖xδm
m − x̂δm

m ‖

+ lim
m→+∞

‖x̂δm
m ‖ · | 1

‖xδm
m ‖

− 1

‖x̂δm
m ‖

|

= lim
m→+∞

1

‖xδm
m ‖

‖xδm
m − x̂δm

m ‖

+ lim
m→+∞

|‖xδm
m ‖ − ‖x̂δm

m ‖|
‖xδm

m ‖



NONEMPTINESS AND BOUNDEDNESS of SOLUTION SETS FOR PERTURBED GVVI 301

≤ lim
m→+∞

2εm‖xδm
m − x̂δm

m ‖ = 0.

This together with
xδm
m

∥xδm
m ∥

⇀ d yields
x̂δm
m

∥x̂δm
m ∥

⇀ d ∈ K∞ as m → +∞. Since int barr(K) 6=
∅, we get d 6= 0 (by Lemma 2.10) and int barr(K∞) 6= ∅ (by Lemma 3.9). Since p ∈
int (K∞)SCc

, from Lemma 3.7 we get 〈p, d〉 ∈ − int C.

Let y ∈ Kδm . Then zt = ym + t(y − ym) ∈ Tm for all sufficiently small t ∈ (0, 1)
since ‖ym‖ ≤ r < 1

εm
and ym ∈ Kδm . Since xδm

m ∈ SOLGV V I(F − εmp, Tm), there exists

ξ
′

m ∈ F (xδm
m ) such that

〈ξ
′

m − εmp, zt − xδm
m 〉 = 〈ξ

′

m − εmp, ym + t(y − ym)− xδm
m 〉

=t〈ξ
′

m − εmp, y − xδm
m 〉+ (1− t)〈ξ

′

m, ym − xδm
m 〉+ εm(1− t)(〈p, xδm

m 〉 − 〈p, ym〉)
/∈ − int C. (4.5)

It follows from (4.4) and (4.5) that

t〈ξ
′

m − εmp, y − xδm
m 〉+ εm(1− t)(〈p, xδm

m 〉 − 〈p, ym〉) /∈ − int C. (4.6)

Since εm〈p, xδm
m 〉 = 〈p, xδm

m

∥xδm
m ∥

〉 → 〈p, d〉 ∈ − int C and εm〈p, ym〉 → 0 (as m → +∞), we

have

εm(〈p, xδm
m 〉 − 〈p, ym〉) → 〈p, d〉 ∈ − int C, (m → +∞).

This implies that
εm(〈p, xδm

m 〉 − 〈p, ym〉) ∈ −C (4.7)

for all sufficiently large m. It follows from Lemma 2.6, (4.6) and (4.7) that for all sufficiently
large m,

〈ξ
′

m − εmp, y − xδm
m 〉 /∈ − int C, ∀y ∈ Kδm ,

which is a contradiction.
Next, we prove (ii). By (i), there exists m > max{r, 1

δ̄
} such that for any k ≥ m, any

ε ∈ (0, 1
k ) and any δ′ ∈ (0, 1

k ), SOLGV V I(F − εp,Kδ′) 6= ∅. Suppose on the contrary that
there exists p ∈ int (K∞)SCc

such that for any k ≥ m, there are εk ∈ (0, 1
k ), δk ∈ (0, 1

k ) and

xδk
k ∈ SOLGV V I(F − εkp,K

δk) such that xk 6∈ B̄ 1
εk

. Then xδk
k ∈ Kδk \Kr ⊆ Kδ0\Kr for

all sufficiently large k ≥ m since ‖xδk
k ‖ > 1

εk
≥ k ≥ m > max{r, 1

δ̄
} ≥ r and δk ∈ (0, 1

k ).
By the coercivity condition C3, there exists yk ∈ Kr such that

〈ηk, yk − xδk
k 〉 ∈ −C, ∀ηk ∈ F (xδk

k ). (4.8)

Because yk ∈ K ⊆ Kδk and xδk
k ∈ SOLGV V I(F − εkp,K

δk), there exists ξ
′

k ∈ F (xδk
k ) such

that
〈ξ

′

k, yk − xδk
k 〉+ εk(〈p, xδk

k 〉 − 〈p, yk〉) = 〈ξ
′

k − εkp, yk − xδk
k 〉 /∈ − int C. (4.9)

It follows from (4.8) and (4.9) that

εk(〈p, xδk
k 〉 − 〈p, yk〉) /∈ − int C. (4.10)

Without loss of generality, we assume that
x
δk
k

∥xδk
k ∥

⇀ e as (k → +∞). By similar argu-

ments as in the proof of (i), there exists x̂δk
k ∈ K such that

x̂δm
m

∥x̂δm
m ∥

⇀ e ∈ K∞ as (k → +∞).
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Since int barr(K) 6= ∅, we get e 6= 0 (by Lemma 2.10) and int barr(K∞) 6= ∅ (by Lemma
3.9). Then, for p ∈ int (K∞)SCc

, we get 〈p, e〉 ∈ − int C by the lemma 3.7. Since {yk} ∈ Kr

is bounded and ‖xδk
k ‖ → +∞ as k → +∞, it follows that

〈p,
xδk
k

‖xδk
k ‖

〉 − 〈p, yk

‖xδk
k ‖

〉 → 〈p, e〉 ∈ − int C.

This implies that

〈p,
xδk
k

‖xδk
k ‖

〉 − 〈p, yk

‖xδk
k ‖

〉 ∈ − int C

for all sufficiently large k. This yields

εk(〈p, xδk
k 〉 − 〈p, yk〉) = εk‖xδk

k ‖(〈p,
xδk
k

‖xδk
k ‖

〉 − 〈p, yk

‖xδk
k ‖

〉) ∈ − int C

for all sufficiently large k, a contradiction to (4.10).

Remark 4.4. Recently, Luo [23] investigated nonemptiness and boundedness of the solu-
tion set of the scalar generalized variational inequality with the mapping being perturbed
by p ∈ int (barrK) and the constraint set K being perturbed by K∞\{0} under coercivity
and stable quasimonotonicity conditions ([23, Theorem 9]). As a comparison, we established
nonemptiness and boundedness of the solution set of the generalized vector variational in-
equality with the mapping being perturbed by p ∈ int (K∞)SCc

and the constraint set K
being perturbed by the closed unit ball without assuming any monotonicity.

5 Conclusion

In this paper we study the perturbed generalized vector variational inequality in the setting
of Banach spaces. Under coercivity condition we prove nonemptiness and boundedness
of the solution set of the perturbed vector variational inequality without assuming any
monotonicity. Our results extend and improve the corresponding results of [20, 23, 21],
where nonemptiness and boundedness of the solution set of the scalar perturbed variational
inequality were established.
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