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In [2] , the t-SVD factorization of a third order tensor is implemented by going through
three main steps, namely the Discrete Fourier Transform (DFT), matrix singular value
decomposition (SVD), and the inverse DFT. This procedure was regarded as a mapping
from third order tensors to f-diagonal tensors in [4], which is denoted as K(·) throughout
this paper. In order to depict the property of the resulting tensors of t-SVD through the
Kilmer-Martin mapping K(·), Ling et al. proposed the definition of s-diagonal tensors in
[4] to separate them from the general f-diagonal tensors. It was found that an f-diagonal
tensor T is s-diagonal if and only if K(T ) = T . Based on this property, four meaningful
necessary conditions for s-diagonal tensors were obtained. Right after that, a set of sufficient
and necessary conditions for s-diagonal tensors were proposed. However, some of these
conditions are expressed with complex numbers, which make them seemingly inconvenient
and not straightforward for practical use. Hence in this paper, we attempt to provide a
different version of sufficient and necessary conditions without complex numbers and perhaps
facilitates the computation.

The remaining of this article is distributed as follows. In Section 2, we provide some
preliminary knowledge on t-product, t-SVD factorization and s-diagonal tensors. In Section
3, the characterization and construction of s-diagonal tensors through real matrix multipli-
cation are proposed. Finally, we present some specific tool matrices for tensors with frontal
slice number p ≤ 20.

2 Preliminaries

In the following scenario, capital letters A,B, . . . are used to denote matrices and Euler
script letters A,B, . . . are used to denote tensors. The real number field is denoted by R,
and the complex number field is denoted by C. Let T be a third order tensor in Rm×n×p.
The (i, j, k)-th entry of T is denoted as tijk, and the i-th horizontal, lateral and frontal
slice of T are represented by Ti.., T.i. and T..i respectively. Specifically, we use T (i) to
denote the i-th frontal slice T..i. The (i, j)-th tube of T , denoted as Tij , refers to the
vector (tij1, tij2, . . . , tijp)

⊤. Furthermore, for convenience, we denote [n] := {1, 2, . . . , n} for
a positive integer n.

2.1 Basic definitions

We now introduce some basic definitions and notations from [1, 2] in the beginning. A third
order tensor T in Rm×n×p is called f-diagonal if all of its frontal slices T (1), . . . , T (p) are
diagonal. The diagonal entries of its frontal slices are called the diagonal entries of T .

The block circulant matrix of a third order tensor T ∈ Rm×n×p is defined as

bcirc(T ) :=


T (1) T (p) T (p−1) . . . T (2)

T (2) T (1) T (p) . . . T (3)

...
...

... . . .
...

T (p) T (p−1) T (p−2) . . . T (1)

 ,

and bcirc−1(bcirc(T )) := T .
The identity tensor Innp is defined as

Innp = bcirc−1(Inp),

where Inp is the identity matrix of order np.
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The transpose of a tensor T ∈ Rm×n×p, denoted as T ⊤, is a tensor in Rn×m×p satisfying

bcirc(T ⊤) = (bcirc(T ))⊤.

In [2], the unfold and fold operations for a third order tensor T ∈ Rm×n×p are defined
as

unfold(T ) :=


T (1)

T (2)

...

T (p)

 ∈ Rmp×n,

and fold(unfold(T )) := T .
The t-product of two third order tensors U ∈ Rm×s×p and V ∈ Rs×n×p is defined as

U ∗ V := fold[bcirc(U)unfold(V)] ∈ Rm×n×p.

It can be seen that
bcirc(U ∗ V) = bcirc(U)bcirc(V). (2.1)

According to [2], by applying the fast Fourier transform (FFT), the t-product operation
(2.1) can be done with computational cost of O(mnsp) flops.

A tensor P ∈ Rn×n×p is called an orthogonal tensor if

P ∗ P⊤ = P⊤ ∗ P = Innp.

2.2 The Kilmer-Martin mapping and s-diagonal tensors

Based on the t-product operation, Kilmer and Martin [2] proposed the t-SVD factorization
for third order tensors, which can be regarded as a procedure mapping an arbitrary third
order tensor to a special f-diagonal third order tensor.

In the following, this procedure will be introduced in details by three steps. It is called
the Kilmer-Martin mapping in [8].

Let T ∈ Rm×n×p. At first, we conduct the block-diagonalization of bcirc(T ) through a
Discrete Fourier Transform (DFT) as displayed below:

M(T ) := (Fp ⊗ Im)bcirc(T )(F ∗
p ⊗ In) =


M (1)

M (2)

. . .

M (p)

 , (2.2)

where Fp is the Fourier matrix of order p, whose (i, j)-th entry is

ω(i−1)(j−1) =

[
cos

2π(i− 1)(j − 1)

p
−
√
−1 sin

2π(i− 1)(j − 1)

p

]
,

F ∗
p is the conjugate of Fp, ⊗ denotes the Kronecker product, and M (k) ∈ Cm×n for k =

1, . . . , p. Here, the notation
√
−1 is the imaginary unit and ω, ω2, . . . , ωp are the p complex

number roots of xp = 1.
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Secondly, we apply the standard SVD procedure to each M (k) as

M (k) = U (k)N (k)V (k)∗,

where U (k) ∈ Cm×m and V (k) ∈ Cn×n are unitary matrices, N (k) ∈ Rm×n is diagonal
with the diagonal entries (i.e. the singular values of M (k)) following a non-increasing order.
Denote

N(T ) :=


N (1)

N (2)

. . .

N (p)

 (2.3)

and

U(T ) :=


U (1)

U (2)

. . .

U (p)

 , V (T ) :=


V (1)

V (2)

. . .

V (p)

 .

Then we have M = UNV ∗. Finally, an inverse DFT is used to produce a block circulant
matrix D as below:

D = (F ∗
p ⊗ Im)N(T )(Fp ⊗ In) =


D(1) D(p) . . . D(2)

D(2) D(1) . . . D(3)

...
...

. . .
...

D(p) D(p−1) . . . D(1)

 , (2.4)

and let D := bcirc−1(D). Then the k-th frontal slice of D is D(k) = D(k) in (2.4).
The above Kilmer-Martin mapping is denoted as K(·), and the previous discussion states

K(T ) = D. Now we construct two tensors U and V from the two block diagonal matrices
U(T ) and V (T ) such that

bcirc(U) = (F ∗
p ⊗ Im)U(T )(Fp ⊗ Im),

bcirc(V) = (F ∗
p ⊗ In)V (T )(Fp ⊗ In).

Since Fp and each diagonal block of U, V are unitary matrices, the tensors U ∈ Rm×m×p

and V ∈ Rn×n×p are orthogonal tensors. Then T has its t-SVD

T = U ∗ D ∗ V⊤.

It should be aware that if the matrix SVD in the second step is not taking the standard
order, i.e. the diagonal entries of each N (k) do not follow a non-increasing order, then the
proceeding step may yield an f-diagonal tensor having distinct diagonal entry set with D.

In order to facilitate the discussions in the subsequent sections, we now present the
specific transformation formulas of DFT and inverse DFT among T (k),M (k) andN (k), D(k).
Denote Mij as the (i, j)-th entry of a matrix M .
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By (2.2) and (2.4), with an explicit form of Fp and F ∗
p , we have for i = 1, . . . ,m,

j = 1, . . . , n and k = 1, . . . , p that

M
(k)
ij =

p∑
l=1

ω(k−1)(l−1)T (l)
ij , (2.5)

D
(k)
ij =

1

p

p∑
l=1

ω̄(k−1)(l−1)N
(l)
ij , (2.6)

and thus

T (k)
ij =

1

p

p∑
l=1

ω̄(k−1)(l−1)M
(l)
ij , (2.7)

N
(k)
ij =

p∑
l=1

ω(k−1)(l−1)D
(l)
ij , (2.8)

where ω̄ = ω−1 is the conjugate number of ω.
It can be seen from (2.6) that each D(k) is diagonal as N(T ) is a block diagonal matrix.

Therefore, the resulting tensor of the Kilmer-Martin mapping K(T ) = D = bcirc−1(D) is
f-diagonal.

However, an arbitrary f-diagonal tensor may not be the mapping result of a third order
tensor, i.e. the set of all f-diagonal tensors in Rm×n×p differs from the set of all resulting
tensors K(T ) for T ∈ Rm×n×p. We denote the former set as Fm×n×p and the later set as
Sm×n×p, then Sm×n×p ⊊ Fm×n×p. To distinguish these two types of tensors, a tensor in
Sm×n×p is called an s-diagonal tensor [4].

In [4], the invariance of an s-diagonal tensor under the Kilmer-Martin mapping was
found, which may be considered as an intrinsic property of s-diagonal tensors.

Theorem 2.1 ([4]). Let T ∈ Fm×n×p. Then T ∈ Sm×n×p if and only if

K(T ) = T . (2.9)

The equation (2.9) actually means the equivalence of the two matrices M(T ) and N(T )
stated in the second step of the Kilmer-Martin mapping. Base on that, sufficient and
necessary conditions of s-diagonal tensors have been deduced. They are now displayed
below in a slightly different way.

Theorem 2.2 ([4]). Let T ∈ Fm×n×p such that

T (k) = T (p−k+2) for all k = 2, . . . , p.

Let q = min{m,n}. Then T ∈ Sm×n×p if and only if for all k ∈ [p],

(1) the vector δi ∈ Cp with the k-th element being
∑p

l=1 ω
(k−1)(l−1)T (l)

ii is real and non-
negative, where i ∈ [q];

(2) the vector δi − δi+1 ∈ Cp is real and nonnegative, where i ∈ [q − 1].

The above conditions involve the p-th roots of unity ω, which is a complex number
and may cause some inconvenience in computation. In practice, it can be replaced by
real number in expression of cosine value. In the next section, we provide a sufficient and
necessary condition of s-diagonal tensors without any complex number.
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3 Characterization and Construction of s-Diagonal Tensors

For a tensor T ∈ Fm×n×p, let M = M(T ) and N = N(T ) be the block diagonal matrices
in (2.2) and (2.3).

We use Re(α) to denote the real part of a complex number α ∈ C. For a complex matrix
A, the notation Re(A) represents the matrix obtained from A by removing the imaginary
part of each entry in A.

Theorem 3.1. Let T ∈ Fm×n×p and q = min{m,n}. Then T ∈ Sm×n×p if and only if

(1) T (k) = T (p−k+2), for each k = 2, . . . , p,

(2) the matrix RpT is nonnegative,

where Rp = Re(Fp) ∈ Rp×p, Fp is the Fourier matrix of order p and

T = (T11, . . . , Tqq, T11 − T22, . . . , Tq−1,q−1 − Tqq) ∈ Rp×(2q−1), (3.1)

while Tii refers to the (i, i)-th tube of T for i ∈ [q].

Proof. Suppose T ∈ Sm×n×p. It has been shown in Theorem 5.1 of [4] that the frontal slices
of T satisfy the condition (1), which is called the third mode symmetry property there.

Moreover, as stated in the last section, the equivalent condition K(T ) = T of a tensor
T being s-diagonal in Theorem 2.1 actually means M = N . Then M (k) = N (k) for each

k ∈ [p], which implies M
(k)
ii ∈ R+ and M

(k)
ii − M

(k)
i+1,i+1 ∈ R+. Here R+ is the set of all

nonnegative real numbers. Therefore, according to (2.5) we have

Re
(
1, ω(k−1), . . . , ω(k−1)(p−1)

)
Tii

= Re
(
1, ω(k−1), . . . , ω(k−1)(p−1)

)

T (1)
ii

T (2)
ii

...

T (p)
ii


=

p∑
l=1

Re(ω(k−1)(l−1))T (l)
ii

= Re(M
(k)
ii ) = M

(k)
ii ∈ R+

for i ∈ [q], and thus for each i ∈ [q − 1],

Re
(
1, ω(k−1), . . . , ω(k−1)(p−1)

)
(Tii − Ti+1,i+1) = M

(k)
ii −M

(k)
i+1,i+1 ∈ R+.

Note that the p-dimensional row vector Re
(
1, ω(k−1), . . . , ω(k−1)(p−1)

)
is the k-th row of the

matrix Re(Fp) = Rp. Hence the entries in each row of RpT are real and nonnegative, which
directly approves the condition (2).

On the other hand, suppose T ∈ Fm×n×p satisfies the conditions (1) and (2). Theorem
6.1 in [4] shows that the third mode symmetry property of T will result in a real M = M(T ),
i.e. Re(M) = M . Together with the condition RpT ≥ 0, we have

M
(k)
ii = Re(M

(k)
ii ) = Re

(
1, ω(k−1), . . . , ω(k−1)(p−1)

)
Tii ≥ 0,
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for i ∈ [q], and for every i ∈ [q − 1],

M
(k)
ii −M

(k)
i+1,i+1 = Re

(
1, ω(k−1), . . . , ω(k−1)(p−1)

)
(Tii − Ti+1,i+1) ≥ 0.

In conclusion, each diagonal block of M is a real nonnegative diagonal matrix with
diagonal entries following a non-increasing order, which yields M (k) = N (k) for each k ∈ [p].
Thus M(T ) = N(T ) and then K(T ) = T . By Theorem 2.1, the sufficiency of (1) and (2) is
also affirmed.

The above theorem characterizes s-diagonal tensors in a more concise form through real
matrix multiplication condition instead of equations using complex numbers. Furthermore,
utilizing the symmetry properties of T (k) and M (k), the matrices Rp and T in Theorem 3.1
can be reduced to matrices in nearly half of their original sizes.

First we should illustrate the conjugate symmetry on diagonal blocks M (2), . . . ,M (p) of
M(T ) for T ∈ Rm×n×p.

Note that ω[(p−k+2)−1](l−1) = ω(1−k)(l−1) = ω̄(k−1)(l−1). By the equation (2.5) we have

M (p−k+2) =

p∑
l=1

ω̄(k−1)(l−1)T (l) =

p∑
l=1

ω(k−1)(l−1)T (l) = M (k),

i.e. each entry of M (p−k+2) is the conjugate number of the corresponding entry of M (k).
Furthermore, if the tensor T satisfies the third mode symmetry property (the condition (1)
in Theorem 3.1), then M(T ) is real, and thus

M (p−k+2) = M (k), k = 2, . . . , p.

Considering the symmetry of T (2), . . . , T (p) as well as M (2), . . . ,M (p), if T satisfies the
condition (1), then by equation (2.5), for every i ∈ [q] we have

M
(k)
ii =

p∑
l=1

Re{ω(k−1)(l−1)}T (l)
ii

= T (1)
ii +


∑ p+1

2

l=2 2Re{ω(k−1)(l−1)}T (l)
ii , p is odd,∑ p

2

l=2 2Re{ω(k−1)(l−1)}T (l)
ii + (−1)(k−1)T ( p

2+1)
ii , p is even.

Denote θ = 2π
p . Now Re(ω) = cos θ and the above equation is transformed to

M
(k)
ii = T (1)

ii +


∑ p+1

2

l=2 2 cos[(k − 1)(l − 1)θ]T (l)
ii , p is odd,∑ p

2

l=2 2 cos[(k − 1)(l − 1)θ]T (l)
ii + (−1)(k−1)T ( p

2+1)
ii , p is even.

(3.2)

Therefore, to judge whether an f-diagonal tensor T is s-diagonal, we only need

T (1), . . . , T (⌈ p+1
2 ⌉) to determine the nonnegativity and diagonal decaying property of

M (1), . . . , M (⌈ p+1
2 ⌉). The notation “⌈p+1

2 ⌉” represents the smallest integer greater than

or equal to p+1
2 .

Define R̂p ∈ R⌈ p+1
2 ⌉×⌈ p+1

2 ⌉ as
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R̂p =



1 2 . . . 2

1 2 cos θ . . . 2 cos
(p− 1)θ

2
...

...
. . .

...

1 2 cos
(p− 1)θ

2
. . . 2 cos

(p− 1)2θ

4


for odd p, (3.3)

and

R̂p =



1 2 . . . 2 1

1 2 cos θ . . . 2 cos(
p

2
− 1)θ −1

...
...

. . .
...

...

1 2 cos
p

2
θ . . . 2 cos

p

2
(
p

2
− 1)θ (−1)k−1


for even p. (3.4)

Define the matrix

S = (S11, . . . , Sqq, S11 − S22, . . . , Sq−1,q−1 − Sqq) ∈ R⌈ p+1
2 ⌉×(2q−1), (3.5)

where each Sii is a column vector formed by the first ⌈p+1
2 ⌉ entries of the (i, i)-th tube Tii

of T ∈ Rm×n×p. Now by equation (3.2), we have
M

(1)
ii

M
(2)
ii

...

M
(⌈ p+1

2 ⌉)
ii

 = R̂pSii and


M

(1)
ii −M

(1)
i+1,i+1

M
(2)
ii −M

(2)
i+1,i+1

...

M
(⌈ p+1

2 ⌉)
ii −M

(⌈ p+1
2 ⌉)

i+1,i+1

 = R̂p(Sii − Si+1,i+1),

whose nonnegativity coincides the nonnegativity of RpT under the third mode symmetry
property of T .

Then according to Theorem 3.1, the following corollary is obtained directly.

Corollary 3.2. Let T ∈ Fm×n×p and q = min{m,n}. Then T ∈ Sm×n×p if and only if

(1) T (k) = T (p−k+2), for each k = 2, . . . , p,

(2) the matrix R̂pS is nonnegative,

where R̂p ∈ R⌈ p+1
2 ⌉×⌈ p+1

2 ⌉ is defined by (3.3) and (3.4), and S ∈ R⌈ p+1
2 ⌉×(2q−1) is defined in

(3.5).

We may call R̂p the checking matrix of s-diagonal tensors with p frontal slices. Denote

∆ = (δ1, . . . , δq, δ1 − δ2, . . . , δq−1 − δq) ∈ Cp×(2q−1),

where δi is the vector defined in Theorem 2.2 (1) for i ∈ [q]. Let ∆̂ ∈ C⌈ p+1
2 ⌉×(2q−1) be the

matrix formed by the first ⌈p+1
2 ⌉ rows of ∆. Observe that the k-th element of δi is M

(k)
ii . If

T possesses the third mode property, then ∆ and ∆̂ are real and

RpT = ∆, R̂pS = ∆̂.
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By (2.7), with a similar process as we derive Theorem 3.1 and Corollary 3.2, we have

T = Re(
1

p
F ∗
p )∆ =

1

p
Rp∆,

and thus by the third mode symmetry property,

S =
1

p
R̂p∆̂. (3.6)

The equation (3.6) provides a way to construct an s-diagonal tensor by matrix multipli-
cation using a series of nonnegative vectors. We present it in the following table.

Steps

1 Pick q nonnegative vectors ∆1, . . . ,∆q−1, dq ∈ R⌈ p+1
2 ⌉

2 Set di−1 = ∆i−1 + di, i = 2, . . . , q

3 Compute S̃ = 1
p R̂p(d1, . . . , dq) ∈ R⌈ p+1

2 ⌉×q

4 Construct an s-diagonal tensor D ∈ Rm×n×p with min{m,n} = q:

1◦ for k = 1, . . . , ⌈p+1
2 ⌉, set D(k)

ii = S̃ki, i ∈ [q] and other non-diagonal
entries being zero;

2◦ for k = ⌈p+1
2 ⌉+ 1, . . . , p, set D(k) = D(p−k+2).

In fact, the vectors and matrices generated by those steps are linked with the ones in
the previous analysis:

The vectors d1, . . . , dq created by steps 1 and 2 actually correspond to the first q column

vectors of ∆̂, which are nonnegative vectors

The q column vectors of S̃ correspond to the first q column vectors of S in (3.6)

The f-diagonal tensor D is constructed by filling the first ⌈p+1
2 ⌉ entries of its (i, i)-th

tube with the i-th column vector of S̃, and then generating the remaining entries by
the third mode symmetry property along each tube.

According to the above corresponding relations, it is clear from Corollary 3.2 that the tensor
D is s-diagonal.

Observe that the matrices R̂p and 1
p R̂p represent the linear transformation from S to ∆̂

and the inverse transformation from ∆̂ to S, respectively. The following proposition show
that they have a further relation.

Proposition 3.3. Let R̂p ∈ R⌈ p+1
2 ⌉×⌈ p+1

2 ⌉ be the matrix defined in (3.3) and (3.4), where p

is an positive integer no less than 2. Then 1
p R̂p is the inverse matrix of R̂p.

Proof. Denote the i-th row vector and the j-th column vector of R̂p as a
⊤
i and bj respectively

for i, j = 1, . . . , ⌈p+1
2 ⌉. It suffices to show that R̂2

p = pIp, which means

a⊤i bj =

{
p, i = j,

0, i ̸= j,
for i, j = 1, . . . , ⌈p+ 1

2
⌉.
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Note from (3.3) and (3.4) that the i-th row sum of R̂p equals the i-th row sum of
Rp = Re(Fp). Thus for i = 1, . . . , ⌈p+1

2 ⌉,

⌈ p+1
2 ⌉∑

l=1

a⊤i (l) =

p∑
l=1

Re
(
ω(l−1)(i−1)

)
= Re

(
p∑

l=1

ω(l−1)(i−1)

)
=

{
p, i = 1,

0, i ̸= 1.

The last equation follows from the property of ω that

p∑
l=1

ω(l−1)m =

{
p, m ≡ 0 (mod p),

0, otherwise.

If p is even, then there are three cases to discuss. When j = 1, we have

a⊤i b1 =

⌈ p+1
2 ⌉∑

l=1

a⊤i (l) =

{
p, i = 1,

0, i ̸= 1.

When j = 2, . . . , p
2 , we have

a⊤i bj =

p∑
l=1

2 cos[(l − 1)(i− 1)θ] cos[(l − 1)(j − 1)θ]

=

p∑
l=1

{cos[(l − 1)(i+ j − 2)θ] + cos[(l − 1)(i− j)θ]}

= Re

(
p∑

l=1

ω(l−1)(i+j−2)

)
+Re

(
p∑

l=1

ω(l−1)(i−j)

)

=

{
0 + p = p, i = j,

0 + 0 = 0, i ̸= j.

The first equation follows from cos(l−1)(i−1)θ = cos[(p−l+2)−1](i−1)θ, while the second
one is derived from the product-to-sum formula 2 cosα cosβ = cos(α+ β) + cos(α− β).

When j = p
2 + 1, we have b p

2+1(l) = (−1)(l−1) = cos(l − 1)p2θ. Thus

a⊤i b p
2+1 =

p∑
l=1

cos[(l − 1)(i− 1)θ] cos[(l − 1)
p

2
θ]

=
1

2
Re

(
p∑

l=1

ω(l−1)(i+ p
2−1)

)
+

1

2
Re

(
p∑

l=1

ω(l−1)(i− p
2−1)

)

=

{
p
2 + p

2 = p, i = p
2 + 1,

0 + 0 = 0, i ̸= p
2 + 1.

Therefore, the conclusion holds when p is even. While p is odd, the two cases j = 1 and
j ̸= 1 can be verified similarly as we deal with the above first two cases. Now the proof is
completed.

In the final section, we present some specific R̂p with special values of p.
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4 Checking Matrices for Some p ≤ 20

According to the equations (3.3) and (3.4), we can write out the specific matrix R̂p when p
is taking some values with cos θ = cos 2π

p easy to compute.
For p = 2, θ = π and cos θ = −1,

R̂2 =

(
1 1
1 −1

)
.

For p = 3, θ = 2
3π and cos θ = − 1

2 ,

R̂3 =

(
1 2
1 −1

)
.

For p = 4, θ = π
2 and cos θ = 0, cos 2θ = −1,

R̂4 =

 1 2 1
1 0 −2
1 −2 2

 .

For p = 6, θ = π
3 and cos θ = 1

2 = cos 5θ, cos 2θ = −1 = cos 4θ, cos 3θ = −1,

R̂6 =


1 2 2 1
1 1 −1 −1
1 −1 −1 1
1 −2 2 −1

 ,

For p = 8, θ = π
4 and cos θ =

√
2
2 = cos 7θ = − cos 3θ = − cos 5θ, cos 2θ = 0 =

cos 6θ, cos 4θ = −1,

R̂8 =


1 2 2 2 1

1
√
2 0 −

√
2 −1

1 0 −2 0 1

1 −
√
2 0

√
2 −1

1 −2 2 −2 1

 .

For p = 12, θ = π
6 and

(1, cos θ, cos 2θ, . . . , cos 11θ)

= (1,

√
3

2
,
1

2
, 0,−1

2
,−

√
3

2
,−1,−

√
3

2
,−1

2
, 0,

1

2
,

√
3

2
),

R̂12 =



1 2 2 2 2 2 1

1
√
3 1 0 −1 −

√
3 −1

1 1 −1 −2 −1 1 1
1 0 −2 0 2 0 −1
1 −1 −1 2 −1 −1 1

1 −
√
3 1 0 −1

√
3 −1

1 −2 2 −2 2 −2 1


.

It can be observed that once we have the value cos θ and the vector

(1, cos θ, cos 2θ, . . . , cos(p− 1)θ),
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the entries of R̂p can be determined by them. In fact, since cos kθ = cos(p− k)θ for k ∈ [p],
the computation of cos θ, . . . , cos⌈p+1

2 ⌉θ is already enough. In addition to the common

values of cos θ as presented above for p = 2, 3, 4, 6, 8, 12, we can derive the matrix R̂24 by

employing the formula cos θ
2 =

√
1+cos θ

2 to obtain cos π
12 = 1

2

√
2 +

√
3. Furthermore, we

have for p = 5 that cos θ = cos 2π
5 =

√
5−1
4 , thus cos θ

2 =

√√
5+3
8 , cos θ

4 =

√√
5+12
4 , then the

matrices R̂5, R̂10, R̂20 can be derived.
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