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multiply connected, bounded domain in R3. For the discretized case, Li and Zhang [16]
constructed the second order Markov chains that admit every probability distribution vector,
which can be viewed as an inverse eigenvalue problem for 3rd-order tensors. Very recently,
Ye and Hu [17] investigated the inverse eigenvalue problem corresponding to higher order
tensors: Given a multiset S ∈ Cnmn−1

/Snmn−1

of total multiplicity nmn−1, where Snmn−1

is the group of permutations on nmn−1 elements. Is there a tensor A of order m + 1 and
dimension n such that the multiset of eigenvalues of which is exactly S? The authors proved
that the inverse problem mentioned above is solvable for the cases: a) m = 1; b) n = 2; c)
[n,m] = [3, 2], [4, 2], [3, 3].

As seen in the literature, the inverse eigenvalue problems of matrices with special struc-
ture or not have been studied extensively, especially for the cases with special structures
due to the need of practical applications, but the research on inverse eigenvalue problem
of tensors is just in its infancy, and the related theory is far from perfect. To the best of
our knowledge, the research of inverse eigenvalue problems for general tensors has not been
found in the literature. In view of the influence of errors to the structure of a tensor, in this
paper we consider the inverse eigenvalue problem of a general tensor for given partial eigen-
values and eigenvectors. To be precise, the problem under consideration can be expressed
as follows:

Let λl ∈ C and xl ∈ Cn, l = 1, 2, . . . , L, be given complex numbers and nonzero complex
vectors, respectively. Find an mth-order and n-dimensional tensor A = (ai1i2...im) over the
real field R such that

Axm−1
l = λlx

[m−1]
l , l = 1, 2, . . . , L, (1.1)

where the ith element of the vectors Axm−1
l and x[m−1]

l , is respectively defined by [1]

(Axm−1
l )(i) :=

∑
i2,...,im

aii2...imxl(i2) . . .xl(im),

x[m−1]
l (i) := xl(i)

m−1
.

In this paper, we shall establish the conditions guaranteeing the existence of the solution
to the tensor inverse eigenvalue problem (1.1), and derive its solutions by transforming this
problem as the tensor equations with Einstein product. Particularly, the general solution of
which can be obtained by using the Moore-Penrose inverses of tensors [18].

In addition, we are also interested in the nearness problem associated with the inverse
eigenvalue problem mentioned above, which can be viewed as an application of the tensor
inverse eigenvalue problem, and can be mathematically expressed as follows:

Let A0 be a given tensor. Find the tensor Â ∈ Φ satisfying

∥Â − A0∥ = min
A∈Φ

∥A −A0∥, (1.2)

where Φ is the solution set of the tensor inverse eigenvalue problem (1.1), hereafter, ∥ · ∥
denotes the Frobenius norm of a tensor, see Section 2 for details.

The aforementioned optimal approximation problem for a given tensor is a generalization
of the matrix case that arises in many areas of applied matrix computations [19, 20], and
has been widely studied; see, e.g., [21, 22, 23, 24]. Here, the tensor A0 in (1.2), may be
obtained by experimental observation values and statistical distribution information, but it
may not satisfy the needed form and the minimum residual requirement, while the optimal
estimation Â is the tensor that not only satisfies those constraints but also best approximates
the tensor A0. Under appropriate assumptions, it will be shown that the solution to the
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tensor nearness problem (1.2) exists uniquely, and can be represented by means of the
Moore-Penrose inverses of the known tensors as well.

The remainder of this paper is organized as follows. In Section 2, we review basic
definitions and terminology related to tensors. In Section 3, we solve the tensor inverse
eigenvalue problem (1.1) and the tensor nearness problem (1.2) turning to the properties of
the Moore-Penrose inverse of tensors. In Section 4, we propose the corresponding iterative
algorithms to solve the problems mentioned above. In Section 5, some numerical experiments
will be given to illustrate the obtained results presented in this paper. Finally, we conclude
this paper with some remarks.

2 Preliminary Knowledge

Throughout this paper, and unless otherwise specified, we denote scalars, vectors, matrices,
and tensors, by lower-case letters, boldface lower-case letters, boldface capital letters, and
calligraphic letters, respectively. An mth-order and d1 × · · · × dm-dimensional tensor A
consists of d1 ·. . .·dm entries ai1...im with 1 ≤ ij ≤ dj and j = 1, 2, . . . ,m. The set of m-order
and d1×· · ·×dm-dimensional tensors over the real (complex) field is denoted by Rd1×···×dm

(Cd1×···×dm), and is particularly denoted by R[m,n] (C[m,n]) when d1 = d2 = · · · = dm = n.
A tensor Ik = (ei1...ikj1...jk) ∈ Rd1×···×dk×d1×···×dk is used to represent the identity tensor of
order 2k, whose entries are defined by ei1...ikj1...jk =

∏k
l=1 δiljl , in which δiljl = 1 if il = jl,

and otherwise δiljl = 0. The symbol O denotes the null tensor whose entries are zeros.
We need the following definitions; see, e.g., [25, 18, 26] for details.

Definition 2.1. Let A = (ai1...ikj1...jl) ∈ Cd1×···×dk×f1×···×fl be a given tensor, then its
conjugate transpose, denoted by AH = (âi1...ikj1...jl), is defined as

âj1...jli1...ik = ai1...ikj1...jl ,

where the over line denotes the conjugate of the entry ai1...ikj1...jl . Particularly, if the tensor
A is real, then it reduces to its transpose, denoted by AT .

Definition 2.2. For tensors A=(ai1...isj1...jk) ∈ Cd1×···×ds×f1×···×fk and B=(bj1...jkl1... lt) ∈
Cf1×···×fk×g1×···×gt , the Einstein product A ∗k B = (ci1···isl1... lt) ∈ Cd1×···×ds×g1×···×gt is
defined by

ci1...isl1...lt =

f1,...,fk∑
j1,...,jk

ai1...isj1...jkbj1...jkl1...lt .

This tensor product reduces to the standard matrix multiplication in the sense that
s = k = t = 1, which also contains the tensor-vector product and the tensor-matrix product
[27] as special cases. Moreover, for A = (ai1...ik),B = (bj1...jk) ∈ Cf1×···×fk , the inner
product of which can be defined as [27]

< A,B >=

f1,...,fk∑
i1,...,ik

ai1i2...ikbi1i2...ik .

This definition leads to the Frobenius norm of a tensor, i.e., ∥A∥ =
√
< A,A >. Particularly,

we say that the tensors A and B are orthogonal each other, if they satisfy that < A,B >= 0.
Additionally, the outer product of the tensors A and B, denoted by A ◦ B = (ci1...ikj1...jk),
is defined by ci1...ikj1...jk = ai1i2...ikbj1...jk .

Furthermore, the concept of the Moore-Penrose inverse of a tensor can be defined as
follows [18, 28]:
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Definition 2.3. Let A ∈ Cd1×···×dm×f1×···×fn . If the tensor X ∈ Cf1×···×fn×d1×···×dm

satisfies the following tensor equations

(1) A ∗n X ∗m A = A, (2) X ∗m A ∗n X = X ,

(3) (A ∗n X )H = A ∗n X , (4) (X ∗m A)H = X ∗m A,
(2.1)

we say that it is the Moore-Penrose inverse of the tensor A, denoted by A†.

Obviously, in the case of an invertible tensor A [29], it holds that A† = A−1, the inverse
of the tensor A [25]. Notably, if m = n, it reduces to the case given in [18].

3 Main Results

3.1 Solving the tensor inverse eigenvalue problem (1.1)

In this subsection, we investigate the solvability concerning the tensor inverse eigenvalue
problem (1.1). Actually, one can know from the definition of the Einstein product that,
for the eigenpair (λl,xl) with l ∈ {1, 2, . . . , L}, the tensor-vector product Axm−1

l can be
rewritten as the Einstein product which contracts the last m − 1 modes of A and all the
modes of the CP-rank 1 tensor Xl := xl ◦xl ◦ · · ·◦xl ∈ C[m−1,n], the outer product of vectors
xl, namely,

Axm−1
l = A ∗m−1 Xl.

This means that the tensor inverse eigenvalue problem (1.1) can be transformed equivalently
into the solution of the tensor equations

A ∗m−1 Xl = Bl, l = 1, 2, . . . , L, (3.1)

where Bl := λlx
[m−1]
l are vectors of size n.

Furthermore, we can prove the following conclusion.

Lemma 3.1. The system of tensor equations (3.1) is equivalent to the tensor equation

A ∗m−1 X = B, (3.2)

in which X is an mth-order and n× · · · × n× L-dimensional tensor defined by

X (:, . . . , :, l) = Xl, (3.3)

and B ∈ Cn×L defined by B(:, l) = Bl, l = 1, 2, . . . , L.

Proof. Unfolding the tensors A, Xl, and Bl as A ∈ Cn×nm−1

, xl ∈ Cnm−1

, and bl ∈ Cn,
l = 1, 2, . . . , L, then the tensor equations (3.1) can be rewritten as

A[x1, · · · , xL] = [b1, · · · , bL]. (3.4)

Making using of the definition of the tensors X and B, together with the equality (3.4), it
is known that the conclusion holds true. □

We should point out that the definition of the block tensor X in Lemma 3.1 is different
from the one given by Sun et al. in [18].

The following lemma is derived from Lemma 4.2 of the Reference [28].
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Lemma 3.2. For given tensors B ∈ Ck1×···×kp×d1×···×dm , C ∈ Cg1×···×gn×l1×···×lq and
D ∈ Ck1×···×kp×l1×···×lq , then tensor equation

B ∗m Z ∗n C = D

is solvable if and only if B ∗m B† ∗p D ∗q C† ∗n C = D. In this case, its general solution can
be expressed as

Z = B† ∗p D ∗q C† + U − B† ∗p B ∗m U ∗n C ∗q C†

with arbitrary tensor U ∈ Cd1×···×dm×g1×···×gn .

By Lemmas 3.1 and 3.2, we can obtain the following theorem which provides a necessary
and sufficient condition for the solvability of the tensor inverse eigenvalue problem (1.1).

Theorem 3.3. For given (λl,xl) ∈ C×Cn \ {0}, l = 1, 2, . . . , L, there exists a tensor A of
order m and dimension n such that the equations given in (1.1) hold simultaneously, if and
only if

B ∗1 X † ∗m−1 X = B. (3.5)

At this time, the general solution of the tensor inverse eigenvalue problem (1.1) can be
represented as

A = B ∗1 X † +W ∗m−1 (Im−1 −X ∗1 X †). (3.6)

where Im−1 ∈ R[2(m−1),n] is the identity tensor, and W ∈ C[m,n] is arbitrary.

Proof. Based on the previous analysis, it is known that the inverse eigenvalue problem is
equivalent to the solution of the tensor equation (3.2). Using the properties of Moore-Penrose
inverse, it follows from (3.2) that

A ∗m−1 X ∗1 X † ∗m−1 X = B,

which, together with Lemma 3.2, deduces that the tensor inverse eigenvalue problem (1.1)
is solvable if and only if the equality (3.5) holds, and the solution of which can be expressed
as the form of (3.6) for arbitrary tensor W. □

Remark 3.4. Using the properties of Moore-Penrose inverses of tensors [18, 28], the tensors
B ∗1 X † ∗m−1 (W ∗m−1 (Im−1 − X ∗1 X †))H = O, which implies that B ∗1 X † is the least
norm solution to the tensor inverse eigenvalue problem (1.1).

As a special case of Theorem 3.3, we have the following corollary.

Corollary 3.5. Let L = 1 in Theorem 3.3. Then the general solution to the inverse eigen-
value problem (1.1) is

A = λ1 · x[m−1]
1 ◦ X †

1 +W ∗m−1 (Im−1 −X1 ◦ X1
†) (3.7)

where X †
1 = xH

1 ◦ · · · ◦ xH
1 ∈ C[m−1,n], and W ∈ C[m,n] is arbitrary.

3.2 Solving the tensor nearness problem (1.2)

In this section, we are going to address the nearness problem (1.2) for the given tensor A0.
We need the following lemma that derives from the reference [28], which is crucial for solving
this problem.



404 M. LIANG, L. DAI AND R. ZHAO

Lemma 3.6. Let H ∈ Cd1×···×dm×f1×···×fn , and suppose F ∈ Cd1×···×dm×d1×···×dm , and
G ∈ Cf1×···×fn×f1×···×fn satisfying the conditions F ∗mF = F = FH and G ∗n G = G = GH ,
then

∥H − F ∗m H ∗n G∥ = min
Z∈Cd1×···×dm×f1×···×fn

∥ H − F ∗m Z ∗n G ∥,

if and only if F ∗m (H−Z) ∗n G = O.

Then we obtain the following result.

Theorem 3.7. Let A0 ∈ C[m,n] be a given tensor, and assume that the solution set Φ of
the tensor inverse eigenvalue problem (1.2) is nonempty, then there exists unique tensor Â
such that

∥Â − A0∥ = min
A∈Φ

∥A −A0∥, (3.8)

namely,
Â = B ∗1 X † +A0 ∗m−1 (Im−1 −X ∗1 X †). (3.9)

Proof. According to the assumption that the tensor inverse eigenvalue problem (1.2) is
solvable, it follows from Theorem 3.3 that the solution set Φ can be explicitly represented
as

Φ = {A | A = B ∗1 X † +W ∗m−1 (Im−1 −X ∗1 X †) for any W ∈ C[m,n]}.

It is not difficult to verify that Φ is a closed and convex set, and thus the solution to the
problem (3.8) exists uniquely. On the other hand,

∥A −A0∥2 = ∥A0 −A∥2 =∥A0 − B ∗1 X † −W ∗m−1 (Im−1 −X ∗1 X †)∥2. (3.10)

By Definition 2.3 and simple algebra, we know that the tensor Im−1 −X ∗1 X † satisfies the
conditions required in Lemma 3.6, namely,

(Im−1 −X ∗1 X †) ∗m−1 (Im−1 −X ∗1 X †) = Im−1 −X ∗1 X † = (Im−1 −X ∗1 X †)H .

Together with (3.10), it follows that

min
W∈C[m,n]

∥A0 − B ∗1 X † −W ∗m−1 (Im−1 −X ∗1 X †)∥

= ∥A0 − B ∗1 X † − (A0 − B ∗1 X †) ∗m−1 (Im−1 −X ∗1 X †)∥
= ∥A0 − B ∗1 X † −A0 ∗m−1 (Im−1 −X ∗1 X †)∥,

if and only if (A0 − B ∗1 X † −W) ∗m−1 (Im−1 −X ∗1 X †) = O. In this case,

Â = B ∗1 X † + (A0 − B ∗1 X †) ∗m−1 (Im−1 −X ∗1 X †)

= B ∗1 X † +A0 ∗m−1 (Im−1 −X ∗1 X †).

The proof is completed. □

4 Algorithms

In previous section, we establish the solvability conditions of the inverse eigenvalue problem
for a general tensor, and derive its general solution under certain hypotheses. Besides, we also
study the tensor nearness problem corresponding to the tensor inverse eigenvalue problem,
and represent its unique solution by using the Moore-Penrose inverses of the known tensors.
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However, the problems related to tensors are often large-scale, which means that the direct
methods developed in previous section may be untractable to deal with those problems in
practice. Next, we establish iterative methods to solve the aforementioned problems.

Just as shown in Subsection 3.1, the tensor inverse eigenvalue problem (1.1) is equivalent
to solving the tensor equation (3.2). Motivated by the gradient-type methods given in [30],
we can design a similar approach for this problem, i.e., Algorithm 4.1.

Algorithm 4.1

Step 1: Input λl ∈ C, xl ∈ Cn, l = 1, 2, . . . , L, and initial iteration tensor A(0) ∈ R[m,n].
Step 2: Formulate the tensors X and B by (3.2) and (3.3), respectively.
Step 3: Compute R(0) = B −A(0) ∗m−1 X , and P(0) = R(0) ∗1 XH .
Step 4: For k = 1, 2, . . ., compute

A(k) = A(k−1) + αk−1 P(k−1) with αk−1 := ∥R(k−1)∥2

∥P(k−1)∥2 .

Step 5: Compute R(k) = B −A(k) ∗m−1 X with βk := ∥R(k)∥2

∥R(k−1)∥2 , and then calculate
P(k) = R(k) ∗1 XH + βk P(k−1).

If R(k) = O, or R(k) ̸= O, P(k−1) = O, stop; Otherwise, goto Step 4.
For any initial tensor A(0), as shown in [30], we can prove that Algorithm 4.1 converges

to a solution of (3.2) within finite iteration steps in the absence of roundoff errors, and
particularly, the solvability of the tensor inverse eigenvalue problem (1.1) can be determined
automatically. Those results are concluded in the following two theorems, and the proofs of
which are omitted.

Theorem 4.1. Let (λl,xl) ∈ C× Cn\{0}, l = 1, 2, . . . , L, be given eigenpairs, and suppose
that they satisfy the condition (3.5), then for any initial tensor A(0), the solution to the tensor
inverse eigenvalue problem (1.1) can be obtained by Algorithm 4.1 within finite iteration
steps.

On the other hand, the tensor inverse eigenvalue problem (1.1) is not solvable, if and
only if there exists a positive integer k̂ such that R(k̂) ̸= O and P(k̂) = O.

The following theorem claims that the least norm solution to the tensor inverse eigenvalue
problem (1.1) can be derived by choosing special initial iteration tensors.

Theorem 4.2. If the tensor inverse eigenvalue problem (1.1) is solvable, and let the initial
tensor A(0) = Z ∗1 X T with arbitrary Z ∈ Rn×L, then the solution generated by Algorithm
4.1 is the unique least norm solution.

It should be mentioned that the proposed algorithm in this paper can also be used to
solve the tensor nearness problem (1.2). In fact, for the given tensor A0, since the solutions
of the tensor nearness problem (1.2) is equivalent to finding the least norm solution (denoted
by H̃) of the following tensor equation

H ∗m−1 X = B̃, (4.1)

where H = A−A0 and B̃ = B−A0∗m−1X . Then, from Theorem 4.2 it follows that the least
norm solution H̃ can be derived by applying Algorithm 4.1 to (4.1) with the initial tensor
A(0) = W ∗1 X T for some W ∈ Rn×L. In this case, the optimal approximation solution to
the problem (1.2) can be represented by Â = H̃+A0. For simplicity, we always let W = O,
i.e., A(0) = O be the initial iteration tensor in practice.
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5 Numerical Experiments

In this section, we shall demonstrate the feasibility of the theoretical analysis, as well as the
proposed algorithm, upon the tensor inverse eigenvalue problem and the associated optimal
approximation problem. All codes were implemented in MATLAB (version R2016a), and run
by using the tensor toolbox [31] on a personal computer with Inter(R) Core(TM) i5-4200M
and 4.00G memory.

Example 5.1. Let A = (ai1i2i3i4) ∈ R[4,3] be the symmetric tensor presented in Example 1
of [32]. The tensor A has 11 real H-eigenpairs (see Table 1) [33].

Table 1: H-eigenvalue λ and its eigenvector x of the tensor A in Example 5.1

λ x
2.3129 [ 0.7875 0.6483 -0.8138 ]
1.9316 [ 0.8749 -0.6536 0.6936 ]
0.9780 [ 0.1474 -0.9540 0.6432 ]
0.8944 [ 0.5223 0.8048 0.8434 ]
0.7228 [ 0.8526 0.4939 0.8012 ]
0.4108 [ 0.2035 -0.5145 -0.9816 ]
0.2528 [ 1.0000 0.1020 -0.0868 ]
0.2499 [ 0.4178 0.9917 0.2184 ]
-0.0887 [ 0.9158 0.7376 0.1559 ]
-0.6665 [ 0.2291 -0.2579 0.9982 ]
-2.6841 [ 0.7793 -0.8675 -0.5044 ]

We first address the inverse H-eigenvalue problem for the given 11 real eigenpairs in
Table 1. It is easy to very verify that the unfolding rank [29] of the tensor X defined in (3.3)
equals to 10, and that the solvability conditions required in Theorem 3.3 are satisfied. Using
the given eigenvectors formulates the known tensor X in tensor equation (3.2). Particularly,
depending on the Moore-Penrose inverse theory of tensors [28], we can obtain the Moore-
Penrose inverse X † of the tensor X (see, Table 2). Moreover, by Theorem 3.7, we obtain the
least norm solution to the inverse eigenvalue problem corresponding to the tensor A (see,
Table 3). Obviously, the obtained least norm solution A is symmetric, whose entries are the
same as those given in Example 1 of [32].

Next, we consider the tensor nearness problem associated the tensor inverse eigenvalue
problem in Example 5.1. Assume that the tensor A0 ∈ R[4,3] is as follows. By Theorem 3.3,
we obtain the optimal approximation solution Â (see, Table 5). At this time, ∥Â − A0∥ =
773.2102.

Additionally, in order to illustrate the efficiency of the proposed algorithm, i.e., Algo-
rithm 4.1, take the given eigenpairs in Example 5.1 as an example. The iterations will be
terminated if the norm of the residual, i.e., RES= ∥B − A(k) ∗m−1 X∥ < ε = 1.0e − 5, or
the number of iteration steps exceeds the maximal positive integer number kmax = 1000.
Choosing zero tensor as the initial iteration value, after 11 iterations, we obtain the same
solution as in Table 3 with the residual RES=5.2022e−05. Furthermore, for the given tensor
A0 in Table 4, letting zero tensor be the initial iteration value, we can also obtain the unique
optimal approximation solution with the residual RES=5.1995e−05 after 11 iteration steps.
In Figure 1, we plot the curve of the residual versus the iteration steps.



THE INVERSE EIGENVALUE PROBLEMS OF TENSORS 407

1 2 3 4 5 6 7 8 9 10 11

Iteration k

0

50

100

150

200

250

300

350

400

R
E

S

Figure 1: Convergence of Algorithm 4.1 for the tensor nearness problem in Example 5.1.

In the following example, we demonstrate the effectiveness of Algorithm 4.1 presented
in this paper when it is used to solve the tensor nearness problem (1.2), in which the given
eigenpairs are chosen randomly.

Example 5.2. For given positive integer numbers m, n and L, Let λ = randn(1, L) be
given eigenvalues and each column of the matrix X = randn(n,L) represents the corre-
sponding eigenvector, and assume A0 = tensor(1 : nm, v) with v = repmat(n, 1,m) is the
given tensors, where the function tensor reshapes numbers 1 : nm as an mth-order and
n-dimensional tensor.

Under the same initial iteration conditions and accuracy requirements, we respectively
ran Algorithm 4.1 for different choices of the order m and the dimension n, and display the
convergence behavior in Figure 2, those curves reveal that our algorithm is efficient.

6 Conclusions

In this paper, we addressed the tensor inverse eigenvalue problem (1.1) and the associated
tensor nearness problem (1.2), obtained their solvability conditions and general solutions
by using the Moore-Penrose inverses of the known tensors. Besides, we also proposed a
conjugate gradient type algorithm for the underling problems in this paper. The performed
numerical experiments reflect that the obtained theoretical results and the corresponding
iterative algorithm are feasible and efficient. We should mention that there have been
several kinds of eigenvalues for tensors due to different applications in practice [3], so one
can also consider the inverse problems for those tensor eigenvalues. Moreover, the size of the
testing problems in Section 5 is small, which is mainly limited to our experimental platform.
Alternatively, how to design some other more efficient iterative methods to solve the inverse
eigenvalue problems of tensors with or without special structures is necessary.

Acknowledgements
The authors are very thankful to the reviewers for their helpful comments, which greatly
improve the quality of this paper. This work was supported by the National Natural Science
Foundation of China (No. 11961057), the Science and Technology Project of Gansu Province
(No. 21JR1RE287), the Fuxi Scientific Research Innovation Team of Tianshui Normal Uni-
versity (No. FXD2020-03), and the Science Foundation (Nos. CXT2019-36, CXJ2020-11)



408 M. LIANG, L. DAI AND R. ZHAO

as well as the Education and Teaching Reform Project of Tianshui Normal University (Nos.
JY202004, JY203008). The third author was supported by the National Natural Science
Foundation of China (No. 12071196).

References

[1] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40 (2005) 1302–
1324.

[2] L. Lim, Singular values and eigenvalues of tensors: A variational approach. In: Pro-
ceedings of the 1st IEEE International Workshop on Computational Advances of multi-
sensor Adaptive Processing (CAMSAP), December 13-15, (2005) 129–132.

[3] L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM,
Philadelphia, (2017).

[4] M. Chu, Inverse eigenvalue problems, SIAM Rev. 40 (1998) 1–39.

[5] D. Boley and G. Golub, A survey of matrix inverse eigenvalue problems, Inverse Prob-
lem, 3(4) (1987) 295–622.

[6] J. Respondek, Controllability of dynamical systems with constraints, Sys. Control Lett.
54(4) (2005) 293–14.

[7] K. Joseph, Inverse eigenvalue problem in structural design, AIAA J. 30(12) (1992)
2890–2896.

[8] C. Smith and E. Hernandez, Non-negative constrained inverse eigenvalue problems-
application to damage identification, Mech. Sys. Sig. Process. 129 (2019) 629–644.

[9] H. Rezgui and A. Choutri, An inverse eigenvalue problem. Application: graded-index
optical fibers, Opt. Quant. Electron. 49 (2017) 321, pp. 34.

[10] N. Johnston and E. Patterson, The inverse eigenvalue problem for entanglement wit-
nesses, Linear Algebra Appl. 550 (2018) 1–27.

[11] R. Loewy and D. London, A note on an inverse problem for nonnegative matrices,
Linear Multilinear Algebra, 6 (1978) 83–90.

[12] W. Trench, Inverse eigenproblems and associated approximation problems for matrices
with generalized symmetriy or skew symmetry, Linear Algebra Appl. 380 (2004) 199–
211.

[13] W. Xu, N. Bebiano and G. Chen, An inverse eigenvalue problem for pseudo-Jacobi
matrices, Appl. Math. Comput. 346 (2019) 423–435.

[14] Z. Sun, Generalized inverse eigenvalue problems for augmented periodic Jacobi matrices,
Comput. Appl. Math. 38 (2019) 104.

[15] E. Zayed, An inverse eigenvalue problem for an arbitrary multiply connected bounded
domain in R3 with impedance boundary conditions, SIAM J. Appl. Math. 52(3) (1993)
725–729.

[16] C. Li and S. Zhang, Stationary probability vectors of higher-order Markov chains, Linear
Algebra Appl. 473 (2015) 114–125.



THE INVERSE EIGENVALUE PROBLEMS OF TENSORS 409

[17] K. Ye and S.-L. Hu, Inverse eigenvalue problem for tensors, Commun. Math. Sci. 15(6)
(2017) 1627–1649.

[18] L. Sun, B. Zheng, C. Bu and Y. Wei, Moore-Penrose inverse of tensors via Einstein
product, Linear Multilinear Algebra, 64(4) (2016) 686–698.

[19] M. Baruch, Optimization procedure to correct stiffness and flexibility matrices using
vibration tests, AIAA J. 16 (1978) 1208–1210.

[20] M. Friswell and J. Mottershead, Finite Element Model Updating in Structural Dynam-
ics, Kluwer Academic Publishers, Dordrecht, Boston, London, (1995).

[21] N. Higham, Computing a nearest symmetric positive semidefinite matrix, Linear Alge-
bra Appl. 103 (1988) 103–118.

[22] A. Liao, Z. Bai and Y. Lei, Best approximate solution of matrix equation AXB +
CY D = E, SIAM J. Matrix Anal. Appl. 27(3) (2005) 675–688.

[23] Y. Yuan and H. Dai, The nearness problems for symmetric matrix with a submatrix
constraint, J. Comput. Appl. Math. 213 (2008) 224–231.

[24] G. Huang, S. Noschese and L. Reichelc, Regularization matrices determined by matrix
nearness problems, Linear Algebra Appl. 502 (2016) 41–57.

[25] M. Brazell, N. Li, C. Navasca and C. Tamon, Solving multilinear systems via tensor
inversion, SIAM J. Matrix Anal. Appl. 34(2) (2013) 542–570.

[26] A. Einstein, The foundation of the general theory of relativity, in the collected papers of
Albert Einstein 6, A.J. Kox, M.J. Klein, and R. Schulmann, eds., Princeton University
Press, Princeton, (2007) 146–200.

[27] T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009)
455–500.

[28] M. Liang and B. Zheng, Further results on Moore-Penrose inverses of tensors with
application to tensor nearness problems, Comput. Math. Appl. 77(5) (2019) 1282–1293.

[29] M. Liang, B. Zheng and R. Zhao, Tensor inversion and its application to tensor equa-
tions with Einstein product, Linear Multilinear Algebra, 67(4) (2019) 843–870.

[30] M. Liang and B. Zheng, Gradient-based iterative algorithms for solving Sylvester tensor
equations and the associated tensor nearness problems, arXiv, 2484785 [math.NA],
2018.

[31] B. Bader, T. Kolda, and others, MATLAB Tensor Toolbox Version 2.6, URL:
http://www.sandia.gov/∼tgkolda/TensorToolbox/index-2.6.html, (2015).

[32] E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersym-
metric tensors, SIAM J. Matrix Anal. Appl. 23 (2002) 863–884.

[33] Y. Lu and J. Pan, Shifted power method for computing tensor H-eigenpairs, Numer.
Linear Algebra Appl. 23 (2016) 410–426.



410 M. LIANG, L. DAI AND R. ZHAO

Manuscript received 2 March 2021
revised 10 June 2021

accepted for publication 11 June 2021

Maolin Liang
School of Mathematics and Statistics
Tianshui Normal University
Tianshui, 741001, People’s Republic of China
E-mail address: liangml2005@163.com

Lifang Dai
School of Mathematics and Statistics
Tianshui Normal University
Tianshui, 741001, People’s Republic of China
E-mail address: dailf2005@163.com

Ruijuan Zhao
School of Information Engineering
Lanzhou Finance and Economics University
Lanzhou, 730020, People’s Republic of China
E-mail address: zhaobin7755382@163.com



THE INVERSE EIGENVALUE PROBLEMS OF TENSORS 411

Table 2: The Moore-Penrose inverse of the tensor X in Example 5.1.

X †(:, :, 1, 1) X †(:, :, 2, 1) X †(:, :, 3, 1)

-0.0741 0.0184 0.9840 -0.0676 -0.1673 0.1211 -0.0968 -0.1141 -0.1507
0.1011 0.0049 -0.0214 0.0111 0.1252 0.0173 0.2872 -0.1410 -0.1576

-0.0872 -0.0060 -0.0309 0.0781 -0.1253 -0.1444 0.0795 0.2092 0.2200
X †(:, :, 1, 2) X †(:, :, 2, 2) X †(:, :, 3, 2)

-0.0522 0.1951 0.0781 -0.1253 -0.1444 0.0795 0.1013 -0.0557 0.0810
-0.2880 -0.1839 -0.1673 0.1211 -0.0968 -0.1141 0.0461 -0.1938 0.3291
-0.1183 -0.0747 0.1252 0.0173 0.2872 0.0465 -0.0669 -0.4050 -0.1106

X †(:, :, 1, 3) X †(:, :, 2, 3) X †(:, :, 3, 3)

0.2170 -0.0053 0.0952 -0.0465 -0.1410 -0.1576 -0.2880 -0.1839 -0.1166
-0.0941 0.0867 0.0746 0.0083 0.2092 0.2200 -0.1183 -0.0747 -0.0053
-0.1166 0.0565 0.0179 0.0753 -0.1507 -0.0522 0.1951 -0.0941 0.0867

X †(:, :, 1, 4) X †(:, :, 2, 4) X †(:, :, 3, 4)

0.0565 0.0179 0.0753 0.0311 0.3173 -0.2940 0.0781 -0.1253 -0.1444
0.0952 -0.0465 0.1845 0.1654 0.0404 0.2146 -0.1673 0.1211 -0.0968
0.0746 0.0083 0.0004 0.1426 0.0070 -0.0481 0.1252 0.0173 0.2872

X †(:, :, 1, 5) X †(:, :, 2, 5) X †(:, :, 3, 5)

0.0795 0.1013 -0.0557 0.0810 0.2170 -0.0053 0.0952 -0.0465 0.0465
-0.1141 0.0461 -0.1938 0.3291 -0.0941 0.0867 0.0746 0.0083 0.1013
0.0465 -0.0669 -0.4050 -0.1106 -0.1166 0.0565 0.0179 0.0753 0.0461

X †(:, :, 1, 6) X †(:, :, 2, 6) X †(:, :, 3, 6)

-0.0669 -0.4050 -0.1106 0.0591 -0.2250 0.6412 -0.2067 0.2911 0.0894
-0.0557 0.0810 0.2170 -0.4048 0.2827 -0.2512 -0.0284 0.2649 0.2297
-0.1938 0.3291 -0.0690 0.1815 0.3471 0.2946 0.0066 -0.1279 0.1391

X †(:, :, 1, 7) X †(:, :, 2, 7) X †(:, :, 3, 7)

-0.1691 -0.0941 0.0867 0.0746 0.0083 0.0066 -0.1279 0.1391 -0.1251
-0.1209 -0.1166 0.0565 0.0179 0.0753 0.2911 0.0894 -0.1691 0.0895
-0.1251 -0.0053 0.0952 -0.0465 -0.0284 0.2649 0.2297 -0.1209 0.0233

X †(:, :, 1, 8) X †(:, :, 2, 8) X †(:, :, 3, 8)

-0.0770 -0.2835 -0.0311 -0.1410 -0.1576 -0.2880 -0.1839 -0.1166 0.0565
0.1016 -0.0845 -0.2887 0.2092 0.2200 -0.1183 -0.0747 -0.0053 0.0952
0.0509 -0.1507 0.0427 -0.1507 -0.0522 0.1951 -0.0941 0.0867 0.0746

X †(:, :, 1, 9) X †(:, :, 2, 9) X †(:, :, 3, 9)

0.0179 0.0753 0.0311 0.3173 -0.2940 -0.0941 0.0867 0.0746 0.0083
-0.0465 0.1845 0.1654 0.0404 0.2146 -0.1166 0.0565 0.0179 0.0753
0.0083 0.0004 0.1426 0.0070 -0.0481 -0.0053 0.0952 -0.0465 -0.0284

X †(:, :, 1, 10) X †(:, :, 2, 10) X †(:, :, 3, 10)

0.0066 -0.1279 0.1391 -0.1251 -0.0770 -0.2835 -0.0311 0.1845 0.1654
0.2911 0.0894 -0.1691 0.0895 0.1016 -0.0845 -0.2887 0.0004 0.1426
0.2649 0.2297 -0.1209 0.0233 0.0509 -0.1507 0.0427 0.0311 0.3173

X †(:, :, 1, 11) X †(:, :, 2, 11) X †(:, :, 3, 11)

0.0404 0.2146 0.0233 0.0509 -0.1507 0.0427 -0.0869 -0.4333 0.1093
0.0070 -0.0481 -0.0770 -0.2835 -0.0311 -0.0522 -0.1015 -0.0554 0.6845
0.2940 0.0895 0.1016 -0.0845 -0.2887 -0.0891 0.0206 -0.0486 0.1215
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Table 3: The least norm solution to the inverse eigenvalue problem in Example 5.1.

A(:, :, 1, 1) A(:, :, 2, 1) A(:, :, 3, 1)

0.2883 -0.0031 0.1973 -0.0031 -0.2485 -0.2939 0.1973 -0.2939 0.3847
-0.0031 -0.2485 -0.2939 -0.2485 0.2971 0.1862 -0.2939 0.1862 0.0919
0.1973 -0.2939 0.3847 -0.2939 0.1862 0.0919 0.3847 0.0919 -0.3619

A(:, :, 1, 2) A(:, :, 2, 2) A(:, :, 3, 2)

-0.0031 -0.2485 -0.2939 -0.2485 0.2973 0.1862 -0.2939 0.1862 0.0919
-0.2485 0.2971 0.1862 0.2971 0.1242 -0.3420 0.1862 -0.3420 0.2127
-0.2939 0.1862 0.0919 0.1862 -0.3420 0.2127 0.0919 0.2127 0.2727

A(:, :, 1, 3) A(:, :, 2, 3) A(:, :, 3, 3)

0.1973 -0.2939 0.3847 -0.2939 0.1862 0.0919 0.3847 0.0919 -0.3619
-0.2939 0.1862 0.0919 0.1862 -0.3420 0.2127 0.0919 0.2127 0.2726
0.3847 0.0919 -0.3619 0.0919 0.2127 0.2727 -0.3619 0.2727 -0.3055

Table 4: The least norm solution to the inverse eigenvalue problem in Example 5.1.

A0(:, :, 1, 1) A0(:, :, 2, 1) A0(:, :, 3, 1) A0(:, :, 1, 2) A0(:, :, 2, 2)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44
3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

A0(:, :, 3, 2) A0(:, :, 1, 3) A0(:, :, 2, 3) A0(:, :, 3, 3)

46 49 52 55 58 61 64 67 70 73 76 79
47 50 53 56 59 62 65 68 71 74 77 80
48 51 54 57 60 63 66 69 72 75 78 81

Table 5: The approximate tensor Â of the tensor nearness problem in Example 5.1.

Â(:, :, 1, 1) Â(:, :, 2, 1) Â(:, :, 3, 1)

0.2883 -14.0031 -26.8027 -14.0031 -27.2485 -40.2939 -26.8027 -40.2939 -52.6153
-0.0031 -15.2485 -28.2939 -15.2485 -27.7029 -40.8138 -28.2939 -40.8138 -53.9081
0.1973 -16.2939 -28.6153 -16.2939 -28.8138 -41.9081 -28.6153 -41.9081 -55.3619

Â(:, :, 1, 2) Â(:, :, 2, 2) Â(:, :, 3, 2)

-14.0031 -27.2485 -40.2939 -27.2485 0.2973 -52.8138 -40.2939 -52.8138 -65.9081
-15.2485 -27.7029 -40.8138 -27.7029 0.1242 -54.3420 -40.8138 -54.3420 -66.7873
-16.2939 -28.8138 -41.9081 -28.8138 -0.3420 -54.7873 -41.9081 -54.7873 -67.7273

Â(:, :, 1, 3) Â(:, :, 2, 3) Â(:, :, 3, 3)

-26.8027 -40.2939 -52.6153 -40.2939 -52.8138 -65.9081 -52.6153 -65.9081 -0.3619
-28.2939 -40.8138 -53.9081 -40.8138 -54.3420 -66.7873 -53.9081 -66.7873 0.2726
-28.6153 -41.9081 -55.3619 -41.9081 -54.7873 -67.7273 -55.3619 -67.7273 -0.3055
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Figure 2: Convergence of Algorithm 4.1 for the tensor nearness problem in Example 5.2.


