
2021

434 Q. WANG, C. CUI AND D. HAN

where ◦ denotes the outer product of vectors, A(n)(n = 1, . . . , N) is an In-by-R matrix
denoting the mode n latent factor, and the rth factor (column) in mode n is denoted by
A(n)(:, r). Each component of X is an N -way outer product of N factors, i.e.,

X (i1, . . . , iN) =

R∑
r=1

N∏
n=1

A(n)(in, r),

for in ∈ {1, . . . , In}. We have rank(X) ≤ R when X can be written as the sum of R rank-one
tensors. If there exists a minimal integer R such that the expression in (1.1) satisfied, the
right side of (1.1) is called the CPD of the tensor X .

Assume that rank(X) = R, then the CPD of a tensor can be obtained via minimizing a
certain optimization problem with A(n) ∈ RIn×R(n = 1, . . . , N) as follows

min
{A(n)}N

n=1

f(A(1), . . . ,A(N)), (1.2)

where f is the loss function. A common optimization criterion for CPD is the least squares
(LS) fitting criterion [14, 35] which is defined as

f
(
A(1), . . . ,A(N)

)
:=

1

2

∥∥∥∥∥X −
R∑

r=1

A(1)(:, r) ◦ . . . ◦A(N)(:, r)

∥∥∥∥∥
2

F

. (1.3)

The problem (1.2) with LS fitting criterion (1.3) will be “ill-posed” in the sense as follows
[19]:

1. The loss function (1.3) has continuously many local minima because of the indetermi-
nacy of scaling.

2. From [6] and [9], we know that the loss function (1.3) may not have a global minimum
bacause the domain is non-compact.

To solve these issues, the regularization terms for A(n) with n = 1, . . . , N are considered.
Then the objective function is reformulated as

min
{A(n)}N

n=1

Φ(A(1), . . . ,A(N)) := f(A(1), . . . ,A(N)) +

N∑
n=1

hn(A(n)), (1.4)

where hn(A(n)) denotes a structure promoting regularizer on A(n), such as nonnegative,
sparse or low rank terms for A(n). For example, if A(n) ∈ An := {A(n)|A(n) ≥ 0} is
applied, we can write hn(·) as the indicator function of set An:

hn(A) = I (An) =

{
0, A ∈ An,
∞, otherwise. (1.5)

The matrix unfolding of a tensor has proven very useful in many tensor factorization
algorithms. The mode-n unfolding of a tensor X is a Jn-by-In matrix (Jn = I1 × · · · ×
In−1 × In+1 × · · · × IN) which is defined as

X(n)(j, in) = X (i1, . . . , iN),

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 435

where j = 1 +
∑N

k=1,k ̸=n(ik − 1)J̄k with J̄k =
∏k−1

m=1,m ̸=n Im [17]. Then the CPD represen-
tation of (1.1) can be rewritten as

X(n) = H(n)A
T
(n),

where H(n) ∈ RJn×R is defined as

H(n) = A(N) ⊙ . . .⊙A(n+1) ⊙A(n−1) ⊙ . . .⊙A(1).

Here, ⊙ denotes the Khatri-Rao product of matrices. There are many algorithms can be used
to solve the CPD problem, such as [14, 21, 23, 35]. Many of these algorithms leverage data
sparsity to scale up CPD by using the zero elements in large scale tensor. The alternating
least square (ALS) method can significantly simplify the cost of computation. Specifically,
ALS solves the following subproblem cyclically for n = 1, ..., N :

A(n) = argmin
A

1

2

∥∥∥X(n) −H(n)A
T
∥∥∥2
F
. (1.6)

When the value of In (n = 1, . . . , N) above is large, computing the gradient of the
loss function f(A(1), . . . ,A(N)) is often prohibitively expensive, rendering most traditional
deterministic first-order optimization algorithms ineffective. Over the years, randomized
optimization algorithms [5, 27] have become increasingly popular due to their efficiency and
simplicity. A number of stochastic optimization based CPD algorithms have been proposed
in the literature [2, 4, 30]. We apply the random sampling rule to the tensor data and use
the sampled piece to update the latent factors. A set of mode-n fibers for a certain n at
each iteration are sampled [2]. A direct way is to solve the least squares subproblems (1.6)
for all the modes in [2] are exactly following a Gauss-Seidel manner in each iteration. But
this exact method is time-consuming when the dimension of subproblem (1.6) is large.

Recently, the work in [11] proposed a new stochastic algorithmic framework for comput-
ing the CPD of large-scale dense tensors, i.e., the Block-Randomized SGD (BrasCPD). The
BrasCPD algorithm is a combination of randomized block coordinate descent (BCD) [3, 22]
and stochastic proximal gradient method [12, 13]. It admits smaller per-iteration memory
and computational complexities, particularly in high-rank cases. Furthermore, it is flexible
in terms of incorporating regularization terms and constraints on the latent factors. The
stepsize used in BrasCPD is a constant, thus it is time-consuming (need many numerical
experiments) to choose a proper stepsize to get a good numerical performance when imple-
menting this stochastic algorithm. Due to this disadvantage, the adaptive stepsize method
is also proposed in [11], namely AdaCPD, which combines with the Adagrad algorithm [10]
and BrasCPD algorithm.

In order to get better numerical results, we consider the momentum gradient descent
which was first proposed in the 1960s [24], and this idea has been applied to many applica-
tions, such as federated learning [18], Q-learning [33] and recommender systems [25] and so
on. It combines the current gradient with a history of the previous step to accelerate the
convergence of the algorithm. The full momentum update for minimizing f(x) with x ∈ Rn

is:
xk+1 = xk − α∇f(xk) + β(xk − xk−1),

where α is the stepsize and β is a hyperparameter (typically β ∈ [0, 1], although not limited
to it), which scales down the previous step. Due to the momentum term β(xk − xk−1), the
method avoids zigzagging for ill-conditioned problems, which leads to significant efficiency in
practice. In this paper, we propose two momentum based block-randomized stochastic prox-
imal gradient methods under constant and adaptive stepsize framework, namely mBrasCPD

436 Q. WANG, C. CUI AND D. HAN

and mAdaCPD, respectively, which are the momentum version of BrasCPD and AdaCPD
in [11], respectively.

The rest of this paper is organized as follows. We present the mBrasCPD and mAdaCPD
algorithms in details and provide convergence analysis of the mBrasCPD algorithm in Section
2 and Section 3, respectively. Some numerical experiments for the two proposed algorithms
(mBrasCPD and mAdaCPD) compared with the other two algorithms (BrasCPD [11] and
AdaCPD [11]) for the synthetic data and the real dataset are presented in Section 4. Finally,
we draw a conclusion in Section 5.

2 Algorithms

In this section, we consider two momentum block-randomized SGD algorithms for CPD
optimization problem (1.4), i.e., constant stepsize version and adaptive version. We name
this two algorithms as mBrasCPD (Algorithm 1) and mAdaCPD (Algorithm 2), respectively.

2.1 mBrasCPD

We first consider the constant stepsize version of momentum block-randomized SGD algo-
rithms (mBrasCPD). Our idea is to apply stochastic algorithm while exploiting the tensor
fiber structure. The work in [11] considers a doubly stochastic procedure when update A(n).
Firstly, a mode index n ∈ {1, . . . , N} is randomly sampled at iteration k. Then we randomly
sample a set of mode-n fibers that is indexed by Fn ⊂ {1, . . . , Jn} with |Fn| = B. Note that
a mode-n fiber of X (see Figure 1 for an example with sample size |Fn| = 6.) is a row of
the mode-n unfolding X(n).

Figure 1: From left to right: the mode-1, 2, and 3 block randomized samples.

Let G(k) ∈ R(I1+···+IN)×R be the gradient of f(A(1), . . . ,A(N)) defined in (1.3) such that

G(k) = [G
(k)
(1) , . . . ,G

(k)
(N)]

T .

Here we have

G
(k)
(n)

=
1

|Fn|

(
A

(k)
(n)

H⊤
(n) (Fn)H(n) (Fn)−X⊤

(n) (Fn)H(n) (Fn)
)
,

G
(k)
(n′) = 0, n′ ̸= n,

(2.1)

where
X(n) (Fn) = X(n) (Fn, :) , H(n) (Fn) = H(n) (Fn, :) .

The latent variables A(n) in [11] are updated by

A
(k+1)
(n) = arg min

A(n)

1

2α(k)

∥∥∥A(n) −
(
A

(k)
(n) − α(k)G

(k)
(n)

)∥∥∥2
F
+ hn

(
A(n)

)
,

A
(k+1)
(n′) = A

(k)
(n′), n′ ̸= n.

(2.2)

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 437

It shows that G
(r)
(n) is a gradient estimator for the function f(A(1), . . . ,A(N)) with the

mode-n variable A(n), and the update is an iteration of the proximal stochastic gradient al-
gorithm with a minibatch size |Fn| = B for solving the subproblem (1.6). From [11], it shows
that the most resource-consuming update process HT

(n)X(n) compared with other algorithms
[14, 35] can be avoided. We also know the computing cost of X⊤

(n) (Fn, :)H(n) (Fn, :) is only
O(|Fn|RIn) which is significant smaller than O(I1 . . . INR) for computing X⊤

(n)H(n). The
sample size |Fn| = B can be controlled in practice and can get lower complexity than other
exact methods [2, 14, 35] for solving the subproblem (1.6).

Although a doubly stochastic algorithm is applied to the problem (1.4), sometimes we
need a long time to get a good numerical result because the computational cost of CP
decomposition is expensive. If this stochastic algorithm can be accelerated, then we can
further get better results in less time. In this paper, the momentum idea in [24] is applied
to the above framework of updating A(n). We update A(n) by

Ã
(k)

(n) =A
(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

)
,

Ak+1
(n) =argmin

A(n)

hn

(
A(n)

)
+
〈
G

(k)
(n),A(n) −A

(k)
(n)

〉
+

1

2α(k)

∥∥∥A(n) − Ã
(k)

(n)

∥∥∥2
F
.

Then we equivalently rewrite the above update as follows

Ak+1
(n) =argmin

A(n)

hn

(
A(n)

)
+
〈
G

(k)
(n),A(n) −A

(k)
(n)

〉
+

1

2α(k)

∥∥∥A(n) −
(
A

(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

))∥∥∥2
F

=arg min
A(n)

hn

(
A(n)

)
+

1

2α(k)

∥∥∥A(n) −
(
A

(k)
(n) − α(k)G

(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

))∥∥∥2
F
.

Thus we can update A(n) by

A
(k+1)
(n) = arg min

A(n)

1

2α(k)

∥∥∥A(n) −
(
A

(k)
(n) − α(k)G

(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

))∥∥∥2
F

+ hn

(
A(n)

)
,

A
(k+1)
(n′) = A

(k)
(n′), n′ ̸= n.

(2.3)

If hn(·) is a closed proper convex function and its proximal operator can be computed easily,
then update (2.3) can be solved by applying the proximal operator of hn(·), which is denoted
as

A
(k+1)
(n) = Proxα(k)hn

(
A

(k)
(n) − α(k)G

(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

))
. (2.4)

Now we describe the algorithmic framework of the mBrasCPD for the optimization prob-
lem (1.4) as follows.

438 Q. WANG, C. CUI AND D. HAN

Algorithm 1 mBrasCPD: momentum based block-randomized SGD for the optimization
problem (1.4)

Input: N -way tensor X ∈ RI1×···×IN ; rank R; sample size B; initialization {A(0)
(n)} and

{A(−1)
(n) }, where A

(−1)
(n) = A

(0)
(n), setting stepsize {α(k)} and momentum parameter {β(k)}.

1: k ← 0;
2: repeat
3: sample n uniformly from {1, . . . , N};
4: sample Fn uniformly from {1, . . . , Jn} with |Fn| = B;
5: compute the stochastic gradient G(k) from (2.1);
6: update A

(k+1)
(n) and A

(k+1)
(n′) from (2.3);

7: k ← k + 1;
8: until some stopping criterion is reached;

Output:{A(k)
(n)}

N
n=1

When β(k) = 0 in Algorithm 1, the mBrasCPD algorithm would be reduced to the
BrasCPD algorithm [11].

2.2 mAdaCPD

An obvious disadvantage of the mBrasCPD algorithm is that we need to conduct a lot
of numerical experiments to find a proper stepsize. Furthermore, it can be seen from the
numerical experiment in Section 4 that the convergence speed of this algorithm is relatively
slow. Thus we need a better way to select the stepsize. Recently, a series of algorithms were
proposed in the machine learning community for adaptive stepsize scheduling when training
deep neural networks, such as AdaGrad [10], RMSProp1, Adam [16] and etc. The idea of
these adaptive algorithms can be understood as adaptively assign different learning rates
to each parameter. To be more precise, it adapts the learning rate to the parameters and
performs larger updates for rare parameters and smaller updates of frequent parameters.

Now, we consider an adaptive stepsize version of mBrasCPD algorithm in this subsection,
namely, mAdaCPD. The adaptive stepsize is defined as[

η
(k)
(n)

]
i,r

=
η(

b+
∑k

t=1

[
G

(t)
(n)

]2
i,r

) 1
2+ε

, (2.5)

where η, b, ε > 0. Setting b = ε = 0 does not hurt the numerical performance in practice.
Then we can apply the adaptive rule of stepsize to mBrasCPD algorithm (Algorithm 1), i.e.,
the 6-th line in Algorithm 1 is replaced by (2.5) and

A
(k+1)
(n) = Prox

η
(k)

(n)
hn

(
A

(k)
(n) − η

(k)
(n) ⊛G

(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

))
,

A
(k+1)
(n′) = A

(k)
(n′), n′ ̸= n,

(2.6)

where ⊛ denotes the element-wise product. Now the mAdaCPD algorithm (Algorithm 2)
framework is summarized as follows.

1http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 439

Algorithm 2 mAdaCPD : momentum based block-randomized SGD with adaptive stepsize
for the optimization problem (1.4)

Input: N -way tensor X ∈ RI1×···×IN ; rank R; sample size B; initialization {A(0)
(n)} and

{A(−1)
(n) }, where A

(−1)
(n) = A

(0)
(n), and momentum parameter {β(k)}.

1: k ← 0;
2: repeat
3: sample n uniformly from {1, . . . , N};
4: sample Fn uniformly from {1, . . . , Jn} with |Fn| = B;
5: compute the stochastic gradient G(k) from (2.1);
6: compute the stepsize η

(k)
(n) from (2.5);

7: update A
(k+1)
(n) and A

(k+1)
(n′) from (2.6);

8: k ← k + 1;
9: until some stopping criterion is reached;

Output:{A(k)
(n)}

N
n=1

When β(k) = 0 in Algorithm 2, the mAdaCPD algorithm would be reduced to the
AdaCPD algorithm [11].

3 Convergence Analysis

Before introducing the convergence analysis of the mBrasCPD algorithm (Algorithm 1), we
present the following lemmas and assumptions.

Lemma 3.1. [11] For any {A(1), . . . ,A(N)}, {Ā(1), . . . , Ā(N)} and any mode n ∈ {1, . . . , N},
there exists a constant L̄(n) such that

f
(
A(1), . . . ,A(N)

)
≤f
(
Ā(1), . . . , Ā(N)

)
+
〈
∇Ā(n)

f
(
Ā(1), . . . , Ā(N)

)
,A(n) − Ā(n)

〉
+

L̄(n)

2

∥∥A(n) − Ā(n)

∥∥2
F
,

(3.1)

where f(·) is defined as (1.3) and A(i) = Ā(i) for i ̸= n.

The equation (3.1) holds because the objective function f(A(1), . . . ,A(N)) is the quadratic
of variable A(n) and has a Lipchitz continuous gradient with Lipschitz constant L̄(n) ≥
λmax(H̄

T
(n)H̄(n)).

Define ξ(k) ∈ {1, . . . , N} and ζ ⊆ {1, . . . , Jξ(k)} as the random variables responsible for
the mode and fibers in iteration r respectively for mBrasCPD algorithm (Algorithm 1).
With these random variables, it holds that

P(ξ(k) = n) =
1

N
, P(ζ(k) = S|ξ(k) = n) =

1

M
,

where M =

(
Jn
B

)
, n ∈ {1, . . . , N} and S is an any subset of {1, . . . , Jξ(k)} (i.e., S ⊆

{1, . . . , Jξ(k)}) with |S| = B.

Lemma 3.2. [11] Denote B(k) as the filtration generated by the random variables {ξ(1), ζ(1),
. . . , ξ(k−1), ζ(k−1)} such that the {A(k)

(1) , . . . ,A
(k)
(N)} in iteration k is determined conditioned

440 Q. WANG, C. CUI AND D. HAN

on B(k). Then the stochastic gradient G(k)

(ξ(k))
from (2.1) is an unbiased estimate for the full

gradient for A(ξ(k)), that is

Eζ(k)

[
G

(k)

(ξ(k))
| B(k), ξ(k)

]
= ∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
. (3.2)

The above lemma says that the block stochastic gradient estimator G
(k)
(n) is an unbiased

estimation for the gradient ∇A(n)
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
.

Lemma 3.3. [20] Let {at} and {bt} be two nonnegative sequences such that bt is bounded,
if we have

∑∞
t=0 atbt converges and

∑∞
t=0 at diverges, then it holds that

lim inf
t→∞

bt = 0.

The above lemma is used when we analyze the convergence of mBrasCPD algorithm
(Algorithm 1) in this paper.

Assumption 3.1. From the Robbins-Monro rule [27], we assume the stepsize {α(k)}k≥0

used in mBrasCPD algorithm (Algorithm 1) satisfy
∞∑
k=0

α(k) =∞.

The above assumption is required to guarantee that the steps {α(k)}k≥0 are large enough
to eventually overcome any initial conditions or random fluctuations.

Assumption 3.2. The optimal objection value Φ∗ of (1.4) is finite.

Assumption 3.3. There exists a sequence {σ(k)}k≥0 such that

Eζ(k)

[∥∥∥G(k)

(ξ(k))
−∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)∥∥∥2 | B(k), ξ(k)
]
≤ (σ(k))2,

∞∑
k=0

α(k)(σ(k))2 <∞,

(3.3)

where {α(k)}k≥0 is the stepsize sequence following Assumption 3.1.

The first inequality in this assumption can make the variance of approximated gradient
estimator G

(k)

(ξ(k))
be bounded, which is commonly used in stochastical gradient algorithms

for convergence analysis. The second inequality is applied to the convergence analysis of the
algorithm in this paper.

In this paper, a solution {A(k)
(1) , . . . ,A

(k)
(N)} is a stationary point of (1.4) if P (k)

(n) = 0 for
any n with

P
(k)
(n) =

1

α(k)

(
A

(k)
(n) − Proxα(k)hn

(
A

(k)
(n) − α(k)∇A(n)

f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
+β(k)

(
A

(k)
(n) −A

(k−1)
(n)

)))
.

We knew that this condition with β(k) = 0 is satisfied in a blockwise fashion [26, 35]. In

this paper, we extend the result that E
[∥∥∥P (k)

(n)

∥∥∥2] vanishes in the case of β(k) = 0 [11] to

the case of β(k) ̸= 0 for all n as k →∞.
We have the following convergence property for mBrasCPD algorithm (Algorithm 1).

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 441

Lemma 3.4. Assume that Assumptions 3.1-3.3 hold and hn(·) is a proper closed convex
function. And the sequence {A(k)

(n)}k≥0 are generated by mBrasCPD algorithm (Algorithm
1), we have the following inequality holds

E
[
Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)]
− E

[
Φ
(
A

(k)
(1) , . . . ,A

(k)
(N)

)]
≤α(k)(σ(k))2 +

α(k−1)β(k)

2
E

[∥∥∥∥p(k−1)

(ξ(k))

∥∥∥∥2
]
+

(α(k))2L− α(k) + α(k−1)β(k)

2
E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
,

where p
(k)

(ξ(k))
= 1

α(k)

(
A

(k+1)

(ξ(k))
−A

(k)

(ξ(k))

)
and the definition of σ(k) can be referred to As-

sumption 3.3.

Proof. From the update of A(k+1)
(n) in BrasCPD framework (Algorithm 1), we know that

A
(k+1)
(n)

=argmin
A(n)

hn

(
A(n)

)
+

1

2α(k)

∥∥∥A(n) −
(
A

(k)
(n) − α(k)G

(k)
(n) + β(k)

(
A

(k)
(n) −A

(k−1)
(n)

))∥∥∥2
F

=argmin
A(n)

hn

(
A(n)

)
+

〈
G

(k)
(n) −

β(k)

α(k)

(
A

(k)
(n) −A

(k−1)
(n)

)
,A(n) −A

(k)
(n)

〉
+

1

2α(k)

∥∥∥A(n) −A
(k)
(n)

∥∥∥2
(3.4)

for a randomly selected n. For a given ξ(k), by setting A(n) = A
(k)

(ξ(k))
and A(n) = A

(k+1)

(ξ(k))
in

above equation respectively, we have the following inequality holds

hξ(k)

(
A

(k+1)

(ξ(k))

)
− hξ(k)

(
A

(k)

(ξ(k))

)
≤−

〈
G

(k)

(ξ(k))
− β(k)

α(k)

(
A

(k)

(ξ(k))
−A(k−1)

(ξ(k))

)
,A

(k+1)

(ξ(k))
−A(k)

(ξ(k))

〉
− 1

2α(k)

∥∥∥A(k+1)

(ξ(k))
−A

(k)

(ξ(k))

∥∥∥2 .(3.5)

From the block Lipschitz continuity of the quadratic function f(A(1), . . . ,A(N)) in Lemma
3.1, we have

f
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)
− f

(
A

(k)
(1) , . . . ,A

(k)
(N)

)
≤
〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
,A

(k+1)

(ξ(k))
−A

(k)

(ξ(k))

〉
+

L
(k)

(ξ(k))

2

∥∥∥∥A(k+1)

(ξ(k))
−A

(k)

(ξ(k))

∥∥∥∥2 . (3.6)

Combing these two inequalities, i.e. (3.5) and (3.6), it shows that

Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)
− Φ

(
A

(k)
(1) , . . . ,A

(k)
(N)

)
≤
〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))
+

β(k)

α(k)

(
A

(k)

(ξ(k))
−A

(k−1)

(ξ(k))

)
,A

(k+1)

(ξ(k))
−A

(k)

(ξ(k))

〉

+

L
(k)

(ξ(k))

2
− 1

2α(k)

∥∥∥∥A(k+1)

(ξ(k))
−A

(k)

(ξ(k))

∥∥∥∥2 .
(3.7)

442 Q. WANG, C. CUI AND D. HAN

Denote p
(k)

(ξ(k))
= 1

α(k)

(
A

(k+1)

(ξ(k))
−A

(k)

(ξ(k))

)
, then from (3.7) and let

L ≥ λmax

((
H

(k)

(ξ(k))

)T

H
(k)

(ξ(k))

)
≥ L

(k)

(ξ(k))

for simplicity. Thus we can get

Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)
− Φ

(
A

(k)
(1) , . . . ,A

(k)
(N)

)
≤α(k)

〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))
+

α(k−1)β(k)

α(k)
p
(k−1)

(ξ(k))
,p

(k)

(ξ(k))

〉
+

(
(α(k))2L

2
− α(k)

2

)∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
=α(k)

〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))
,p

(k)

(ξ(k))
− P

(k)

(ξ(k))

〉
+

(
(α(k))2L

2
− α(k)

2

)∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
+ α(k)

〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))
,P

(k)

(ξ(k))

〉
+ α(k−1)β(k)

〈
p
(k−1)

(ξ(k))
,p

(k)

(ξ(k))

〉
.

(3.8)

Take the expectation of the above inequality conditioned on the filtration B(k) and ξ(k). By
Lemma 3.2, we have

Eζ(k)

[〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))
,P

(k)

(ξ(k))

〉
| B(k), ξ(k)

]
= 0. (3.9)

The first term in the right side of (3.8) can be bounded follows from

Eζ(k)

[〈
∇A

(ξ(k))
f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))
,p

(k)

(ξ(k))
− P

(k)

(ξ(k))

〉
| B(k), ξ(k)

]
≤Eζ(k)

[
∥δ(k)∥ ∥p(k)

(ξ(k))
− P

(k)

(ξ(k))
∥ | B(k), ξ(k)

]
≤Eζ(k)

[
∥δ(k)∥2 | B(k), ξ(k)

]
≤(σ(k))2,

(3.10)

where the first inequality folllows from the Cauchy-Schwartz inequality and the second in-
equality is due to the non-expansiveness of the proximal operator of convex function hn(·).

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 443

From the left terms in the right side of (3.8), we have

Eζ(k)

[
α(k−1)β(k)

〈
p
(k−1)

(ξ(k))
,p

(k)

(ξ(k))

〉
+

(
(α(k))2L

2
− α(k)

2

)∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2 | B(k), ξ(k)

]

≤Eζ(k)

[
α(k−1)β(k)

2

(∥∥∥∥p(k−1)

(ξ(k))

∥∥∥∥2 + ∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
)

+

(
(α(k))2L

2
− α(k)

2

)∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2 |B(k), ξ(k)

]

=Eζ(k)

[
α(k−1)β(k)

2

∥∥∥∥p(k−1)

(ξ(k))

∥∥∥∥2
]
+E

[
(α(k))2L− α(k) + α(k−1)β(k)

2

∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2 | B(k), ξ(k)

]
.

(3.11)

Combining the above inequalities (3.8), (3.9), (3.10) and (3.11), taking the total expectation,
it shows that

E
[
Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)]
− E

[
Φ
(
A

(k)
(1) , . . . ,A

(k)
(N)

)]
≤α(k)(σ(k))2 +

α(k−1)β(k)

2
E

[∥∥∥∥p(k−1)

(ξ(k))

∥∥∥∥2
]
+

(α(k))2L− α(k) + α(k−1)β(k)

2
E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
.

Now we give the main theoretical result of this paper as follows.

Theorem 3.5. Assume that Assumptions 3.1-3.3 hold, and hn(·) is a proper closed convex
function. Suppose the following condition2. for {α(k)} and {β(k)} holds

0 ≤ α(k)β(k+1) < −(α(k))2L+ α(k) − α(k−1)β(k). (3.12)

Then the sequence {A(k)
(n)}k≥0 generated by mBrasCPD algorithm satisfies

lim inf
k→∞

E
[∥∥∥P (k)

(n)

∥∥∥2] = 0, ∀n.

Proof. From Lemma 3.4, it shows that

E
[
Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)]
− E

[
Φ
(
A

(k)
(1) , . . . ,A

(k)
(N)

)]
≤α(k)(σ(k))2 +

α(k−1)β(k)

2
E

[∥∥∥∥p(k−1)

(ξ(k))

∥∥∥∥2
]
+

(α(k))2L− α(k) + α(k−1)β(k)

2
E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
.

Summing up the above inequality from t = 0 to t = k, we have

E
[
Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)]
− Φ

(
A

(0)
(1), . . . ,A

(0)
(N)

)
≤

k∑
t=0

α(t)(σ(t))2 +

k∑
t=0

α(t−1)β(t)

2
E

[∥∥∥∥p(t−1)

(ξ(k))

∥∥∥∥2
]

+

k∑
t=0

(α(t))2L− α(t) + α(t−1)β(t)

2
E

[∥∥∥∥p(t)

(ξ(k))

∥∥∥∥2
]
.

(3.13)

2In fact, the algorithm also holds when the condition α(k)β(k+1) ≥ 0 is not satisfied. It shows that if
β(k) is lower bounded, the covergence analysis in Theorem 3.5 also holds

444 Q. WANG, C. CUI AND D. HAN

Thus we have the following inequality holds

k∑
t=0

−(α(t))2L+ α(t) − α(t−1)β(t)

2
E

[∥∥∥∥p(t)

(ξ(k))

∥∥∥∥2
]
−

k∑
t=0

α(t−1)β(t)

2
E

[∥∥∥∥p(t−1)

(ξ(k))

∥∥∥∥2
]

≤
k∑

t=0

α(t)(σ(t))2 +Φ
(
A

(0)
(1), . . . ,A

(0)
(N)

)
− E

[
Φ
(
A

(k+1)
(1) , . . . ,A

(k+1)
(N)

)]
≤

k∑
t=0

α(t)(σ(t))2 +Φ
(
A

(0)
(1), . . . ,A

(0)
(N)

)
− Φ∗,

(3.14)

where Φ∗ is the optimal objection value of (1.4) from Assumption 3.2. From the condition
(3.12), we have

−(α(t))2L+ α(t) − α(t−1)β(t) > α(t)β(t+1) ≥ 0

satisfied, then we can get from (3.14)

k∑
t=0

−(α(t))2L+ α(t) − α(t−1)β(t)

2
E

[∥∥∥∥p(t)

(ξ(k))

∥∥∥∥2
]
−

k∑
t=0

α(t−1)β(t)

2
E

[∥∥∥∥p(t−1)

(ξ(k))

∥∥∥∥2
]

=

k∑
t=0

−(α(t))2L+ α(t) − α(t−1)β(t) − α(t)β(t+1)

2
E

[∥∥∥∥p(t)

(ξ(k))

∥∥∥∥2
]

+
α(k)β(k+1)

2
E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
− α(−1)β(0)

2
E

[∥∥∥∥p(−1)

(ξ(k))

∥∥∥∥2
]

≤
k∑

t=0

α(t)(σ(t))2 +Φ
(
A

(0)
(1), . . . ,A

(0)
(N)

)
− Φ∗.

(3.15)

Thus we have

k∑
t=0

−(α(t))2L+ α(t) − α(t−1)β(t) − α(t)β(t+1)

2
E

[∥∥∥∥p(t)

(ξ(k))

∥∥∥∥2
]
+

α(k)β(k+1)

2
E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]

≤
k∑

t=0

α(t)(σ(t))2 +Φ
(
A

(0)
(1), . . . ,A

(0)
(N)

)
− Φ∗ +

α(−1)β(0)

2
E

[∥∥∥∥p(−1)

(ξ(k))

∥∥∥∥2
]
.

By Assumptions 3.2 and 3.3, taking k →∞ on the above inequality, it shows that the right
side of the above inequality is bounded. Combined with Lemma 3.3, we conclude that

lim inf
k→∞

E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
= 0. (3.16)

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 445

And we observe that

1

2
E

[∥∥∥∥P (k)

(ξ(k))

∥∥∥∥2
]

≤E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
+ E

[∥∥∥∥p(k)

(ξ(k))
− P

(k)

(ξ(k))

∥∥∥∥2
]

≤E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]

+ Eξ(k),B(k)

[
Eζ(k)

[∥∥∥∥∇A
(ξ(k))

f
(
A

(k)
(1) , . . . ,A

(k)
(N)

)
−G

(k)

(ξ(k))

∥∥∥∥2 | B(k), ξ(k)

]]

≤E

[∥∥∥∥p(k)

(ξ(k))

∥∥∥∥2
]
+ (σ(k))2,

(3.17)

where the last inequality is obtained via applying the non-expansiveness of the proximal
operator property again. From Assumption 3.3 and Lemma 3.3, it holds that

lim inf
k→∞

(σ(k))2 = 0. (3.18)

Combined with (3.16), (3.17) and (3.18), we have

lim inf
k→∞

E

[∥∥∥∥P (k)

(ξ(k))

∥∥∥∥2
]
= 0.

Moreover, from the sampling rule (3.2) used for the mBrasCPD algorithm in this paper, we
have

E

[∥∥∥∥P (k)

(ξ(k))

∥∥∥∥2
]
=Eξ(k),B(k)

[
Eζ(k)

[∥∥∥∥P (k)

(ξ(k))

∥∥∥∥2 | B(k), ξ(k)

]]

=EB(k)

[
Eξ(k)

[∥∥∥∥P (k)

(ξ(k))

∥∥∥∥2 | B(k)

]]

=EB(k)

[
N∑

n=1

1

N

∥∥∥P (k)
(n)

∥∥∥2] .
For any n, we have

lim inf
k→∞

E
[∥∥∥P (k)

(n)

∥∥∥2] = 0.

Remark 3.6. In Theorem 3.5, the condition

0 ≤ α(k)β(k+1) < −(α(k))2L+ α(k) − α(k−1)β(k)

is a little complicated, and it is difficult to be verified in the numerical experiments. However,
there are several ways to simplify it. For example, if we fix β(k) = β ∈ [0, 1] for any k, then
this condition can be reduced to −(α(k))2L + α(k) − α(k−1)β − α(k)β > 0. Moreover, if we
fix α(k) = α for any k, then we have −αL+1− 2β > 0, i.e., α < 1−2β

L with β ∈ [0, 1
2) holds,

then the convergence of the mBrasCPD algorithm is also satisfied.

446 Q. WANG, C. CUI AND D. HAN

Remark 3.7. The convergence analysis for mAdaCPD algorithm (Algorithm 2) is difficult.
For example, the adaptive stepsize (2.5) is dependent on G

(k)
(n), then the decreased property

of the objective function can not be obtained like the result of Lemma 3.4. Then it is beyond
the scope of this paper. We hope to discuss it in future research work.

4 Numerical Experiments

In this section, we use some synthetic and real data numerical experiments to show the
efficiency of the proposed algorithms. All of the experiments are implemented in MATLAB
R2019b x64 on a PC with an Intel(k) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80GHz
processor and 8GB memory.

The numerical experiment performance is measured by the cost function value (1.3)
(denotes by “NRE”) and the mean squared error (MSE) which is defined as

MSE = min
π(r)∈{1,...,R}

1

R

R∑
r=1

∥∥∥∥∥ A(n)(:, π(r))∥∥A(n)(:, π(r))
∥∥
2

−
Ā(n)(:, r)∥∥Ā(n)(:, r)

∥∥
2

∥∥∥∥∥
2

,

where Ā(n) denotes the estimate of original matrix A(n) and π(r) satisfy {π(1), . . . , π(R)} =
{1, . . . , R} which is used to fix the intrinsic column permutation in CPD.

The nonnegative constraints (A(n) ≥ 0) are applied to all the synthetic and real dataset
experiments in this section for simplicity. Our algorithms are the accelerated version of
BrasCPD and AdaCPD, thus we only compare with these two algorithms in the numerical
experiments.

Theoretically, the stopping criterion of the proposed and compared algorithms is ∥P (k)
(n)∥ ≤

ϵ (ϵ is small, for example ϵ = 1e− 5) with n ∈ {1, . . . , N}. However, this stopping criterion
is time-consuming to be verified in practice if In and N are large, because it takes a long
time to calculate the full gradient. Thus all the algorithms are stopped after 50 iterations
in numerical experiments for simplicity.

We do not compare the CPU time of the algorithms, because in this paper, we only
compare our proposed mBrasCPD and mAdaCPD with their counterparts without momen-
tum, i.e., BrasCPD and AdaCPD, respectively. Further, all four algorithms have similar
algorithmic complexity because the major computational cost is to compute the gradient
and implement the proximal operator, while computing the stepsize and other computations
are negligible.

4.1 Synthetic data experiments

Here we conduct experiments to compare some algorithms for low rank tensor factorization
in details on synthetic data. We use the third-order tensors (i.e., N = 3) whose latent
factors are drawn from i.i.d. uniform distribution between 0 and 1. In order to illustrate
the efficiency of the algorithm in this paper, large and dense tensors are generated.

We let α = 0.05 to measure the numerical performance for the BrasCPD algorithm [11]
and the mBrasCPD algorithm (Algorithm 1), respectively. We let β = 0.2 for our two
algorithms3 (mBrasCPD and mAdaCPD) in this subsection for simplicity. Four different
tensor size (In = 50, In = 100, In = 150 and In = 200) with three different tensor ranks R
are applied to the algorithms which are used in numerical experiments, respectively. And

3If we want to get better numerical results, different values of α and β need to be properly selected for
different data.

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 447

we set |F(n)| = 20 for In = 100 and In = 200 with n = 1, 2, 3, |F(n)| = 25 for In = 50 and
In = 150 with n = 1, 2, 3. At each combination of these hyper-parameters, we repeat the
numerical experiments 10 times and use their mean values as the results of these experiments.
All the compared algorithms use the same data in each trial.

Table 1: MSE and NRE of the estimated latent factors by the algorithms under different
I1, I2, I3 and R. “a” denotes BrasCPD [11] with α = 0.05; “b” denotes mBrasCPD with
α = 0.05 and β = 0.2; “c” denotes AdaCPD [11]; “d” denotes mAdaCPD with β = 0.2.

The details of the latent factors result with different parameters (I1, I2, I3 and R) are
referred to Table 14. It is obvious from Table 1 that our algorithms (“ b”and“ d”in this
table) can get smaller MSE and NRE values than the other two algorithms (“ a”and“ c”
in this table), respectively. We note that the momentum technique used in this paper has
indeed improved the results of numerical experiments. We find that the adaptive stepsize
based algorithms have better numerical results compared with constant stepsize algorithms
in general. Two numerical results in Table 1 are detailed in Figure 2 and 3, respectively.

(a) (b)

Figure 2: Tensor factorization on synthetic data with I1 = I2 = I3 = 200 and R = 80.

4As the rank of the tensor increases, the solution space generally becomes larger. This reason leads to
the fact that when the rank of the tensor is large, its numerical performance is not as good as when the rank
of the tensor is small when the number of iteration is small.

448 Q. WANG, C. CUI AND D. HAN

(a) (b)

Figure 3: Tensor factorization on synthetic data with I1 = I2 = I3 = 100 and R = 30.

4.2 Real data experiments

Hyperspectral images (HSI) are obtained by images of airborne or satellite sensors on a
target area, which contains information of objects in tens to hundreds of consecutive and
segmented bands from visible light to the infrared spectral region. An HSI is usually stored
as a third-order tensor with two spatial coordinates and one spectral coordinate.

Due to the memory limit of our PC, the sub-images of two HSI datasets5 (the Indian
Pines dataset with 145× 145× 220 and the Pavia University dataset with 610× 340× 103)
are used in this subsection. See Figure 4 for details. For HSI numerical experiments, we
use the NRE and the structural similarity (SSIM)6 [32] values to measure the numerical
performance of the algorithms.

(a) (b)

Figure 4: (a): The Indian Pines dataset with 145 × 145 × 145. (b): The Pavia University
dataset with 610× 340× 50.

We repeat the experiments 10 times and 5 times for the Indian Pines dataset and the
Pavia University dataset, respectively. And we set |F(n)| = 25 for these two dataset and use
the same parameters (α and β) from Subsection 4.1. The details of the results are referred
to Table 2. We draw the curve of the NRE values for the experiments of the Indian Pines
with I1 = I2 = I3 = 145 and R = 50 with the iteration of the algorithm in Figure 5.

5http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
6http://www.ece.uwaterloo.ca/~z70wang/research/ssim/

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 449

Figure 5: Tensor factorization on the Idian Pines dataset with I1 = I2 = I3 = 145 and
R = 50.

It is obvious from Table 2 that our algorithms (“b” and “d” in this table) can get better
NRE and SSIM values than the other two algorithms (“a” and “c” in this table).

Table 2: NRE and SSIM of the estimated latent factors by the algorithms under different
R on the HSI data. “a” denotes BrasCPD [11] with α = 0.05; “b” denotes mBrasCPD with
α = 0.05 and β = 0.2; “c” denotes AdaCPD [11]; “d” denotes mAdaCPD with β = 0.2.

From the synthetic and real data numerical experiments, one can see that the momen-
tum technique can get better results compared with the algorithms under non momentum
framework.

5 Conclusion

In this paper, we proposed two momentum block-randomized stochastic gradient descent
algorithms under constant and adaptive stepsize framework for low-rank CP tensor factor-
ization problem, respectively. The convergence analysis of the mBrasCPD algorithm for
the low-rank tensor CPD problem was given under some mild conditions. Compared with
algorithms without momentum, the numerical simulation results for the synthetic and real
data demonstrated that our algorithms are more efficient.

450 Q. WANG, C. CUI AND D. HAN

Acknowledgment

The authors would like to appreciate two anonymous reviewers for their insightful comments
and constructive suggestions to polish this paper in high quality.

References

[1] A. Anandkumar, R. Ge, D. J. Hsu, S. M. Kakade, and M. Telgarsky, Tensor decompo-
sitions for learning latent variable models, J. Mach. Learn. Res. 15 (2014) 2773–2832.

[2] C. Battaglino, G. Ballard, and T. G. Kolda, A practical randomized CP tensor decom-
position, SIAM J. Matrix Anal. A. 39 (2018) 876–901.

[3] A. Beck and L. Tetruashvili, On the convergence of block coordinate descent type
methods, SIAM J. Optimiz. 23 (2013) 2037–2060.

[4] A. Beutel, P. P. Talukdar, A. Kumar, C. Faloutsos, E. E. Papalexakis, and E. P. Xing,
Flexifact: Scalable flexible factorization of coupled tensors on hadoop, In Proceedings
of the 2014 SIAM International Conference on Data Mining (2014) 109–117.

[5] L. Bottou, Large-scale machine learning with stochastic gradient descent, In 19th In-
ternational Conference on Computational Statistics, (2010) 177–186.

[6] J. Chen and Y. Saad, On the tensor SVD and the optimal low rank orthogonal approx-
imation of tensors, SIAM J. Matrix Anal. A. 30 (2009) 1709-1734.

[7] Y. Chen, Y. Dai, and D. Han, Fiber orientation distribution estimation using a
peaceman-rachford splitting method, SIAM J. Imaging Sci. 9 (2016) 573–604.

[8] Y. Chen, Y. Dai, D. Han, and W. Sun, Positive semidefinite generalized diffusion ten-
sor imaging via quadratic semidefinite programming, SIAM J. Imaging Sci. 6 (2013)
1531–1552.

[9] V. de Silva and L. Lim, Tensor rank and the ill-posedness of the best low-rank approx-
imation problem, SIAM J. Matrix Anal. A. 30 (2008) 1084–1127.

[10] J. C. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning
and stochastic optimization, J. Mach. Learn. Res. 12 (2011) 2121–2159.

[11] X. Fu, S. Ibrahim, H. Wai, C. Gao, and K. Huang, Block-randomized stochastic prox-
imal gradient for low-rank tensor factorization, IEEE Trans. Signal Proces. 68 (2020)
2170–2185.

[12] S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex
stochastic programming, SIAM J. on Optim. 23 (2013) 2341–2368.

[13] S. Ghadimi and G. Lan, Accelerated gradient methods for nonconvex nonlinear and
stochastic programming, Math. Program. 156 (2016) 59–99.

[14] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, A flexible and efficient algorithmic
framework for constrained matrix and tensor factorization, IEEE Trans. Signal Proces.
64 (2016) 5052–5065.

A MOMENTUM BLOCK-RANDOMIZED SGD FOR LOW-RANK TENSOR CPD 451

[15] F. Jiang, D. Han, and X. Zhang, A trust-region-based alternating least-squares algo-
rithm for tensor decompositions, J. Comput. Math. 36 (2018) 351–372.

[16] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, In 3rd Inter-
national Conference on Learning Representations, 2015.

[17] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Revi. 51
(2009) 455–500.

[18] W. Liu, L. Chen, Y. Chen, and W. Zhang, Accelerating federated learning via momen-
tum gradient descent, IEEE Trans. Parall. Distr. 31 (2020) 1754–1766.

[19] T. Maehara, K. Hayashi, and K. Kawarabayashi, Expected tensor decomposition with
stochastic gradient descent, In Proceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, (2016) 1919–1925.

[20] J. Mairal, F. R. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization
and sparse coding, J. Mach. Learn. Res. 11 (2010) 19–60.

[21] D. Mitchell, N. Ye, and H. D. Sterck, Nesterov acceleration of alternating least squares
for canonical tensor decomposition: Momentum step size selection and restart mecha-
nisms, Numer. Linear Algebr. 27 (2020).

[22] Y. E. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization
problems, SIAM J. Optimi. 22 (2012) 341–362.

[23] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, Parcube: Sparse parallelizable
tensor decompositions, In Machine Learning and Knowledge Discovery in Databases
-European Conference, 7523 (2012) 521–536.

[24] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR
Computational Mathematics and Mathematical Physics, 4 (1964) 1–17.

[25] W. Qin, H. Wu, Q. Lai, and C. Wang, A parallelized, momentum-incorporated stochas-
tic gradient descent scheme for latent factor analysis on high-dimensional and sparse
matrices from recommender systems, In 2019 IEEE International Conference on Sys-
tems, Man and Cybernetics, (2019) 1744–1749.

[26] M. Razaviyayn, M. Hong, and Z. Luo, A unified convergence analysis of block succes-
sive minimization methods for nonsmooth optimization, SIAM J. Optimi. 23 (2013)
1126–1153.

[27] H. Robbins and S. Monro, A stochastic approximation method, Ann. Math. Stat. 22
(1951) 400–407.

[28] L. Sun, F. Wu, T. Zhan, W. Liu, J. Wang, and B. Jeon, Weighted nonlocal lowrank
tensor decomposition method for sparse unmixing of hyperspectral images, IEEE J-
Stars. 13 (2020) 1174–1188.

[29] Y. Tsitsikas and E. E. Papalexakis, NSVD: normalized singular value deviation reveals
number of latent factors in tensor decomposition, Big Data. 8 (2020) 412–430.

[30] N. Vervliet and L. D. Lathauwer, A randomized block sampling approach to canonical
polyadic decomposition of large-scale tensors. IEEE J-STSP. 10 (2016) 284–295.

452 Q. WANG, C. CUI AND D. HAN

[31] M. D. Vos, A. Vergult, L. D. Lathauwer, W. D. Clercq, S. V. Huffel, P. Dupont, A.
Palmini, and W. V. Paesschen, Canonical decomposition of ictal scalp EEG reliably
detects the seizure onset zone. NeuroImage. 37 (2017) 844–854.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment:
From error visibility to structural similarity. IEEE Trans. Image Proces. 13 (2004) 600-
612.

[33] B. Weng, H. Xiong, Y. Liang, and W. Zhang, Analysis of Q-learning with adapta-
tion and momentum restart for gradient descent, In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, (2020) 3051–3057.

[34] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, Hyperspectral computational imaging via
collaborative tucker3 tensor decomposition, IEEE Trans. Circ. Syst. Vid. 31 (2021)
98–111.

[35] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex op-
timization with applications to nonnegative tensor factorization and completion, SIAM
J. on Imaging Sci. 6 (2013) 1758–1789.

Manuscript received 1 April 2021
revised 13 May 2021

accepted for publication 20 May 2021

Qingsong Wang
LMIB of the Ministry of Education
School of Mathematical Sciences
Beihang University
Beijing, 100191, People’s Republic of China
E-mail address: nothing2wang@hotmail.com

Chunfeng Cui
LMIB of the Ministry of Education
School of Mathematical Sciences
Beihang University
Beijing, 100191, People’s Republic of China
E-mail address: chunfengcui@buaa.edu.cn

Deren Han
LMIB of the Ministry of Education
School of Mathematical Sciences
Beihang University
Beijing, 100191, People’s Republic of China
E-mail address: handr@buaa.edu.cn

