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NUMERICAL METHODS FOR COMPUTING TWO KINDS OF
THE BEST HANKEL TENSOR APPROXIMATIONS∗

Chunmei Li, Zhuling Jiang and Xuefeng Duan†

Abstract: Hankel tensors and their approximation problems are of particular interest in the multidimen-
sional seismic trace interpolator problem. In this paper, we investigate the numerical methods for two kinds
of the best Hankel tensor approximation problems. Based on the Vandermonde decomposition of Hankel
tensors, the Hankel tensor approximation problem with missing data is transformed into an unconstrained
optimization problem, and then the BFGS method is used to solve it. For the Hankel tensor approximation
problems with the interval constraint and box constraint, Dykstra’s algorithm and its acceleration versions
are designed to solve them. Numerical examples illustrate that these methods are feasible and effective.
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1 Introduction

Throughout this paper, to distinguish scalars, vectors, matrices and higher-order tensors,
scalars will be denoted by lower case Greek letters, e.g. α, β, vectors will be denoted by
lowercase letters, e.g. v, w, matrices will be defined by uppercase letters, e.g. A,B and
higher-order tensors will be denoted by calligraphic letters, e.g. A,B. Denote that [n] :=
{1, 2, . . . , n}. A tensor A = (ai1i2...im) is said to be a symmetric tensor if every entry ai1i2...im
is invariant under any index permutation. Let the vector v = (v0, v1, . . . , v(n−1)m)T . Define
the symmetric tensor A = (ai1i2...im) associated with v by

ai1i2...im = vi1+i2+···+im−m, (1.1)

for i1, i2, . . . , im ∈ [n]. Then A is called a Hankel tensor and v is called the generating vector
of A. We see that a sufficient and necessary condition for a symmetric tensor A = (ai1i2...im)
to be a Hankel tensor is that whenever i1 + i2 + · · · + im = j1 + j2 + · · · + jm we have
ai1i2...im = aj1j2...jm . An interesting Theorem from [36, 25] is as follows.

An mth order n−dimensional Hankel tensor T can always be decomposed as

T =

r∑
j=1

λjµj ◦ µj ◦ · · · ◦ µj , (1.2)
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where each λj is a scalar and µj = (1, aj , a
2
j , . . . , a

n−1
j )T for some number aj . In this case,

we have r ≤ (n− 1)m+ 1.
The decomposition (1.2) is called the Vandermonde decomposition of the Hankel tensor

T . We call the minimum value r the Vandermonde rank of T , and denote it by V rank(T )
(see [36] for more details). We use Tm,n, Sm,n, Hm,n to denote the set of mth order n-
dimensional tensors, symmetric tensor and Hankel tensor, respectively. The symbol A⊙ B
means that the entrywise product of the mth order n−dimensional tensors A and B, that
is, A⊙B = (ai1i2...imbi1i2...im). The symbol vec(·) stands for the vectorization operator of a
matrix or tensor, and vec−1(·) stands for its inverse operator. Set U = (ui1i2,...,im) and V =
(vi1i2,...,im), V ≥ U means that vi1i2,...,im ≥ ui1i2,...,im for all possible (i1i2, . . . , im)−entries.
We define the Frobenius norm of a tensor A = (ai1i2...im) ∈ Tm,n by

∥A∥ =

 n∑
i1,i2,...,im=1

a2i1i2...im

 1
2

,

which is induced by the inner product

⟨A,B⟩ =
n∑

i1,i2,...,im=1

ai1i2...imbi1i2...im ,

where A,B ∈ Tm,n.
In this paper, we consider the following Hankel tensor approximation problems.

Problem I. Given an mth order n-dimensional tensor A with missing data, find an mth
order n-dimensional Hankel tensor X̂ with V rank(X̂ ) ≤ r such that

∥W ⊙ (A− X̂ )∥2 = min
X∈Hm,n, V rank(X )≤r

∥W ⊙ (A−X )∥2, (1.3)

where W = (wi1i2...im) is a 0−1 tensor, that is, if the element ai1i2...im of A is missing then
wi1i2...im = 0, otherwise wi1i2...im = 1.

Problem II. Given an mth order n-dimensional tensor A, find an mth order n-dimensional
Hankel tensor X̂ with structure constraint 𝟋1 (or 𝟋2) such that

∥A − X̂∥2 = min
X∈Hm,n,X∈𝟋i

∥A − X∥2. (1.4)

Here the structure constraints are

𝟋1 = {X ∈ Tm,n| U ≤ X ≤ V , U ,V ∈ Tm,n},

𝟋2 = {X ∈ Tm,n| ∥X∥ ≤ δ, δ > 0}.

Problem I arises in the multidimensional seismic trace interpolator problem (see [33,21]
for more details), which can be stated as follows. Given a raw frequency slice S having two
spatial dimensions with lengths s1 and s2, we can form a fourth-order Hankel tensor A by
generating two tensor orders for every spatial dimension

A(i, j,m, n) = S(i+ j − 1,m+ n− 1).

In four spatial dimensions we build an eighth-order tensor

A(i, j,m, n, p, q, r, s) = S(i+ j − 1,m+ n− 1, p+ q − 1, r + s− 1).
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Of course, some elements of the tensor A will be unknown (and thus in need of interpolating)
due to the missing traces. After that we must find a low rank Hankel tensor X , which fits
as closely as possible the known elements of A. This process can be summarized as Problem
I.

Problem II is of particular interests in the signal processing, such as in the multidimen-
sional harmonic retrieval problems as follows (see [7,11,14,20,24,30,35]). Let us consider N
samples of a time series xn, n ∈ {1, 2, . . . , N} modeled as a finite sum of K exponentially
damped complex sinusoids

xn =

P∑
p=1

ape
jϕ(p)e(−dp+jwp)tn ,

where ap are the amplitudes, ϕp the phases, dp the damping factors and wp the pulsations.
tn = n∆t is the time lapse between the time origin and the sample xn and ∆t is the
sampling time interval. These data may be arranged in a high-order Hankel tensor. In order
to estimate a tensor data from noisy observations and increase the relative signal strength,
we must use a Hankel tensor to approximate a data tensor, in particular, some structured
conditions, such as interval constraint and box constraint, are added in the best Hankel
tensor approximation problems, which lead to Problem II.

Recently, Hankel tensors have been investigated extensively and the research results
mainly concentrated on the spectral characterizations ([25]), tensor decompositions ([7,8,10])
and their positivities (including positive definiteness, copositivity, and complete positivity
[26-29,36]) and their applications ([11,13]).

When the order m = 2, the Hankel tensor approximation problem reduces to the Han-
kel matrix approximation problem. Macinnes [23] developed a method for finding the best
approximation of a matrix by a full rank Hankel matrix. The Hankel matrix approximation
problem is transformed into a problem involving best approximation of a given vector by a
second vector whose elements are constrained so that its inverse image can be algebraically
illustrated by Hankel matrix. Based on the projection algorithm and Newton method, Al-
Homidan [3] proposed a hybrid method for approximating the positive semidefinite Hankel
matrix. Arnab, Pokala and Kumaresan [5] presented the algorithms for the least-squares ap-
proximation of Toeplitz and Hankel matrices from noise corrupted or ill-composed matrices.
The similar structured matrix approximation problems, such as Toeplitz matrix approxima-
tion [1, 5, 17] and positive semidefinite matrix approximation [15,31], have also been studied,
and some excellent numerical methods were developed to solve them. However, the research
results of the high-order Hankel tensor approximation problems I and II are very few as far
as we know. The biggest obstacle the characterization of the feasible sets of Problems I and
II because they have highly structured constraints.

In this paper, we overcome these difficulties by the Vandermonde decomposition and
projections. For the problem I, we first transform Problem I into a smooth unconstrained
optimization problem by using the Vandermonde decomposition of Hankel tensor, then use
the BFGS method with Armijo line search to solve it. For the problem II, we first compute
the projections of a tensor onto the sets Hm,n, 𝟋1 and 𝟋2, and then design the Dykstra’s
algorithm and its acceleration versions to solve it. Numerical experiments illustrate that the
new methods are feasible and effective.

This paper is organized as follows. In Section 2, we first use the Vandermonde decompo-
sition of Hankel tensor to characterize the feasible set of Problem I and then use the BFGS
method to solve it. In Section 3, we first compute the projections of a tensor onto the sets
Hm,n, 𝟋1 and 𝟋2, and then design the Dykstra’s algorithm and its acceleration versions to
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solve Problem II. Finally, some numerical examples are reported to verify the feasibility and
effectiveness of these methods.

2 BFGS Method for Solving Problem I

In this section, we first transform Problem I into an unconstrained optimization problem,
and then use the BFGS method with the Armijo line search to solve it.

Set
Ω = {X ∈ Tm,n | X ∈ Hm,n, V rank(X ) ≤ r},

then from (1.2) it follows that the feasible set Ω of Problem I can be characterized by

X =

r∑
j=1

λjµj ◦ µj ◦ . . . µj ,

where µj = (1, xj , . . . , x
n−1
j )T . It is easy to verify that

X = (xi1i2...im), xi1i2...im =

r∑
j=1

λjx
i1+i2+···+im−m
j .

Therefore Problem I can also be reformulated as an unconstrained optimization problem

min
η=(x1,x2,...,xr,λ1,λ2,...,λr)∈R2r

f(η), (2.1)

where the objective function

f(η) = ∥W ⊙ (A−X )∥2

= ∥W ⊙ (A−
r∑

j=1

λjµj ◦ µj ◦ . . . µj)∥2

=
n∑

i1,i2,...,im=1

[wi1i2...im(ai1i2...im −
r∑

j=1

λjx
i1+i2+···+im−m
j )]2.

Now we begin to use the BFGS method with Armijo line search to solve (2.1). The
important step to use this method is how to compute the gradient of the objective function
f(η). Set p = i1 + i2 + · · ·+ im −m, then

∂f

∂xl
= 2

n∑
i1,i2,...,im=1

wi1i2...im

 s∑
j=1

λjx
p
j − ai1i2...im

 (pλlx
p−1
l ), l = 1, 2, . . . , r, (2.2)

∂f

∂λl
= 2

n∑
i1,i2,...,im=1

wi1i2...im

 s∑
j=1

λjx
p
j − ai1i2...im

 (xp
l ), l = 1, 2, . . . , r. (2.3)

Therefore the gradient

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xr
,
∂f

∂λ1
,
∂f

∂λ2
, . . . ,

∂f

∂λr

)
is given by (2.2) and (2.3).

The BFGS method with Armijo line search to solve (2.1) can be stated as follows.
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Algorithm 2.1 (This algorithm attempts to solve (2.1)).
1. Given an initial value η0 ∈ R2r, the initial positive definite matrix B0 and the tolerant
error ε > 0. Set ρ ∈ (0, 1), σ ∈ (0, 0.5), k = 0.
2. Compute ∇gk = ∇f(ηk). If ∥ ∇gk ∥≤ ε, then stop and declare that ηk is a stationary
point.
3. Determine dk by solving the systems of linear equations Bkd = −∇gk.
4. Determine the step length αk by Armijo line search, that is, find the smallest nonnegative
integer mk such that

f(ηk+1) ≤ f(ηk) + σρmk∇gTk dk.
5. Set αk = ρmk , ηk+1 = ηk + αkdk.
6. Compute sk = ηk+1 − ηk, yk = ∇gk+1 −∇gk.
7. Determine Bk+1 by

Bk+1 =

{
Bk, if yTk sk ≤ 0;

Bk − Bksks
T
k Bk

sTk Bksk
+

yky
T
k

yT
k sk

, if yTk sk > 0.

8. Let k = k + 1. Go to step 2.

The global convergence theorem for Algorithm 2.1 can be seen in Theorem 10.3.7 of Chen
([11]).

3 Dykstra’s Algorithm and its Acceleration Versions for Solving
Problem II

In this section, we use Dykstra’s algorithm and its acceleration versions to compute the
Hankel tensor approximation with structure constraints 𝟋1 and 𝟋2. Since the objective
function of Problem II is a convex function and the feasible set of Problem II is a convex
set, so the problem II always has a solution. We first introduce Dykstra’s algorithm and its
convergence theorem. We begin with a definition.

Definition 3.1 ([6]). Let M be a closed convex subset in a real Hilbert space H and u be
a point in H, then the unique solution of the following minimization problem

min
x∈M
∥x− u∥

is called the projection of u onto M and denoted by PM (u).

In order to find the projection of a given point onto the intersection of a finite number
of closed convex sets C1, C2, . . . , Cn, Dykstra’s algorithm was proposed in [6] which can be
stated as follows. This algorithm can be also seen in [12,22].

Dykstra’s Algorithm
1. Given the initial value x0;

2. Set x
(0)
n = x0, I

(0)
i = 0, i = 1, 2, . . . , n.

3. For k = 1, 2, 3, . . .

x
(k)
0 = x

(k−1)
n

For i = 1, 2, . . . , n

x
(k)
i = PCi

(x
(k)
i−1 − I

(k−1)
i ),

I
(k)
i = x

(k)
i − (x

(k)
i−1 − I

(k−1)
i ).

End
End
The utility of Dykstra’s algorithm is based on the following lemma.
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Lemma 3.2 ([9], Theorem 2). Let C1, C2, . . . , Cn be some closed convex subsets of a real
Hilbert space H such that C1

⋂
C2

⋂
· · ·

⋂
Cn ̸= ∅. For any i = 1, 2, . . . , n and any x0 ∈ H,

then the sequences {x(k)
i } generated by Dykstra’s algorithm converge to PC1

∩
C1

∩
···

∩
Cn

(x0),
that is,

x
(k)
i → PC1

∩
C1

∩
···

∩
Cn

(x0), i = 1, 2, . . . , n, k → +∞.

However, the rate of convergence of Dykstra’s algorithm is at best linear and it can require
a large number of iterations to converge within a given tolerance. In order to accelerate the
convergence, the acceleration versions of Dykstra’s algorithm were proposed (see [16,19] for
more details). We first introduce the Anderson acceleration of the fixed point iteration.
Anderson acceleration was proposed by Anderson [4] and developed by Toth and Kelley [32]
and Walker and Ni [34]. Recently Higham [16] used this method to compute the nearest
correlation matrix problem. Suppose we want to solve the equation x = f(x) for some
g : Rn → Rn. Basic fixed point iteration for this problem is as follows

Given x0, xk+1 = f(xk), k = 0, 1, 2, . . . .

For this iteration, the Anderson acceleration is as follows. This algorithm starts with x0 ∈ Rn

and an integer m ≥ 1. The following notation is used: mk = min(m, k),△xi = xi+1 −
xi, Xk = [△xk−mk . . .△xk−1], fi = f(xi),△fi = fi+1 − fi and Fk = [△fk−mk . . .△fk−1].

Anderson acceleration algorithm
1. x1 = x0 + f(x0)
2. For k = 1, 2, 3, . . .
3. mk = min(m, k);

4. Determine γk = (γ
(k)
k−mk, . . . , γ

(k)
k−1)

T that solves min
γ∈Rmk

∥fk − Fkγ∥22 by using QR

factorization;

5. x̄k = xk −
k−1∑

i=k−mk

γk
i△xi = xk −Xkγ

(k);

6. f̄k = fk −
k−1∑

i=k−mk

γk
i△fi = fk − Fkγ

(k);

7. xk+1 = x̄+ f̄ .
8. End

Now we begin to solve Problem II with structure constraints 𝟋1 and 𝟋2. It is easy to
verify that Problem II is equivalent to finding the projections P𝟋i

∩
Hm,n

(A) of A onto the
intersection set 𝟋i

⋂
Hm,n. Now we will use Dykstra’s algorithm and its acceleration versions

to solve Problem II. The key problems to realize these algorithms are how to compute the
projections PHm,n

(Z) and P𝟋i
(Z), i = 1, 2 of a given tensor Z onto the sets Hm,n and 𝟋i,

respectively. Such problems are perfectly solved as follows.
We can see that Hm,n is a subspace of Sm,n, and its dimension is (n − 1)m + 1. Let

G0,G1, . . . ,G(n−1)m be the orthogonal basis of Hm,n, that is, ⟨Gi,Gj⟩ = 0, 0 ≤ i ̸= j ≤
(n− 1)m. Then we have the following results.

Theorem 3.3. For a given mth order n-dimensional tensor Z, then the projection PHm,n
(Z)

of Z onto Hm,n is

PHm,n(Z) =
(n−1)m∑
k=0

xkGk,

where
xk =

⟨Z,Gk⟩
⟨Gk,Gk⟩

, k = 0, 1, . . . , (n− 1)m.
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Proof. Since G0,G1, . . . ,G(n−1)m be the orthogonal basis of Hm,n, then for arbitrary X ∈

Hm,n ⊂ Sm,n, there exists real numbers x0, x1, . . . , x(n−1)m, such that X =
(n−1)m∑
k=0

xkGk.

Therefore,

f(X ) = ∥Z − X∥2

= ∥Z −
(n−1)m∑
k=0

xkGk∥2

= ⟨Z −
(n−1)m∑
k=0

xkGk,Z −
(n−1)m∑
k=0

xkGk⟩

= ⟨Z,Z⟩ − 2⟨Z,
(n−1)m∑
k=0

xkGk⟩+ ⟨
(n−1)m∑
k=0

xkGk,
(n−1)m∑
k=0

xkGk⟩

= ∥Z∥2 − 2
(n−1)m∑
k=0

xk⟨Z,Gk⟩+
(n−1)m∑
k=0

x2
k⟨Gk,Gk⟩.

Set
∂f

∂xi
= 2xk⟨Gk,Gk⟩ − 2⟨Z,Gk⟩ = 0,

then we derive the stationary points of f are as follows

xk =
⟨Z,Gk⟩
⟨Gk,Gk⟩

, k = 0, 1, . . . , (n− 1)m.

Noting that
∂2f

∂x2
i

= 2⟨Gk,Gk⟩ = 2∥Gk∥2 > 0,

then by Definition 3.1 we obtain that the projection PHm,n
(Z) is

PHm,n
(Z) =

(n−1)m∑
k=0

xkGk,

where
xk =

⟨Z,Gk⟩
⟨Gk,Gk⟩

, k = 0, 1, . . . , (n− 1)m.

Proof. Set the mth order n-dimensional tensors V = (vi1i2,...,im) and U = (ui1i2,...,im).
Suppose that the set 𝟋1 be nonempty. For a given mth order n-dimensional tensor Z =
(zi1i2,...,im), then the (i1i2, . . . , im)-entry of the projection P𝟋1(Z) is as follows

(P𝟋1
(Z))i1i2,...,im =

 zi1i2,...,im , if ui1i2,...,im ≤ zi1i2,...,im ≤ vi1i2,...,im ,
vi1i2,...,im , if zi1i2,...,im > vi1i2,...,im ,
ui1i2,...,im , if zi1i2,...,im < ui1i2,...,im .

Proof. By Definition 3.1 we obtain that the projection P𝟋1(Z) is the unique solution of the
following minimization problem

min
X∈𝟋1

∥Z − X∥2 =

n∑
i1,i2,...,im=1

(zi1i2,...,im − xi1i2,...,im)2.
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This problem attains its minimum if and only if

xi1i2,...,im =

 zi1i2,...,im , if ui1i2,...,im ≤ zi1i2,...,im ≤ vi1i2,...,im ,
vi1i2,...,im , if zi1i2,...,im > vi1i2,...,im ,
ui1i2,...,im , if zi1i2,...,im < ui1i2,...,im ,

which is the projection P𝟋1
(Z) of Z onto the set 𝟋1.

Theorem 3.4. For a given mth order n-dimensional tensor Z = (zi1i2,...,im), then the
projection P𝟋2

(Z) of Z onto 𝟋2 is as follows

P𝟋2
(Z) =

{
Z, if ∥Z∥ ≤ δ,
δ

∥Z∥Z, if ∥Z∥ > δ.

Proof. Set f(X ) = ∥Z − X∥. By Definition 3.1 we know that the projection P𝟋2(Z) is the
unique solution of the minimization problem min

X∈𝟋2

f(X ). It is easy to see that if ∥Z∥ < δ,

then the unique solution of min
X∈𝟋2

f(X ) is Z. Now we consider the case ∥Z∥ ≥ δ. For arbitrary

X ∈ 𝟋2 with ∥Z∥ ≥ δ, then

∥Z∥ = ∥Z − X + X∥
≤ ∥Z − X∥+ ∥X∥,

which implies that
∥Z − X∥ ≥ ∥Z∥ − ∥X∥

≥ ∥Z∥ − δ.

This inequality shows that for arbitrary X ∈ 𝟋2 with ∥Z∥ ≥ δ, we have

f(X ) = ∥Z − X∥
≥ ∥Z∥ − δ
= 1

∥Z∥ (∥Z∥ − δ)∥Z∥
= 1

∥Z∥∥∥Z∥Z − δZ∥
= ∥Z − δ

∥Z∥Z∥
= f( δ

∥Z∥Z),

which shows that when X = δ
∥Z∥Z, f(X ) attains its minimum. Therefore the projection

P𝟋2
(Z) of Z onto 𝟋2 is

P𝟋2
(Z) =

{
Z, if ∥Z∥ ≤ δ,
δ

∥Z∥Z, if ∥Z∥ > δ.

By Dykstra’s algorithm and combining Theorems 3.3-3.4, we derive a new algorithm to
solve Problem II as follows.

Algorithm 3.5 (Dykstra’s algorithm for solving Problem II).
1. Set the initial value X0 = A;
2. Set X (0)

2 = X0, I(0)1 = 0, I(0)2 = 0;
3. For k = 1, 2, 3, . . .

X (k)
0 = X (k−1)

2 ,
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X (k)
1 = PHm,n(X

(k)
0 − I(k−1)

1 ),
I(k)1 = X (k)

1 − (X (k)
0 − I(k−1)

1 ),

X (k)
2 = P𝟋i

(X (k)
1 − I(k−1)

2 ),
I(k)2 = X (k)

2 − (X (k)
1 − I(k−1)

2 ),
End

By Lemma 3.2, we get the convergence theorem for Algorithm 3.1.

Theorem 3.6. If the set 𝟋i

⋂
Hm,n is nonempty, then the sequences {X (k)

1 } and {X (k)
2 }

generated by Algorithm 3.1 converge to the projection P𝟋i

∩
Hm,n

(A), which is the unique
solution of Problem II.

In order to accelerate the convergence of Dykstra’s algorithm, the Anderson accelera-
tion algorithm was used in Algorithm 3.1, that is, we will design Anderson acceleration of
Dykstra’s algorithm to solve Problem II. Set ∆S(0) = 0,X (0)

2 = A and define the function

[X (k)
1 ,X (k)

2 ,∆S(k)] = g(X (k−1)
2 ,∆S(k−1)), (3.2)

where
R(k) = X (k−1)

2 −∆S(k−1),

X (k)
1 = PHm,n

(R(k)),

∆S(k) = X (k)
1 −R(k),

X (k)
2 = PFi

(X (k)
1 ).

Then Algorithm 3.1 can be recast as a fixed point method (see [16] for more details)

[X (k)
1 ,X (k)

2 ,△S(k)] = g(X (k−1)
2 ,∆S(k−1)), k = 0, 1, 2, . . . .

Combining Anderson acceleration algorithm, the Anderson acceleration of Dykstra’s
algorithm to solve Problem II is as follows.

Algorithm 3.7 (Anderson acceleration of Dykstra’s algorithm for solving Problem II).
1. Run Anderson acceleration algorithm on the function f : R2nm → R2nm

given by f(z) =

vec(g̃(Z)− Z), where zk = vec(Zk),Zk = (X (k)
2 ,∆S(k)) ∈ Rn×2n×···×n and [X (k)

1 , g̃(Zk)] =
g(Zk) for the function g defined by (3.2). Terminate the iteration when the stopping criteria
attains. Denote the result by X∗.
2. Output the solution X̂ = vec−1(X∗).

It is worthy to point out that, unlike Algorithm 3.1, Algorithm 3.7 is not guaranteed to
converge, since there are no suitable convergence results for Anderson acceleration. Whether
convergence can be proved under reasonable assumptions is an open question.

We begin to discuss the other acceleration scheme for Dykstra’s Algorithm (see [19] for
more details). For that we need to consider an auxiliary sequence in the product space
H ×H that will be denoted as H2. For each k ≥ 0, let’s define

X̂k = (X (k)
1 ,X (k)

2 ) ∈ H2,

where X (k)
1 and X (k)

2 are defined in Dykstra’s Algorithm. The idea to accelerate the con-
vergence of Dykstra’s Algorithm is building another sequence in H2 which also converges to
PC1

∩
C1

∩
···

∩
Cn

(X0). Based on this idea, Lopez and Raydan [19] designed an acceleration
scheme of Dykstra’s algorithm is as follows
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Zk = (3.3){
1
2 (X

(k+1)
2 + X (k+1)

1 ), if | ∥X (k)
2 −X (k)

1 ∥+ < X (k)
2 −X (k)

1 ,X (k+1)
1 −X

(k+1)
2 >|< ε,

X (k)
2 + αk(X (k+1)

2 −X (k)
2 ), if | ∥X (k)

2 −X (k)
1 ∥+ < X (k)

2 −X (k)
1 ,X (k+1)

1 −X
(k+1)
2 >|≥ ε,

where ε > 0 is a small given safeguard fixed real number and

αk =
∥X (k)

2 −X (k)
1 ∥2

∥X (k)
2 −X (k)

1 ∥2+ < X (k)
2 −X (k)

1 ,X (k+1)
1 −X

(k+1)
2 >

.

By making use of (3.3), the second accelerating version of Dykstra’s algorithm is designed
to solve problem II as follows

Algorithm 3.8 (Acceleration Dykstra’s algorithm for solving Problem II).
1. Given the initial value X0, 0 < tol < 1, 0 < ε < 1, set k = 1 and error = 1.

2. X (0)
2 = X0, I(0)1 = 0, I(0)2 = 0.

3. X (1)
0 = X (0)

2 ,
X (1)

1 = PHm,n
(X (1)

0 − I(0)1 ),
I(1)1 = X (1)

1 − (X (1)
0 − I(0)1 ),

X (1)
2 = P𝟋i(X

(1)
1 − I(0)2 ),

I(1)2 = X (1)
2 − (X (1)

1 − I(0)2 ).

4. Set Z0 = X (1)
2 .

5. While error > tol
X (k+1)

0 = X (k)
2 ,

X (k+1)
1 = PHm,n

(X (k+1)
0 − I(k)1 ),

I(k+1)
1 = X (k+1)

1 − (X (k+1)
0 − I(k)1 ),

X (k+1)
2 = P𝟋i

(X (k+1)
1 − I(k)2 ),

I(k+1)
2 = X (k+1)

2 − (X (k+1)
1 − I(k)2 ),

if
∣∣∣∥X (k)

2 −X (k)
1 ∥+ < X (k)

2 −X (k)
1 ,X (k+1)

1 −X
(k+1)
2 >

∣∣∣ ≥ ε, then compute

αk =
∥X (k)

2 −X (k)
1 ∥2

∥X (k)
2 −X (k)

1 ∥2+<X (k)
2 −X (k)

1 ,X (k+1)
1 −X

(k+1)
2 >

,

Zk = X (k)
2 + αk(X (k+1)

2 −X (k)
2 ),

else
Zk = 1

2 (X
(k+1)
2 + X (k+1)

1 ),
end if
error = ∥Zk −Z0∥, Z0 = Zk, and k ← k + 1.
end while

By Theorem 3.6 of Lopez and Raydan [19], we get the convergence theorem of Algorithm
3.8.

Theorem 3.9. The sequence {Zk} generated by Algorithm 3.8 converges to the projection
P𝟋i

∩
Hm,n

(A), which is the unique solution of Problem II.
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4 Numerical Experiments

In this section, we present some numerical examples to illustrate that Algorithms 2.1 and
3.1, 3.7, 3.8 are feasible and effective to solve Problems I and II, respectively. All tests
are performed by using MATLAB R2013a on a PC with an Pentium(R) Dual-core CPU at
2.8GHz.

4.1 Algorithm 2.1 for solving Problem I

In this subsection, we first present a simple example to illustrate that Algorithm 2.1 is
feasible to solve Problem I, and then compare Algorithm 2.1 with the nonlinear conjugate
gradient method (denoted by NCG method), the steepest descent method (denoted by SD
method) (see [18]) and the alternating least squares method (denoted by ALS method)
in Trickett-Burroughs-Milton [33]. For these algorithms, the stopping criterion is that either
the iteration step has reached the upper limit 1000 or the norm of the gradient

Err1(ηk) = ∥∇f(ηk)∥2 = ∇f(ηk)T∇f(ηk) ≤ 1× 10−6.

Example 4.1. In the seismic trace interpolation problem (see [33]), the raw frequency slice

S =

 0.02 ? 0.99
? 0.99 0.03

0.99 0.03 0.02

 ,

with two spatial dimensions with lengths s1 = 3 and s2 = 3. Here the symbol "?" means
that the data missed. By the formula

A(i, j,m, n) = S(i+ j − 1,m+ n− 1),

we can form a 4th order 2-dimensional tensor A, i.e.

A(:, :, 1, 1) =
(

0.02 ?
? 0.09

)
,A(:, :, 2, 1) =

(
? 0.99

0.99 0.03

)
,

A(:, :, 1, 2) =
(

? 0.99
0.99 0.03

)
,A(:, :, 2, 2) =

(
0.99 0.03
0.03 0.02

)
,

We consider Problem I with r = 2, A and

W(:, :, 1, 1) =

(
1 0
0 1

)
,W(:, :, 2, 1) =

(
0 1
1 1

)
,

W(:, :, 1, 2) =

(
0 1
1 1

)
,W(:, :, 2, 2) =

(
1 1
1 1

)
.

We use Algorithm 2.1 to solve this problem with B0 = I and the initial values

η0 = [0.6787, 0.7577, 0.7431, 0.3922]T .

After 15 iterations, we get the solution X̂ of problem I is as follows

X̂ (:, :, 1, 1) =
(

1.7025 0.6310
0.6310 0.2513

)
, X̂ (:, :, 2, 1) =

(
06310 0.2513
0.2513 0.1060

)
,
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X̂ (:, :, 1, 2) =
(

06310 0.2513
0.2513 0.1060

)
, X̂ (:, :, 2, 2) =

(
0.2513 0.1060
0.1060 0.0467

)
,

and the norm of the gradient Err1(η15) = 7.9288× 10−7.
Example 4.1 shows that Algorithm 2.1 is feasible to solve Problem I.

Example 4.2. In the seismic trace interpolation problem (see [33]), the raw frequency slice

S =


0.76 0.17 0.25 ? 0.92
0.17 0.25 ? 0.92 0.01
0.25 ? 0.92 0.01 0.72
? 0.92 0.01 0.72 0.30

0.92 0.01 0.72 0.30 0.71

 ,

with two spatial dimensions with lengths s1 = 5 and s2 = 5. Here the symbol "?" means
that the data missed. By the formula

A(i, j,m, n) = S(i+ j − 1,m+ n− 1),

we can form a 4th order 3-dimensional tensor A, i.e.

A(:, :, 1, 1) =

 0.76 0.17 0.25
0.17 0.25 ?
0.25 ? 0.92

 ,A(:, :, 2, 1) =

 0.17 0.25 ?
0.25 ? 0.92
? 0.92 0.01

 ,

A(:, :, 3, 1) =

 0.25 ? 0.92
? 0.92 0.01

0.92 0.01 0.72

 ,A(:, :, 1, 2) =

 0.17 0.25 ?
0.25 ? 0.92
? 0.92 0.01

 ,

A(:, :, 2, 2) =

 0.25 ? 0.92
? 0.92 0.01

0.92 0.01 0.72

 ,A(:, :, 3, 2) =

 ? 0.92 0.01
0.92 0.01 0.72
0.01 0.72 0.3

 ,

A(:, :, 1, 3) =

 0.25 ? 0.92
? 0.92 0.01

0.92 0.01 0.72

 ,A(:, :, 2, 3) =

 ? 0.92 0.01
0.92 0.01 0.72
0.01 0.72 0.3

 ,

A(:, :, 3, 3) =

 0.92 0.01 0.72
0.01 0.72 0.3
0.72 0.3 0.71

 .

We consider Problem I with r = 1, A and

W(:, :, 1, 1) =

 1 1 1
1 1 0
1 0 1

 ,W(:, :, 2, 1) =

 1 1 0
1 0 1
0 1 1

 ,W(:, :, 3, 1) =

 1 0 1
0 1 1
1 1 1

 ,

W(:, :, 1, 2) =

 1 1 0
1 0 1
0 1 1

 ,W(:, :, 2, 2) =

 1 0 1
0 1 1
1 1 1

 ,W(:, :, 3, 2) =

 0 1 1
1 1 1
1 1 1

 ,

W(:, :, 1, 3) =

 1 0 1
0 1 1
1 1 1

 ,W(:, :, 2, 3) =

 0 1 1
1 1 1
1 1 1

 ,W(:, :, 3, 3) =

 1 1 1
1 1 1
1 1 1

 .
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We use Algorithm 2.1, NCG method and SD method to solve this problem with initial value
η0 = [0.1678, 0.755]T , and get solution X̂ to Problem 1.1 as follows

X̂ (:, :, 1, 1) =

 1.0656 0.3959 0.1471
0.3959 0.1471 0.0547
0.1471 0.0547 0.0203

 , X̂ (:, :, 2, 1) =

 0.3959 0.1471 0.0547
0.1471 0.0547 0.0203
0.0547 0.0203 0.0075

 ,

X̂ (:, :, 3, 1) =

 0.1471 0.0547 0.0203
0.0547 0.0203 0.0075
0.0203 0.0075 0.0028

 , X̂ (:, :, 1, 2) =

 0.3959 0.1471 0.0547
0.1471 0.0547 0.0203
0.0547 0.0203 0.0075

 ,

X̂ (:, :, 2, 2) =

 0.1471 0.0547 0.0203
0.0547 0.0203 0.0075
0.0203 0.0075 0.0028

 , X̂ (:, :, 3, 2) =

 0.0547 0.0203 0.0075
0.0203 0.0075 0.0028
0.0075 0.0028 0.0010

 ,

X̂ (:, :, 1, 3) =

 0.1471 0.0547 0.0203
0.0547 0.0203 0.0075
0.0203 0.0075 0.0028

 , X̂ (:, :, 2, 3) =

 0.0547 0.0203 0.0075
0.0203 0.0075 0.0028
0.0075 0.0028 0.0010

 ,

X̂ (:, :, 3, 3) =

 0.0203 0.0075 0.0028
0.0075 0.0028 0.0010
0.0028 0.0010 0.0004

 .

The convergence curves of log10(Err1(ηk)) and the objective function ∥A − Xk∥2 are given
Figure 1.
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Figure 1: Convergence curves of log10(Err1(ηk)) and the cost function ∥A − Xk∥2.

Example 4.3. Choose a 25-dimensional random vector v with missing data, and then
construct a 4th order 8-dimensional Hankel tensor A by making use of (1.1). We can use
the following way to form a 4th order 8-dimensional 0-1 tensorW = (wi1i2,theorem,im). If the
element ai1i2,...,im of A is unknown then wi1i2,...,im = 0, otherwise wi1i2,...,im = 1. Consider
Problem I with s = 1, A and W. We use Algorithm 2.1, NCG method and SD method
to solve problem I with the same initial values, which is generated by MATLAB function
rand(·). The convergence curves of log10(Err1(ηk)) and the cost function ∥A − Xk∥2 are
given in Figure 2.

From Figures 1 and 2 we can see that Algorithm 2.1 and NCG method both work very
effectively for Problem I, while the convergence rate of Algorithm 2.1 is slight faster than
NCG method.
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Figure 2: Convergence curves of log10(Err1(ηk)) and the cost function ∥A − Xk∥2.

Example 4.4. Choose a (n− 1)m−dimensional random vector v with missing data, and
then construct a m order n−dimensional Hankel tensor A by making use of (1.1). We can
use the following way to form a m order n−dimensional 0 − 1 tensor W = (wi1i2...m). If
the element ai1i2...m of A is unknown, then wi1i2...im = 0, otherwise wi1i2...im = 1. Consider
Problem I with s = n

s , A and W . We use Algorithm 2.1 and the ALS method in Trickett-
Burroughs-Milton [33] to solve this problem with the same initial value. The experiment
results are reported in Table 1.

Table 1: Comparative results of Example 4.4 for different values m and n.
m = 11, n = 20 IT CPU(s) Err1 Costfunction
Algorithm 2.1 25 12.95 1.46× 10−7 27.74
ALS method 41 27.63 2.54× 10−7 27.71

m = 21, n = 30 IT CPU(s) Err1 Costfunction
Algorithm 2.1 47 51.54 2.23× 10−7 321.36
ALS method 78 95.32 5.58× 10−7 321.30

m = 31, n = 40 IT CPU(s) Err1 Costfunction
Algorithm 2.1 142 177.29 3.52× 10−7 713.13
ALS method 289 394.82 2.86× 10−7 713.09

From Table 1 we can see that Algorithm 2.1 has a faster convergence rate than the ALS
method in Trickett-Burroughs-Milton [33].

4.2 Algorithms 3.5, 3.7, 3.8 for solving Problem II

In this subsection, we present some numerical examples to illustrate that Algorithms 3.5, 3.7,
3.8 are feasible to solve Problems II, and the comparison of these algorithms are also given.
For these algorithms, the stopping criterion is that either the iteration step has reached the
upper limit 1000 or the iterative error

Err2(X (k)
1 ,X (k)

2 ) = ∥X (k)
1 −X (k)

2 ∥ ≤ 1× 10−9.
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Example 4.5. Consider Problem II with the tensors

A =

 2 5 6 9 2 7 0 0 2
8 9 4 9 9 5 5 9 4
4 4 2 5 2 8 4 10 7

 ,

U =

 −0.55 −1.05 0.15 −0.95 0.45 0.55 0.25 −0.15 −0.55
−0.75 −0.35 −0.05 0.35 0.05 −0.95 −0.15 −0.25 −0.7
0.35 0.25 −0.45 0.35 −0.65 −0.7 −0.15 −0.4 −0.45


and

V =

 1.75 1.05 1.85 0.95 1.55 1.05 1.75 1.75 1.15
0.75 2.35 1.65 1.65 1.55 1.55 1.75 0.85 0.7
1.65 1.35 1.05 1.25 1.25 0.7 0.75 0.4 1.45

 .

We use Algorithms 3.5, 3.7, 3.8 to solve Problem II with the initial values

X0 =

 0.3 0.7 0.8 0.8 0.7 0.3 0.7 0.3 0.7
0.9 0.1 0.1 0.3 0.7 0.7 0.2 1 0.8
0.2 0.3 0.3 0.6 0.7 0.8 0.3 0.8 0.4

 .

We get the solution of Problem II as follows

X̂ =

 0.3 0.75 0.4667 0.75 0.4667 0.55 0.4667 0.55 0.6167
0.75 0.4667 0.55 0.4667 0.55 0.6167 0.55 0.6167 0.4
0.4667 0.55 0.6167 0.55 0.6167 0.4 0.6167 0.4 0.4

 .

The convergence curves of log10(Err2) is given in Figure 3

0 20 40 60 80 100 120 140
−10

−8

−6

−4

−2

0

2

Iteration Numbers

E
rr

 

 

Anderson Accelaration Dystra APM

Accelaration Dystra APM

 Dystra APM

Figure 3: Convergence curves of log10(Err2).

Example 4.6. Consider Problem II with the structure constraint 𝟋2. Set the tensor

A =

 9 5 10 8 3 5 1 4 10
5 8 3 8 8 8 7 3 6
8 3 1 9 5 10 2 8 7


and δ = 1. We use Algorithms 3.5, 3.7, 3.8 to solve Problem II with the initial value

X0 =

 0.9 0.4 0.4 0.5 0.3 0.3 0.1 0.6 0.2
0.7 0.6 0.4 0.9 0.6 0.6 0.4 0.5 0.6
0.6 0.4 0.5 0.2 0.5 0.9 0.1 0.8 0.5

 .
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We get the solution of Problem II as follows

X̂ =

 0.3345 0.1982 0.1796 0.1982 0.1796 0.1540 0.1796 0.1540 0.1487
0.1982 0.1796 0.1540 0.1796 0.1540 0.1487 0.1540 0.1487 0.2849
0.1796 0.1540 0.1487 0.1540 0.1487 0.2849 0.1487 0.2849 0.1858

 .

The convergence curves of log10(Err2) are given in Figure 4.
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Figure 4: Convergence curves of log10(Err2).

Example 4.7. Consider Problem II with the structure constraint 𝟋1. The tensors A ∈ T3,n

generated by MATLAB function rand(·), and

U = E − uF − vZ,V = E + uF + vZ.

Here, E and F are Hankel tensors with following elements,

Ei1i2i3 = ai1+i2+i3−2,

Ei1i2i3 = bi1+i2+i3−2,

where a ∈ R3n−2 and b ∈ R3n−2 generated by MATLAB function rand(·). The tensor
Z ∈ T3,n generated by MATLAB function rand(·), and u, v > 0 are scalars. We use Algo-
rithms 3.5, 3.7 to solve this problem and use the same initial tensor X0, which generated by
MATLAB function rand(·). Under the stopping criterion, the experiment results including
the iteration step ( denoted by "IT" ), CPU time ( denoted by "CPU(s)" ), iterative error
( denoted by "Err2" ) and the cost function ( denoted by "Costfunction" ) are reported in
table 2.
Example 4.8. Consider Problem II with the structure constraint 𝟋2. Here the tensors
A ∈ T3,n is generated by MATLAB function rand(·) and δ can be seen in Table 2. We use
Algorithms 3.5, 3.7, 3.8 to solve this problem with the same initial tensor X0. Under the
stopping criterion, the experiment results are reported in Table 3.

Several comments can be made on Figures 3, 4 and Tables 2, 3.
(1) From Figures 3, 4 and Tables 2, 3 we can see that Algorithms 3.7 and 3.8 work

very effectively for Problem I, while the performance of Algorithm 3.7 is better than that of
Algorithm 3.8 in term of iteration steps and computing time.

(2) In Tables 2 and 3, the symbol ′−′ means that the iteration step k has reached the
upper limit 1000, but it did not derive a solution. Compared with Algorithms 3.7 and 3.8,
Algorithm 3.5 is relatively less efficient, especially when the problem size is large. The reason
is that the convergence rate of Algorithm 3.5 is very slow.
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Table 2: Comparative results of Example 4.6 for different values n, u and v.
n = 10, u = 9, v = 1 IT CPU(s) Err2 Costfunction

Algorithm 3.7 26 2.4901 4.7399× 10−13 9.2569
Algorithm 3.8 453 67.2828 3.5422× 10−10 9.2569
Algorithm 3.5 482 81.6221 9.7847× 10−10 9.2569

n = 50, u = 15, v = 1 IT CPU(s) Err2 Costfunction
Algorithm 3.7 88 131.21 6.8628× 10−10 189.28
Algorithm 3.8 461 709.36 1.8913× 10−10 189.28
Algorithm 3.5 489 973.21 1.1512× 10−10 189.28

n = 100, u = 15, v = 1 IT CPU(s) Err2 Costfunction
Algorithm 3.7 112 16492 8.4990× 10−10 298.74
Algorithm 3.8 569 129970 9.9536× 10−10 298.74
Algorithm 3.5 − − − −

Table 3: Comparative results of Example 4.8 for different values n and δ.
n = 10, δ = 8 IT CPU(s) Err2 Costfunction
Algorithm 3.7 9 1.3572 2.0244× 10−12 11.7646
Algorithm 3.8 17 3.0125 5.0406× 10−10 11.7646
Algorithm 3.5 34 5.1869 9.0246× 10−10 11.7646
n = 50, δ = 80 IT CPU(s) Err2 Costfunction
Algorithm 3.7 9 319.8291 1.3819× 10−12 140.4808
Algorithm 3.8 40 1509.8 7.6405× 10−10 140.4808
Algorithm 3.5 43 1533.5 5.5299× 10−10 140.4808

n = 100, δ = 100 IT CPU(s) Err2 Costfunction
Algorithm 3.7 9 2075.8 5.1599× 10−10 5699.1
Algorithm 3.8 103 28225 8.5377× 10−10 5699.1
Algorithm 3.5 − − − −
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5 Conclusion

In this paper, we consider two kinds of the best Hankel tensor approximations, which arise
in the multidimensional seismic trace interpolator and the signal processing and the asset
portfolio. One is the Hankel tensor approximation with missing data, and the other is the
Hankel tensor approximation with the box constraint or the norm constraint. For the Hankel
tensor approximation problem with missing data, the feasible set is characterized by the
Vandermonde decomposition of Hankel tensor, and then the original problem is transformed
into a smooth unconstrained optimization problem. The BFGS method with Armijo linear
search is used to solve the equivalent problem. For the the Hankel tensor approximation
problem with the box constraint or the norm constraint, we use Dykstra’s algorithm to
solve it. However, the main drawback of this algorithm is its slow convergence. So two
acceleration versions of this algorithm are used in this paper. Some numerical examples
show that these new algorithms are feasible and effective to solve Problems I and II.
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