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Abstract: In this paper, we define a system of cyclic stationary probability distribution equations for
a second order Markov chain process in case that all states are independent each other, which improves
the system of equations in [W. Li, and M.K. Ng, On the limiting probability distribution of a transition
probability tensor, Linear and Multilinear Algebra. 62(2014): 362-385]. There are two applications for the
new model. First, the proposed model can be seen as a rank-3 approximation of a second order Markov
chain with non-independent states. Second, unlike the previous tensor model, if the fixed point algorithm for
solving the new model is convergent, the second order Markov chain process in the independent state cyclic-
converges. Furthermore, we investigate properties of the solutions for the proposed stationary equation.
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Introduction

Higher-order Markov chains have crucial applications in data analysis and optimization
such as data clustering, community detection, and network classification (e.g.,see [1, 11,
16]). Recently, theoretical analysis and applications of tensor model for Markov chains have
attracted many scholars’ attention [9, 11, 16, 19, 28, 29, 30]. Let a space have n states
{1,2,...,n} and S; denote the state at time ¢. Assume that the transition probability of the
next state just depends on the last two states. Consider a transition probability of the state
being i at time ¢t 4+ 1 from the last two states j and k given by

Pr{St+1 = let = j, St,1 = k} = pijk-
Let (n) ={1,2,...,n}. For all j,k € (n), it is clear that

pijk = 0, Zpijk =1 (1.1)

i=1
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We say P = (p;ji) to be a stochastic tensor or a transition probability tensor(In [8], P
satisfying (1.1) was also called as a three-dimensional line-stochastic matriz). If t — oo,
the process runs to infinity, and we can get the system of stationary distribution equations
as follows:

n n
Tij = Zpijkxjka 5 > 0, Z x5 =1, (1.2)

k=1 i,j=1
where the unknown solution X = (z;;) is the stationary distribution matriz which is denoted

the stationary probability related to the pairs of states (i,j). Let x(*) = (J:Z(-t)) denote the
probability distribution of all states at time ¢. Assume that all states are independent each
other, we can get a second order Markov chain process:

x® = px(t-Dx(t=2), (1.3)
If lim x(¥) = x, by (1.2), we have
t—o0
Px? =x,2; > O,in =1 (1.4)
i=1

n
with x;; = x;2;, where x = (x;) is called a stochastic vector, i.e., 2; > 0, S a; = 1. For
i=1
other cases, the system of equations (1.4) can be seen as a rank-1 approximation model
of the system of equations (1.2) (e.g., see [1, 11]). This approximation can overcome the
difficulty of storage for computing the stationary probability X in (1.2) with large datasets,
i.e., the requirement O(n?) storage of a matrix is replaced by O(n) for a vector.

It’s worth noting that the approximation model (1.4) was first presented by Li and Ng
in [19] and can be employed to establish multilinear PageRank problem [11]. Furthermore,
many applications for the system of equations (1.4) in the spacey random work such as
population genetic, transportation, ranking and clustering and so on (see [1, 11]) were given.
Theory and numerical analysis for the system of equations (1.4) were presented such as
uniqueness of solutions (e.g., see [4, 5, 10, 11, 14, 19, 20, 22]), algorithms (e.g., see [6, 11,
12, 18, 23, 24]) and error and perturbation analysis (e.g., see [13, 21, 22]).

Let S™ denote the set of all stochastic vectors. In this paper, we main concentrate on
a system of cyclic stationary probability distribution equations of the second order Markov
chain as follows:

X = Pyz
y=Pzx , x,y,z€S". (1.5)
z = Pxy

We call the solution w = (x7,y7,z7)T € S® x S® x S" of the system of equations (1.5) as a

cyclic stationary probability distribution triple. If furthermore there are at least two different
vectors in x, y and z, we call w a non-degenerate cyclic stationary probability distribution
triple. If x = y = z, then we call w a degenerate cyclic stationary probability distribution
triple. In this case the system of equations (1.5) reduces to (1.4).

In this paper, the main contributions are given as follows:

(1) We establish the system of cyclic stationary probability distribution equations (1.5)
and give the theoretical analysis.
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(2) Two applications of the system of equations (1.5) are considered. First, the proposed
model can be seen as an approximation of the stationary distribution equation (1.2).
Second, the new model can deal with the problem encountered by the existing model
(1.4): the convergence of the fixed-point algorithm (i.e., xx = Px;_;) to solve the
system of equations (1.4) does not imply the convergence of the second order Markov
chain process (1.3) itself. For the proposed model, if the fixed-point algorithm to solve
the system of equations (1.5) is convergent, the second order Markov chain process
(1.3) is cyclic-convergent.

The rest of this paper is organized as follows. In Section 2, we introduce some defini-
tions and notations. Furthermore, in Section 3, some applications for the cyclic stationary
probability distribution are given. In Section 4, we investigate the properties for the system
of equations (1.5). The final section is a concluding remark.

Preliminaries

Let R be the real field. An order m dimension n tensor A with n™ entries is defined as
follows:
A = (ail...im), iy iy, S R, ’ij S <7’L>, ] c <m>

Conventionally, we use curlicue letters such as A to denote tensors. Besides, a matrix is
denoted by capital roman font in italics such as A, and lowercase italics with black Roman
letter such as x is used to denote a vector. If every entry of a vector (matrix or tensor) is
nonnegative (positive), we call the vector (matrix or tensor) being nonnegative (positive).
Let R™ and RI"™™ denote the sets of all dimension-n real vectors and dimension-n order-m
real tensors respectively. We denote the set of all stochastic order-3 dimension-n stochastic
tensors by S[" respectively. The 1-norm and co-norm of a matrix or a vector are denoted
by || - [+ and [[ - [|o.

Next we give some definitions and lemmas which will be used in the sequel. We first
recall some products between a tensor and vectors.

Definition 2.1 ([25]). Let A € R x(M) x() ¢ R™ and :cgl) denote the i-th entry of x(¥),
1 =1,2. We define Ax(Mx(? to be an n dimensional vector whose the i-th entry is given by

A, = T gl
J,ke(n)
Remark 2.2. If x = x() = x| then Ax(Mx® reduces to Ax? which was defined in [32].
In [25], Lim gave the definition of an irreducible tensor.

Definition 2.3 ([25]). An A € RI™" is called reducible if there exists a nonempty proper
index subset I C {1,2,...,n} such that

Ajrigemipy = 0, Vi1 € 1, Vig, vyl ¢ I
If A is not reducible, we call A irreducible.
Li and Ng [19] proposed (1.4) and gave the related existence conditions of the solutions.

Lemma 2.4 ([19]). If P is a stochastic tensor, the system of equations (1.4) has a solution.
In particular, P is an irreducible stochastic tensor, all solutions of the system of equations
(1.4) are positive.
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Remark 2.5. It is known that the positive solution is unique for the first Markov chain
x = Px if P is an irreducible transition probability matrix [27]. However, the system of
equations (1.4) may have multiple positive solutions even P is a positive tensor. For details,
please refer to the reference [33].

Lemma 2.6 ([23]). Let x,y,2z € S" and J?), TG € RBM with

(T®),. =JP e o
4 2D k € <TL> .
{ (j(S))zjk - J(B)
Then
j(2)sz =0, ](3)ZAX =0,

where AX =X —y.

Let 7@ and J®) be defined by Lemma 2.6. In [22], Li et al. defined the following

formula.

te(n) \ iz€(n) “

(T, ) = max (rnax D oy = JiZ) |+ max > piiae = i) |> SCRY
2E6(N i1

i€{n) \ is€(n

l/(j(Q), j(?’)) = max (max Z itz — Ji(i)| + ngzx) Z iyt — Jl(f;)|> : (2.2)
12 n =1

Let S be a proper subset of (n) and S” be its complementary set in (n), i.e., S’ = (n)\S. Let

’Yél) = min (mln mem + min Zp“213>7 (2.3)

iz€(n) leS ineS’
@ _
% = min (gggmezd + min anm) (2.4)

and (1) (2)
= min + ) .
R ( s

Furthermore, Li et al. [22] gave the following uniqueness conditions of a solution for the
system of equations (1.4).

Lemma 2.7 ([22]). If there exist T and J©®) such that one of the following conditions
holds:

(1) u(T®,T®) <1,
(2) v(T®,7¥) <1,
B)ry>1,
then the system of equations (1.4) has a unique solution.

Fasino et al. [10] defined ergodicity coefficients for order-3 tensors as follows:

Tp = max max ||Pxz|[,
€sn zezn
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TR = IAX Iax ||Pzx]|1,

T = max max ||Pxz + Pzx||1,
XES™ zeZ"
n
where Z" = {z = (z) € R, Z zi =0,]lz|l1 = 1}. Furthermore, they showed that

TL = 5 . max Epk — Dijk
2 jk1,k2€(n | I Y 2|

1
TR — = max E Pij k —
2 j1.,j2,kE(n ‘ 7

1

T = 5 ik 2€<n) Z |pljk1 Pijks + Pikyj —

and then a uniqueness condition of the solutions for the system of equations (1.4) was given.
Lemma 2.8 ([10]). If 7 < 1, the system of equations (1.4) has a unique solution.

Remark 2.9. Liet al. [22] showed that it is difficult to compare these uniqueness conditions
given in Lemmas 2.7 and 2.8. In this paper, we employ these coeflicients to investigate the
properties of the solutions for the system of equations (1.5) in Subsection 4.3.

Applications for Cyclic Stationary Probability Distributions of
Second Order Markov Chains

Low-rank approximation of X in the system of equations (1.2)

In this section, we consider a new low-rank approximation of X in the system of equations
(1.2) by a system of cyclic stationary probability distribution equations (1.5).
Let x,y,u,v,a,b € S*. We consider the following approximation of X in (1.2):

1
ng(xoy—kuov—kaob)7 (3.1)

where o denotes the vector outer product, i.e.,

1
g(ﬂfiyj +uv; + abj).

Thus, substituting (3.1) into (1.2) yields

Tij =~

Ty + wivy + aiby = pigk(aiyn + wjor + agby),
k=1

which gives

i +u; +a; = Z Pijk(Tyr + wjve + a;by).
Jrke(n)
Thus, we have
X +u+a= Pxy + Puv + Pab. (3.2)

It is not easy to compute the unknown vectors x,y,u,v,a and b by the system of equations
(3.2). Therefore, we further consider the approximation of model (3.2) by a = Puv,v =
Pab,u = Pxy with z~u~ b, y =~ a, x =~ v. Thus, we can get an approximation solution
by solving the system of equations (1.5).
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Convergence of the Markov chain process (1.3)

In the current works (e.g., [1, 2, 3, 7, 15, 19, 26]), the convergence of second order Markov
chains with all states being independent each other is defined as follows:

Definition 3.1. For every initial states x(1), x(?) € S", if the sequence {x('} generated
by (1.3) is convergent as ¢t —» oo, we call the second order Markov chain process being
convergent.

In other words, the convergence of the second order Markov chains is based on the
assumption:
lim x® = x. (3.3)
t—o0
In this assumption, it leads to two problem: (i) If the fixed-point method x, = Px3_,
([11, 19]) is convergent for any xo € S™, the second order Markov chain process (1.3) may be
divergent, which is different from first order Markov chain (see [15]). (ii) If a non-degenerate
cyclic probability distribution triple w exists in (1.5), the second order Markov chain (1.3)
itself can not converge from any starting states in S™. Actually, if we let x(!) = x and
x(?) =y, then we get a sequence {x(k)} by the second order Markov chain (1.3) with

lim x®H) = x; lim x®*2 =y, lim x®F3) = 2. (3.4)
t—o00 t—o00 t—o0
In this case, it is weird that we can not call it being convergent though the second order

Markov chain (1.3) is stable as t — oo. Therefore, we reconsider the new definition of the
convergence for the second order Markov chain process under the new hypothesis (3.4).

Definition 3.2. For every initial states x("), x(?) € §”, if the sequence {x(Y)} generated by
(1.3) satisfy (3.4), we call the second order Markov chain process being cyclic-convergent.

Remark 3.3. It is easy to check that if the second order Markov chain process (1.3) is
convergent, thus it is cyclic-convergent.

It is note that if the fixed-point method for solving the system of equations (1.5) is
convergent, the second order Markov chain process (1.3) itself is cyclic-convergent. By the
above analysis, it is necessary to study such cyclic stationary probability distributions.

Properties of A Solution for the System of Equations (1.5)

In this section, we will consider the existence of the solutions for the system of equations
(1.5) and its related properties.

Existence of solutions for the system of equations (1.5)

First, for given P € SB" we define a nonlinear mapping: S” x S x S* —» S" x S" x S”
with
Pyz
G(w) = | Pzx |, (4.1)
Pxy

where w = (xT,yT,2z7)T € S"xS"xS". Since G(w) is a continuous function and S™ xS™ x S™
is a compact set, by the Brouwer fixed-point theorem (see [17, 34]), there exists a fixed-point
w such that w = G(w). Thus, we have the following assertion.
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Theorem 4.1. For given P € SB™ | the solution of the system of equations (1.5) always
exists.

Remark 4.2. (a) It is noted that if X is a solution of the system of equations (1.4), the

system of equations (1.5) always has a solution w = (X7, %7, %")”. This implies that

a degenerate cyclic stationary probability distribution always exists.

(b) A fixed-point formula is proposed for solving the system of equations (1.5) as follows:
Wet1 = G(wk) (42)

It is clear that if the fixed-point method (4.2) is convergent, the second order Markov
chain process is cyclic-convergent.

Next we give the following example to illustrate the existence of a non-degenerate cyclic
stationary probability distribution triple for the system of equations (1.5).
1
0 )

Let e; = (1,0)T,e; = (0,1)7 and u = (%, 3;5/3)T All solutions of the system of
equations (1.5) are

O =

Example 4.3. Let P € RB2l be a stochastic tensor with P(;) = < (1) (1)

T T)T

w1 = (e?a €1,€y 3 T)T

y W2 = (ef7e2 )€1 T T)T

, W3 = (65761 , €1 T u” T)T'

, Wy = (u ', u

It is seen that w;, ws, w3 are non-degenerate cyclic stationary probability distribution
triple and wy is a degenerate cyclic stationary probability distribution triple.

It is known that if P € SB is an irreducible tensor, all solutions of the system of
equations (1.4) are positive by Lemma 2.4. However, the system of equations (1.5) has non-

positive solutions even if P € S is an irreducible tensor. Actually, for Example 4.3, since

the majorization matrix M(P) = (1) (1) > is an irreducible matrix, P is an irreducible

tensor (see Theorem 2.3 in [31]). Therefore, it is necessary to derive the conditions of P
such that all solutions of the system of equations (1.5) are positive. Then we introduce the
concept of a cyclic-irreducible tensor.

Definition 4.4. Let P € RB™. P is called as a cyclic-reducible tensor if there exist proper
subsets I, I and I3 of (n) (at least one nonempty set for Iy, I and I3) which satisfy the
following conditions:

(1) i€ly, j ¢l k¢l piye=0;
(2) i €la, 5 ¢ Iy, k ¢ Iy, piji = O;
(3) i€ls, j ¢ 1),k ¢y, pix = 0.
If P is not a cyclic-reducible tensor, then P is called as cyclic-irreducible.

Remark 4.5. If P is a reducible tensor, P must be a cyclic-reducible tensor. Thus, if P is
a cyclic-irreducible tensor, P is an irreducible tensor.

Theorem 4.6. If P € SB™ is a cyclic-irreducible tensor, all solutions of the system of
equations (1.5) are positive.
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Proof. Let x,y and z are solutions of the system of equations (1.5) and Iy = {i|z; = 0},
I, = {ily; = 0} and I, = {i|z; = 0}. Obviously, I, Iy and I, are all proper sets of (n).
Assume that the system of equations (1.5) have a solution including zero entries if P is
cyclic-irreducible, i.e., there is at least one of Iy, I, and I, is nonempty. Let dx = mip{xi},

dy = Hel]llp{yl}a 07 = H&P{ZZ} and 0 = min{dx, dy,d,}. Then for i € Ix -
iell, i€l
0=z = Z DijkYjZk = Z Pijkd>,
JeL kel JEL, ke,

which gives p;j, = 0 for j ¢ I,k ¢ L. Similarly, we have

foriely,j¢ ]I;,k ¢ ]I;c;pijk =0,
and

foriel,,j¢ H;,k ¢ ]I/yapijk =0,
which contradicts to the cyclic-irreducibility of P. O

Remark 4.7. Since P is an irreducible tensor if P is a cyclic-irreducible tensor, it is easy to
check that the positive solution of the system of equations (1.5) are not unique by Remark
2.5.

The existence of non-degenerate cyclic stationary probability distribution
triple

It is easy to check that there exists a cyclic-reducible tensor but an irreducible stochastic
tensor by Example 4.3. Thus, inspired by this, we get the existence of non-degenerate cyclic
stationary probability distribution triple for the system of equations (1.5).

Theorem 4.8. If P € SB™ is an irreducible and cyclic-reducible tensor, there exists an
non-degenerate cyclic stationary probability distribution triple for the system of equations
(1.5).

Proof. Since P is an irreducible stochastic tensor, degenerate cyclic stationary probability
distribution triples of the system of equations (1.5) are positive. Next, we prove that there
exists an nonnegative but no-positive triple for the system of equations (1.5).

Because P is a cyclic-reducible tensor, there exist I, I and I3 such that (1)-(3) hold
in Definition 4.4. Let Sy = {x € S"|a; = 0,Vi € ]Il}, Sy = {y € S"y; = 0,Vi € ]Ig}
and S, = {z € S"|z; = 0,Vi € ]Ig}. Thus, we can get a bounded closed and convex subset
W = {w = (xT,yT,z2")7|x € Sx,y € Sy,z € Sz}. By Definition 4.4, for any w € W, we

Z PijkYj2k = Z pijkyizk =0, Vi€ ly,
Jik€(n) J€S;, kes,,

§ , DijkzjTr = E pijkziTr =0, Vi€l
3.kE(n) jES, kes)
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and

Z DijkTiYk = Z DijkTiYe =0, Vi €Iy,
J,k€(n) jES, keS,

which imply G(W) C W. Due to the continuity of the function G(w), there exists a fixed-
point in the set W by Browder’s fixed-point theorem. Therefore, the desired assertion is
followed. 0O

Equivalent conditions for the systems (1.4) and (1.5)

In this section, based on the conditions given by Lemma 2.7, we obtain the following unique-
ness theorem.

Theorem 4.9. If one of the following conditions holds:
(1) w(T®,T7®) <1;
(2) (TP, TG < 1;
then the system of equations (1.5) has no non-degenerate cyclic probability distribution triple.

Proof. By Lemma 2.4, the system of equations (1.4) has a unique solution X. Next we prove
that the system of equations (1.5) has only the solution x = y = z = X. Assume that
there are two different solutions for the system of equations (1.5) wy = (x7,y7,27)T and
wy = (x5, y3,28)7. Let Ax = x1 — X, Ay = y1 — y2 and Az = z; — 2.

Assertion (1): the system of equations (1.5) has a unique degenerate cyclic probability
distribution triple.

It is easy to check that

[|wi — wal[1 = [|x1 = xa[|1 + [[y1 — y2ll1 + |21 — z2[|1 (4.3)
= |[Py1z1 — Py222|l1 + |[|[Pz1x1 — Pzaxa||1 + ||Px1y1 — Pxaya|l1,  (4.4)

Note that
|[Py12z1 — Py222|[1 < [[PAyzil|1 + ||Py24z][1, (4.5)
||PZ1X1 — PZQXQHl S ||7DAZX1H1 + ||PZ2AX||1 (46)
and
[Px1y1 — Pxay2|l1 < [[PAxy1[|1 + |[Px2Ay|]1. (4.7)

Let x4, ys,; and zs; denote i-th entry of x,, y, and z, (s = 1, 2), respectively and Ax;,
Ay; and Az; denote the i-th entry of Ax, Ay and Az, respectively. By Lemma 2.6, it is
easy to obtain

[PAyz:1]|1 + ||Py2Az||s = ||(P — TP)Ayzi||1 + (P — TP)y2Az||;

2 3
< S Y e = I NAY s+ S0 Y i — I g2 1 Azl

J,k€(n) i=1 Jyk€(n) i=1
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Similarly, we have

1PAzZxy |1 + [[Pzodxlls < DS Ipigi — I8 1A% 01k

J,k€(n) i=1
3
+ ) Z|Pwk T |22, Ay |
Jrk€(n) i=

and

[PAxy |l + [[PxeAyllh < 37 Y Ipie — I N1 A2 y1 s
j,k€(n) i=1

3
+ Z Z|pijk_J¢(j)|x2,j|Ayk|v

j,k€(n) i=1

which together with (4.3)-(4.4) give

3
o = wslli <( Y Z\pm— Dlawilye+ > Zw UBSINCH)

Jike(n) i= Jike(n) i=
(X Zm]k TN Ay e+ Y Zm I ks 51 Ay )
Jk€(n) i= Jrk€(n) i=
3
+( X Zw Dlazlen+ Y me I 25182 ).
Jke(n) J,k€(n) i=
(4.8)

Consider the first term of the right hand side of (4.8), we obtain

2 3
S pigk — TN Az lys s + S Ipije — T |22, A

J,k€(n) 1=1 J,k€(n) i=1
< max ZZ pijk — I || Ay + max ZZ pijk — I || Ay
=11i=1 k 1:=1
= (oo Z lpa = T mas Z Ipinn =I5 ) A

( max Z |piok — lk)| + max Z |pijo — )|Ax2|
( maX Z ‘pznk 1(13)| +jn;?i<> Z |p17n - ” |) |Axn‘
<tr£a>§ (maXZU? th —Jz(k)| + maXZ\pm JS’)|> Z|Aact|
(n t=1

=u(T®, TP ax])1 (4.9)
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By the analogous technique to (4.9), we get

ST N i = IR NAy e+ S0 S Ipik — I @ glAu] < p(T@, T Ay,

jike(n) i=1 jk€(n) i=1
(4.10)
and
> Z|pwk_ DlAzlee+ > Z\pwk TP lya 1 A02k] < (TP, TO)|| A
j.k€(n) i=1 j,k€(n) i=1
(4.11)

By (4.8)-(4.11), we have
l|wr — walli < (TP, T)||wy — wall1,

which contradicts to the condition (1) of this theorem. Thus, wy = wa.

Assertion (2): the system of equations (1.5) has a unique degenerate cyclic probability
distribution triple if »(J®, 73)) < 1.

Without loss of generality, we assume that s = arg||w; — walleo with 1 < s <mn, i.e.,

|lwi — waloo = [[x1 — X2[|oo = [Azs]. (4.12)
Note that
|Azs| = | Z Dsiniz (Y1,i221,i5 — y2,i222,i3)|
iQ,igE('fL)
3
= | Z (psi223 Jé(ls )Ay12 z21 i3 + Z p52223 - Jizz))yQ,IQ Azlg}
i2,i3€(n) i2,i3€(n)
3
S Z ‘psigig 313 |Ay12 }Zl 13 + Z |p92223 - ‘]s(zg) |y2,1'2 |AZ’L3’
i2,i3€(n) i2,i3€(n)
2)
< (3 Ty~ I+ Y o, — I ) mae {180, 8}
IEM N e iz€(n)

IN

V(j(2)7u7(3 )maX{HAXHom HAZHOO}
= (TP, 7)) Az,

which implies that v(7®), 7(®)) > 1. This contradicts the condition (2) of this theorem.
By (4.12), we have wy = wa.
From Assertions (1) and (2), the desired conclude is followed. O

Let S1, So and S3 be a proper subset of (n), and S/l, SIQ and S; be their complementary
set in (n), i.e., S; = (M)\S1, Sy = (n)\S2 and S5 = (n)\Ss3. Let

i N 2 > pisis)
= mln min + mln
’YSI’S2 iz€(n) \i2€S2 Piizis i2 €S, Piizis )

icS 1 24€S$;
2
’Yég)ss = mm ( min Zp”m + min anzzs)
) is€({n) \iz€Sy is€S 2
ZES i1€S3

and (1) (2)
5= min + )
v $1C(n),S2C(n),SsC (n) <’YS1,SQ 782733
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Theorem 4.10. If ¥ > 1, the system of equations (1.5) has a unique degenerate cyclic
probability distribution triple.

Proof. Since 1 < 7% < v, by Lemma 2.4, the system of equations (1.4) has a unique solution
X. Next we prove that the system of equations (1.5) has the unique solution x = y =
z = X. Assume that there are two different solutions for the system of equations (1.5)
wi = (xF,yT,20)T and wy = (x3,y7,20)T. Let Ax = X1 — X9, Ay = y; — y2 and
Az = 21 — z5.

Let V; = {i|Az; > 0}, Vo = {i|Ay; > 0} and V5 = {i|Az; > 0}. Since w; # wo,
then there is at least a nonempty set among Vi,Vy, Vs with V;,Vy, V3 C (n). Taking
Vi = < Y/V1, Vi, = (n)/Vay and V§ = (n)/V3, thus, there is at least a nonempty set among

1, V5, Vi, Note that

Z Az; = Z Z Piizis AYiz 21,i5 + Z Z PiinisY2,in D - (4.13)
i€V i2,i3€(n) 1€V i2,i3€(n) 1€V
For the first term of the right part in the inequality (4.13),

Z Z Diigig Ayigzl,ig

i2,i3€(n) 1€V

- Z ( Z Zpims+ Z Zpiizis)Ayi2z1,i3

iz€(n) 12€V2i€V, i2€Vy 1€Y1
S IIéa:X ( § E p71213 + E E p11213)Ay12

s 12€Va 1€V i€V, 1€V
S ma’X (né%;( E pl’LQ’Lg ma‘x E piigig) E Ay’LQ

K3

ta€(n) L i2€V2 o 26V oy, i2€Vy

:{1 — mln (mln E Diinis + mln E p“ﬂsﬂ E Ay;,. (4.14)
ig€(n) \i2€Va .
ZEV i2€Va

With the same technique, we have

Z ZpiigigyiQAzl,i3 = [1 - mln (Zgrgg/ls anm + mm anmﬂ Z Aziy.

ig€(n

i2,i3€(n) 1€V, ZGV L‘ i€V, i3€V3
(4.15)
Combining (4.15) with (4.13) together gives
Z Ax; _{1 — mln ( min Z Diigis + mln Z p“ws)} Z Ay,
1€V ta€(n i2€V2 zeV 2 1€V i2€Va
[1 - nenn ( Hg{fl szmd —|— mln szmd)} Z Az,. (4.16)
12 13 3

ZEV 3 1€V i3€V3
Similarly, we get

Z Ay; < {1 — min (iﬁg‘g Z Diinis + mln Z p21213):| Z Az,

i€Vy ta€(n) 3 1€Vy i2€V3

+ [1 — min (igréiglll Z Diinis —i— min Z pmm)} Z Az, (4.17)

12€(Nn
2€(n) ‘v, 3€V 17EV Py=r
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and

Z Ax; _{1 - mm (12%1\1}1 Zpum + Hlln Zpum” Z Aw;,

i3€(n

1€Vs lEV 1 1€Vs i2€Vy
[1 - mln ( min g Piiyis + min g pmm)} E Ay, (4.18)
i2€(n) \13€V2 i3€V, )
ZEV 1€V3 i3€V2

which together with (4.16)-(4.17) gives

ZASL‘Z-FZAZ‘Z—FZAIZ_ ZAml—i—ZAch—i—ZAmz

i€Vy i€Vy i€V3 i€Vy 1€V 1€V3

This is a contradiction with 7 > 1.

Now based on the technique in [10], it follows the following statements.

Theorem 4.11. If 7 < 1, the system of equations (1.5) has a unique degenerate cyclic
probability distribution triple, where T = Tr, + TR.

Proof. Since 7 <7 < 1, by Lemma 2.8, the system of equations (1.4) has a unique solution
X. Next we prove that the system of equations (1.5) has the unique solution x =y =z =X.
By the definition of 7p and 7, it is seen that for any x,y € S™, we have

[Px(x = y)ll < 7ellx =yl (4.19)
and

[P(x —y)x|l1 < 7rllx—yl, (4.20)
combining with (4.3)-(4.7), it can be shown that

lwr — w2l < 7llws — w21,
which is a contradiction with the known condition. O

By a similar technique with Theorem 4.9 and Theorem 4.10, we give the following propo-
sition.

Proposition 4.12. If u(J7®,7®) < 1, for any wi,ws € S™ x S* x S", we have
1G(w1) = G(w2) [l < (TP, T)|wr = wall1,

IG(T1) = G(T2)|l1 < (2=F)||T1 — T2]|1,
and
IG(T1) = G(T2)||oc < (TP, TD)||T1 — 72|

Proof. The proof is similar to those in Theorems 4.9 and 4.10. So we omit it. O

Remark 4.13. If one of the conditions (1)-(2) in Theorem 4.9 or one in Theorem 4.10(or
one in Theorem 4.11) holds, it is easy to give an error analysis for every iterative step of the
fixed-point method (4.2) by Proposition 4.12, i.e., for any initial vector wy,

[|wit1 — will1 < Ekle — woll1,

where € = min {u(j(z),J(g)), 2 — 75}-
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Let w = (x7,y7,27)T € S x S™ x S™ be a solution of the system of equations (1.5).
Next we consider the property of solution for the system of equations (1.5) if arbitrary two
of the vectors x, y and z are same. Firstly, we give the following lemma which will be used
in the sequel.

Lemma 4.14. Let P € SB™ and x € S” be a positive vector.

(1) For any i € (n), if there exists k € (n) such that py, > 0, the matriz P X3 x does not
have eigenvalue —1.

(2) For any i € (n), if there exists k € (n) such that p;r; > 0, the matriz P X2 X does not
have eigenvalue —1.

Where
(P x2x)i = Z pijkTj, (P X3x)i = Z PijkTk-
j€(n) ke(n)

Proof. We only prove (1). For any positive vectors x € S”, a matrix A = (a;;) is defined

n n
by ai; = Y. pijrxr. Note that ) a;; = 1. Thus, A is a column stochastic matrix. Since
k=1 i

=1
n
there exists k € (n) such that p;r > 0 for any ¢ € (n), we get a;; = . purxr > 0. ie., all
k=1
diagonal entries of the matrix A are positive. Thus for any i € (n),
|717(l“" =1+ay >1—aii:2aij.
i£j

By using Gerschgorin theorem, it is seen that there is no eigenvalue —1 for the matrix
AT The desired conclusion is obtained. Furthermore, the assertion (2) is also give by an
analogous technique. O

Next we give the following theorem.

Theorem 4.15. Let w = (x7,y7,27)T € S*" x S" x S™ be a solution of the system of
equations (1.5) with P € S being a cyclic-irreducible tensor satisfying one of the following
two statements.

(1) For any i € (n), there exists k € (n) such that p;y, > 0;
(2) For any i € (n), there exists k € (n) such that p;x; > 0.
If both of the vectors x, y and z are same, we have X =y = z.

Proof. Since P is a cyclic-irreducible tensor, x, y and z are positive by Theorem 4.6. Without
loss of generality, we assume that x = y. The system of equations (1.5) is rewritten as
follows:

x = Pxz,
x = Pzx, (4.21)
z = Pxx.
Let Au=x —z. Then
Au = —PAux (4.22)

and
Au = —PxAu, (4.23)
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which are equivalent to
(I+P)Au=0 (4.24)

and
(I + Pg)Au =0, (425)

respectively, where (P1);; = > pijrxr and (P2)i; = Y pikjTr. By Lemma 4.14, T + P; or
k=1 k=1
I + P, is nonsingular. Therefore, Au = 0. O
Immediately, by Theorem 4.15, it is easy to check that the following result holds.

Corollary 4.16. Let w = (x7,y7,27)T € S* x S® x S" be a solution of the system of
equations (1.5) with P € SB being positive. If both of the vectors x, y and z are same, we
have x =y = z.

Based on the coefficients 77, and 7, we can imply the following result by (4.19)-(4.20)
and (4.22)-(4.23).

Proposition 4.17. Let w = (x7,y7,27)T € S" x S"* x S™ be a solution of the system of
equations (1.5) with 7, < 1 or g < 1. If both of the vectors x, y and z are same, we have
X=y =z

Concluding Remarks

In this paper, we propose a system of cyclic stationary probability distribution equations
for a second order Markov chain process when all states are independent each other. The
new model is seen as a rank-3 approximation of the system of equations (1.2). Comparing
with results given in previous works, the convergence of the fixed-point method to solve the
proposed model leads to the convergence of the second order Markov chain process with the
independent state converges. Besides, we investigate the properties of the solutions for the
proposed equation such as the conditions of positive solutions and the existence of a non-
degenerate cyclic stationary probability distribution triple and so on. We also give some
equivalent statements between the system of equations (1.5) and (1.4).
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