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non-negative matrix factorization (NMF) [15, 12], tensor factorization can more accurately
consider the spatial and temporal correlation [14]. From the calculation point of view, noted
that there are negative values in the decomposition results, but negative value elements are
often meaningless in some practical problems. For example, it is impossible to have negative
pixels in image data, document statistics, negative values cannot be explained.

In this paper, we focus on non-negative tensor factorization for third order non-negative
tensors by tensor triple decomposition, which decomposes a third order non-negative tensor
to corresponding low rank non-negative tensors in a balanced way. Then, an alternating
proximal gradient (APG) method is introduced to apply to solve a kind of non-negative
tensor completion problems. Furthermore, we establish the global convergence and the
asymptotic convergence rate of the method based on the Kurdyka- Lojasiewicz inequality.
The efficiency of the proposed algorithm is tested on tensor decomposition, as well as tensor
completion from incomplete observations. Moreover, we also compare the results between
the case of nonnegative constraint and unconstraint case. Example shows that the error and
relative error for the unconstraint case are less than the nonnegative constraint case.

The remainder of this paper is organized as follows. In Section 2, we recall some basic
concepts and preliminary results in the literature. In Section 3, we introduce an APG
method and the convergence of the algorithm is also established. Then, we study the third
order non-negative tensor completion problem in Section 4. Several numerical examples are
given to show the efficiency of the corresponding conclusions in Section 5.

To end this section, we present several useful symbols in the paper. Let Rn be the n
dimensional real Euclidean space. The set of all nonnegative vectors in Rn is denoted by
Rn

+. The set of all positive integers is denoted by N. Denote [n] = {1, 2, · · · , n} for any
n ∈ N. Vectors are denoted by bold lowercase letters i.e. x, y, · · · , matrices are denoted
by capital letters i.e. A, B, · · · , and tensors are written as calligraphic capitals such as
A, T , · · · . A ≥ 0 means that all elements of A are nonnegative.

2 Preliminaries

In this section, we recall some useful notations, basic concepts and preliminary results.
We know that a third-order tensor A has column, row, and tube fibers, which are defined

by fixing every index but one and denoted by a:jk, ai:k and aij:, respectively. Correspond-
ingly, we obtain three matricizations of a tensor A :

A(1) = [a:11, a:21, . . . , a:J1, a:12, . . . , a:J2, . . . , a:1K , . . . , a:JK ] ∈ RI×JK ,
A(2) = [a1:1, a2:1, . . . , aI:1, a1:2, . . . , aI:2, . . . , a1:K , . . . , aI:K ] ∈ RJ×IK ,
A(3) = [a11:, a21:, . . . , aI1:, a12:, . . . , aI2:, . . . , a1J:, . . . , aIJ:] ∈ RK×IJ .

Let X = (xijt) ∈ Rn1×n2×n3 . As in [7], let X (i, :, :) denote the i-th horizontal slice,
X (:, j, :) to denote the j-th lateral slice; X (:, :, t) to denote the t-th frontal slice. We say that
X is a third order horizontally square tensor if all of its horizontal slices are square, i.e.,
n2 = n3. Similarly, X is a third order laterally square tensor (resp. frontally square tensor)
if all of its lateral slices (resp. frontal slices) are square, i.e., n1 = n3 (resp. n1 = n2).

For m,n ∈ N, assume D ⊆ Rm×n is a set of matrices. Let δD denotes the indicator
function of D such that

δD(A) =

{
0, A ∈ D,
∞, otherwise.

(2.1)
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Suppose x is a vector that can be decomposed into three blocks x1,x2,x3. Then, the
function f(x1,x2,x3) is called block multiconvex if, for each i ∈ [3], f is a convex function
of xi while other two blocks are fixed.

Next, we present the definition of tensor triple decomposition [13].

Definition 2.1. Let X = (xijt) ∈ Rn1×n2×n3 be a third order tensor. We say that X is
the triple product of a third order horizontally square tensor A = (aiqs) ∈ Rn1×r×r, a third
order laterally square tensor B = (bpjs) ∈ Rr×n2×r and a third order frontally square tensor
C = (cpqk) ∈ Rr×r×n3 , and denotes

X = ABC, (2.2)

if for i = 1, · · ·n1, j = 1, · · ·n2 and t = 1, · · ·n3, we have

xijt =

r∑
p,q,s=1

aiqsbpjscpqt. (2.3)

If
r ≤ mid{n1, n2, n3}, (2.4)

then we call (2.2) a low rank triple decomposition of X .

By Definition 2.1, we mainly focus on that X is nonnegative in this paper, and A, B, C
are also nonnegative.

3 Alternating Proximal Gradient (APG) Algorithm

In this section, we first give an alternating proximal gradient (APG) algorithm, and then
the global convergence and convergence rate are also studied.

To continue, we consider a given nonnegative third order tensor X ∈ Rn1×n2×n3 with
n1, n2, n3 ≥ 1 and a fixed positive integer r ≤ mid {n1, n2, n3}. Then, we have the following
optimization problem:

min
A≥0,B≥0,C≥0

f(A,B, C), (3.1)

where

f(A,B, C) =∥ X −ABC ∥2F=
n1∑
i=1

n2∑
j=1

n3∑
t=1

(
xijt −

r∑
p=1

r∑
q=1

r∑
s=1

aiqsbpjscpqt

)2

,

and A = (aiqs) ∈ Rn1×r×r, B = (bpjs) ∈ Rr×n2×r, C = (cpqk) ∈ Rr×r×n3 . By (3.1), we want
to obtain a triple decomposition ABC with triple rank not greater than r, to approximate
X .

Generally speaking, f(A,B, C) in (3.1) maybe not convex in joint variables A, B and C.
However, f is convex when any two variables in A, B, C are fixed. So f is block multiconvex,
which can be solved by the famous block coordinate descent (BCD) method [22, 6, 16, 20].

For the sake of computation in Algorithm 3.1, we present matrices Mk−1
1 ∈ Rr2×n2n3 ,

Mk−1
2 ∈ Rr2×n1n3 , Mk−1

3 ∈ Rr2×n1n2 in the k-th iteration with elements:

(Mk−1
1 )lm =

r∑
p=1

bk−1
pjs c

k−1
pqt , where l = q + (s− 1)r, m = j + (t− 1)n2, (3.2)
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(Mk−1
2 )lm =

r∑
q=1

akiqsc
k−1
pqt , where l = p+ (s− 1)r, m = i+ (t− 1)n1, (3.3)

(Mk−1
3 )lm =

r∑
s=1

akiqsb
k
pjs, where l = p+ (q − 1)r, m = i+ (j − 1)n1. (3.4)

Let A(1) ∈ Rn1×r2 be the mode-1 unfolding of the tensor A and B(2) ∈ Rn2×r2 be the
mode-2 unfolding of the tensor B and C(3) ∈ Rn3×r2 be the mode-3 unfolding of the tensor
C. Let X(i) be the mode-i unfolding of the tensor X . B∗ : Rni×r2 → T denotes refolding
mode-i unfolding of a tensor to the corresponding tensor.

Now, we first show how to updateA(1) at k-th iteration. Since f = 1
2

∥∥A(1)M
k−1
1 −X(1)

∥∥2
F
,

we know that

∇A(1)
f = (A(1)M

k−1
1 −X(1))(M

k−1
1 )

T
. (3.5)

Let

Lk−1
1 =

∥∥∥(Mk−1
1

)⊤
Mk−1

1

∥∥∥ , ωk−1
1 = min

{
ω̂k−1, δω

√
Lk−2
1

Lk−1
1

}
, (3.6)

where ∥A∥ is the spectral norm of A, δω < 1 and ω̂k−1 = tk−1−1
tk

with

t0 = 1, tk =
1

2

(
1 +

√
1 + 4t2k−1

)
.

Furthermore, let Âk−1
(1) = Ak−1

(1) + ωk−1
1

(
Ak−1

(1) −Ak−2
(1)

)
. By (3.5), it follows that

Ĝk−1
1 =

(
Âk−1

1 Mk−1
1 −X(1)

)
(Mk−1

1 )⊤.

Then we update Ak
(1) as below:

Ak
(1) = argmin

A(1)≥0

〈
Ĝk−1

1 , A(1) − Âk−1
(1)

〉
+
Lk−1
1

2

∥∥∥A(1) − Âk−1
(1)

∥∥∥2
F
,

which can be written in the closed form

Ak
(1) = max

{
0, Âk−1

(1) − Ĝk−1
1 /Lk−1

1

}
. (3.7)

Then, Bk
(2) and Ck

(3) can be updated similarly.

At the end of iteration k, we check whether f(Ak,Bk, Ck) ≥ f(Ak−1,Bk−1, Ck−1). If so,
we reupdate Ak

(1), B
k
(2), C

k
(3) by (3.7) with Âk−1

(1) = Ak−1
(1) , B̂k−1

(2) = Bk−1
(2) , Ĉk−1

(3) = Ck−1
(3) .
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Algorithm 3.1. Alternating proximal gradient (APG) method.
1: Input: Nonnegative tensor X . Choose an integer 1 ≤ r ≤ mid{n1, n2, n3}.
2: Output: Nonnegative factors A(1), B(2), C(3).
3: Initialization: Choose a positive number δω < 1 and randomize A−1

(1) = A0
(1),

B−1
(2) = B0

(2), C
−1
(3) = C0

(3), as nonnegative matrices of appropriate sizes.
4: for k = 1, 2, . . . do
5 : for n = 1, 2, 3 do
6: Compute Lk−1

n and setωk−1
n according to (3.6).

7: Let Âk−1
(1) = Ak−1

(1) + ωk−1
1

(
Ak−1

(1) −Ak−2
(1)

)
,

B̂k−1
(2) = Bk−1

(2) + ωk−1
2

(
Bk−1

(2) −Bk−2
(2)

)
,

Ĉk−1
(3) = Ck−1

(3) + ωk−1
3

(
Ck−1

(3) − Ck−2
(3)

)
.

8: Update Ak
(1), B

k
(2), C

k
(3) according to (3.7).

9: end for
10: if f(Ak,Bk, Ck) ≥ f(Ak−1,Bk−1, Ck−1) then
11: Reupdate Ak

(1), B
k
(2), C

k
(3) according to (3.7) with Âk−1

(1) = Ak−1
(1) , B̂k−1

(2) = Bk−1
(2) ,

Ĉk−1
(3) = Ck−1

(3) .
12: end if
13: if stopping criterion is satisfied then
14: Return Ak

(1), B
k
(2), C

k
(3).

15: end if
16: end for

A = B∗(A(1)), B = B∗(B(2)) and C = B∗(C(3)) are the final required results.
To give the convergence of the algorithm, we first review the KL inequality, which is

essential in the following analysis.

Definition 3.1. A function ψ(x) satisfies the Kurdyka-Lojasiewicz (KL) property at point
x ∈ dom(∂ψ) if there exists θ ∈ [0, 1) such that

|ψ(x)− ψ(x)|θ

dist(0, ∂ψ(x))
, (3.8)

is bounded around x under the following notational conventions: 00 = 1, ∞/∞ = 0/0 = 0.
In other words, in a certain neighborhood U of x, there exists ϕ(s) = cs1−θ for some

c > 0 and θ ∈ [0, 1) such that the KL inequality holds:

ϕ′(|ψ(x)− ψ(x)|) dist(0, ∂ψ(x)) ≥ 1 (3.9)

for any x ∈ U ∩ dom(∂ψ) and ψ(x) ̸= ψ(x), where dom(∂ψ) ≜ {x : ∂ψ(x) ̸= ∅} and
dist(0, ∂ψ(x)) ≜ min{∥y∥ : y ∈ ∂ψ(x)}.

Let Dn = RIn×r2

+ and δDn(·) be the indicator function on Dn for n = 1, 2, 3. Then (3.1)
is equivalent to

min
A,B,C

F (A,B, C) ≡ f(A,B, C) + δD1

(
A(1)

)
+ δD2

(
B(2)

)
+ δD3

(
D(3)

)
. (3.10)

Obviously, F is continuous in dom(F ) and inf F > −∞. ∇fki is Lipschitz continuous, and
there exist constants 0 < ℓi ≤ Li <∞, i = 1, 2, 3 for parameters Lk−1

i obey ℓi ≤ Lk−1
i ≤ Li
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and

fk1

(
Ak

(1)

)
≤ fk1

(
Âk−1

(1)

)
+
〈
Ĝk

1 , A
k
(1) − Âk−1

(1)

〉
+
Lk−1
1

2

∥∥∥Ak
(1) − Âk−1

(1)

∥∥∥2 ,
fk2

(
Bk

(2)

)
≤ fk2

(
B̂k−1

(2)

)
+
〈
Ĝk

2 , B
k
(2) − B̂k−1

(2)

〉
+
Lk−1
2

2

∥∥∥Bk
(2) − B̂k−1

(2)

∥∥∥2 ,
fk3

(
Ck

(3)

)
≤ fk3

(
Ĉk−1

(3)

)
+
〈
Ĝk

3 , C
k
(3) − Ĉk−1

(3)

〉
+
Lk−1
3

2

∥∥∥Ck
(3) − Ĉk−1

(3)

∥∥∥2 .
So, F satisfies the Assumption 1 and 2 of [22], the same with [22] we also get the following

conclusions.

Lemma 3.2. Let
{
Ak

(1), B
k
(2), C

k
(3)

}
be the sequence generated by Algorithm 3.1 with

0 ≤ ωk−1
i ≤ δω

√
Lk−2
i /Lk−1

i for δω < 1.

Then

lim
k→∞

∥∥∥Ak
(1) −Ak+1

(1)

∥∥∥2 = 0, lim
k→∞

∥∥∥Bk
(2) −Bk+1

(2)

∥∥∥2 = 0, lim
k→∞

∥∥∥Ck
(3) − Ck+1

(3)

∥∥∥2 = 0.

.

Proof. Let F k
1 = fk1 + δD1

(A(1)). By Lemma 2.1 [22], we know that

F k
1

(
Ak−1

(1)

)
− F k

1

(
Ak

(1)

)
≥ Lk−1

1

2

∥∥∥Âk−1
(1) −Ak

(1)

∥∥∥2 + Lk−1
1

〈
Âk−1

(1) −Ak−1
(1) , A

k
(1) − Âk−1

(1)

〉
≥ Lk−1

1

2

∥∥∥Ak−1
(1) −Ak

(1)

∥∥∥2 − Lk−2
1

2
δ2ω

∥∥∥Ak−2
(1) −Ak−1

(1)

∥∥∥2 .
(3.11)

Similarly, we can get that

F k
2

(
Bk−1

(2)

)
− F k

2

(
Bk

(2)

)
≥ Lk−1

2

2

∥∥∥Bk−1
(2) −Bk

(2)

∥∥∥2 − Lk−2
2

2
δ2ω

∥∥∥Bk−2
(2) −Bk−1

(2)

∥∥∥2 , (3.12)

F k
3

(
Ck−1

(3)

)
− F k

3

(
Ck

(3)

)
≥ Lk−1

3

2

∥∥∥Ck−1
(3) − Ck

(3)

∥∥∥2 − Lk−2
3

2
δ2ω

∥∥∥Ck−2
(3) − Ck−1

(3)

∥∥∥2 . (3.13)

Therefore,

F
(
Ak−1

(1) , B
k−1
(2) , C

k−1
(3)

)
− F

(
Ak

(1), B
k
(2), C

k
(3)

)
=

3∑
i=1

(
F k−1
i

(
Ak−1

(1) , B
k−1
(2) , C

k−1
(3)

)
− F k

i

(
Ak

(1), B
k
(2), C

k
(3)

))
≥ Lk−1

1

2

∥∥∥Ak−1
(1) −Ak

(1)

∥∥∥2 − Lk−2
1

2
δ2ω

∥∥∥Ak−2
(1) −Ak−1

(1)

∥∥∥2
+
Lk−1
2

2

∥∥∥Bk−1
(2) −Bk

(2)

∥∥∥2 − Lk−2
2

2
δ2ω

∥∥∥Bk−2
(2) −Bk−1

(2)

∥∥∥2
+
Lk−1
3

2

∥∥∥Ck−1
(3) − Ck

(3)

∥∥∥2 − Lk−2
3

2
δ2ω

∥∥∥Ck−2
(3) − Ck−1

(3)

∥∥∥2 .
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Summing the above inequality over k from 1 to K, we have

F (A0
(1), B

0
(2), C

0
(3))− F (AK

(1), B
K
(2), C

K
(3))

≥
K∑

k=1

(
Lk−1
1

2

∥∥∥Ak−1
(1) −Ak

(1)

∥∥∥2 − Lk−2
1

2
δ2ω

∥∥∥Ak−2
(1) −Ak−1

(1)

∥∥∥2
+
Lk−1
2

2

∥∥∥Bk−1
(2) −Bk

(2)

∥∥∥2 − Lk−2
2

2
δ2ω

∥∥∥Bk−2
(2) −Bk−1

(2)

∥∥∥2
+
Lk−1
3

2

∥∥∥Ck−1
(3) − Ck

(3)

∥∥∥2 − Lk−2
3

2
δ2ω

∥∥∥Ck−2
(3) − Ck−1

(3)

∥∥∥2)
≥

K∑
k=1

(

(
1− δ2ω

)
Lk−1
1

2

∥∥∥Ak−1
(1) −Ak

(1)

∥∥∥2 + (
1− δ2ω

)
Lk−1
2

2

∥∥∥Bk−1
(2) −Bk

(2)

∥∥∥2
+

(
1− δ2ω

)
Lk−1
3

2

∥∥∥Ck−1
(3) − Ck

(3)

∥∥∥2).
Since F is lower bounded, taking K → ∞ completes the proof.

Theorem 3.3. Let
{
Ak,Bk, Ck

}
be the sequence generated by Algorithm 3.1. Assume that{

Ak,Bk, Ck
}

is bounded and there is a positive constant ℓ such that ℓ ≤ Lk
n for all k and n.

Then
{
Ak,Bk, Ck

}
converges to a critical point {A,B, C}.

Proof. Obviously, ∇f is Lipschitz continuous on any bounded set. According to [22], we can
get that F (A,B, C) is a semialgebraic function and satisfies the KL inequality at {A,B, C}.

If F
(
Ak0 ,Bk0 , Ck0

)
= F (A,B, C) at some k0, then {Ak,Bk, Ck} = {Ak0 ,Bk0 , Ck0} =

{A,B, C} for all k ≥ k0. It remains to consider F
(
Ak,Bk, Ck

)
> F (A,B, C) for all k ≥ 0.

Since {A,B, C} is a limit point and F
(
Ak,Bk, Ck

)
→ F (A,B, C), there must exist an integer

k0 such that {Ak0 ,Bk0 , Ck0} is sufficiently close to {A,B, C} as required in Lemma 2.6 [22].
Hence, the entire sequence

{
Ak,Bk, Ck

}
converges according to Lemma 2.6 [22]. Since

{A,B, C} is a limit point of {Ak,Bk, Ck}, we have {Ak,Bk, Ck} → {A,B, C}.
Similar with the proof of [22], we obtain the convergence rate of Algorithm 3.1. For the

sake of completeness, we give the proof accordingly.

Theorem 3.4. (Convergence rate). Let
{
Ak,Bk, Ck

}
be the sequence generated by Al-

gorithm 3.1 and converges to a critical point {A,B, C}. For the convenience, let X k ={
Ak,Bk, Ck

}
. Then the following hold:

1. If θ = 0,X converges to X in finitely many iterations.
2. If θ ∈

(
0, 12

]
,
∥∥X k −X

∥∥ ≤ Cτk for all k ≥ k0, for certain k0 > 0, C > 0, τ ∈ [0, 1).

3. If θ ∈
(
1
2 , 1
)
,
∥∥X k −X

∥∥ ≤ Ck−(1−θ)/(2θ−1) for all k ≥ k0, for certain k0 > 0, C > 0.

Proof. If θ = 0, we must have F
(
X k0

)
= F (X ) for some k0. Otherwise, F

(
X k
)
> F (X ) for

all sufficiently large k. The KL inequality gives c ·dist
(
0, ∂F

(
X k
))

≥ 1 for all k ≥ 0, which
is impossible since X k → X and 0 ∈ ∂F (X ). The finite convergence now follows from the
fact that F

(
X k0

)
= F (X ) implies X k = X k0 = X for all k ≥ k0.

For θ ∈ (0, 1), we assume F
(
X k
)
> F (X ) = 0 and define Sk =

∑∞
i=k

∥∥X i −X i+1
∥∥ .

Then according to [22] we can get

Sk ≤ C1ϕ (Fk) +

(
3δω

1− δω

√
L

ℓ
+ 2

)
(Sk−2 − Sk) for k ≥ 2, (3.14)
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where ℓ = mini ℓi, L = maxi Li and C1 = 9(L+sLG)
2ℓ(1−δω)2 . Since Sk−2 − Sk−1 ≥ 0. Using ϕ(s) =

cs1−θ, we have from (A.8) [22] for sufficiently large k that

c(1− θ) (Fk)
−θ ≥ (L+ sLG)

−1 (∥∥X k −X k−1
∥∥+ ∥∥X k−1 −X k−2

∥∥)−1
, (3.15)

or, equivalently, (Fk)
θ ≤ c(1− θ) (L+ sLG) (Sk−2 − Sk) . Then,

ϕ (Fk) = c (Fk)
1−θ ≤ c (c(1− θ) (L+ sLG) (Sk−2 − Sk))

1−θ
θ . (3.16)

Letting C2 = C1c (c(1− θ) (L+ sLG))
1−θ
θ and C3 = 3δω

1−δω

√
L
ℓ + 2, we have from (3.14) and

(3.16) that
Sk ≤ C2 (Sk−2 − Sk)

1−θ
θ + C3 (Sk−2 − Sk) . (3.17)

When θ ∈
(
0, 12

]
, i.e., 1−θ

θ ≥ 1, (3.17) implies that Sk ≤ (C2 + C3) (Sk−2 − Sk) for
sufficiently large k since Sk−2−Sk → 0, and thus Sk ≤ C2+C3

1+C2+C3
Sk−2. Note that

∥∥X k −X
∥∥ ≤

Sk. Therefore, item 2 holds with τ =
√

C2+C3

1+C2+C3
< 1 and sufficiently large C.

When θ ∈
(
1
2 , 1
)
, i.e., 1−θ

θ < 1. Since Sk → 0 as k → ∞, we deduce from (3.17) that
there exist an integer N1 ≥ N0 and a positive constant C4 such that

S
θ

1−θ

k ≤ C4 (Sk−2 − Sk) , (3.18)

for all k ≥ N1. Define h : (0,+∞) → R by h(s) = s−
θ

1−θ and let R ∈ (1,+∞). Take k ≥ N1

and assume first that h (Sk) ≤ Rh (Sk−2) . By rewriting (3.18) as

1 ≤ C4 (Sk−2 − Sk)

S
θ

1−θ

k

,

we obtain that

1 ≤ C4 (Sk−2 − Sk)h (Sk) ≤ RC4 (Sk−2 − Sk)h (Sk−2)

≤ RC4

∫ Sk−2

Sk

h(s)ds ≤ RC4
1− θ

1− 2θ

[
S

1−2θ
1−θ

k−2 − S
1−2θ
1−θ

k

]
.

(3.19)

Thus if we set µ = 2θ−1
(1−θ)RC4

> 0 and ν = 1−2θ
1−θ < 0 one obtains that

Sν
k − Sν

k−2 ≥ µ > 0, Sν
k + Sν

k−1 − Sν
k−1 − Sν

k−2 ≥ µ > 0. (3.20)

Assume now that h (Sk) > Rh (Sk−2) and set q =
(
1
R

) 1−θ
θ ∈ (0, 1). It follows immediately

that Sk ≤ qSk−2 and furthermore recalling that ν is negative - we have

Sν
k ≥ qνSν

k−2, Sν
k − Sν

k−2 ≥ (qν − 1)Sν
k−2.

Since qν − 1 > 0 and Sp → 0+ as p → +∞, there exists µ̄ > 0 such that (qν− 1) Sν
p−1 > µ̄

for all p ≥ N1. Therefore we obtain that

Sν
k + Sν

k−1 − Sν
k−1 − Sν

k−2 ≥ µ̄. (3.21)

If we set µ̂ = min{µ, µ̄} > 0, one can combine (3.20) and (3.21) to obtain that

Sν
k + Sν

k−1 − Sν
k−1 − Sν

k−2 ≥ µ̂ > 0,
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for all k ≥ N1. By summing those inequalities from N1 to some N greater than N1 we
obtain that Sν

N + Sν
N−1 − Sν

N1+1 − Sν
N1

≥ µ̂ (N −N1) and

SN ≤
(
1

2

(
Sν
N1+1 + Sν

N1
+ µ̂(N −N1)

)) 1
ν

≤ CN− 1−θ
2θ−1 ,

for sufficiently large C and N . This completes the proof.

4 Non-negative Tensor Completion

In this section, we consider the non-negative tensor completion problem:

min

{
∥PΩ(ABC −M)∥2F :

A ∈ Rn1×r×r,B ∈ Rr×n2×r, C ∈ Rr×r×n3

A ≥ 0,B ≥ 0, C ≥ 0

}
. (4.1)

To solve (4.1), we consider its equivalent form:

min G(A,B, C,Z) = ∥ABC − Z∥2F
s.t. A ≥ 0,B ≥ 0, C ≥ 0,PΩ(Z −M) = 0,

(4.2)

where Ω indexes the known entries of M and PΩ(A) returns a copy of A that zeros out the
entries not in Ω. Our algorithm shall cycle through the decision variables A,B, C and Z.
It should be noted that Algorithm 3.1. is modified at k-th iteration such that M = Zk−1

wherever M is referred to. Then, Z is updated as (3.10)

Zk = PΩ(M) + PΩc (ABC) , (4.3)

where Ωc is the complement of Ω. Note that for a fixed A,B, C, G(A,B, C,Z) is a strongly
convex function of Z with modulus 1. Hence, according to Theorem 3.3, the convergence
result for Algorithm 3.1 still holds for this algorithm with extra update (4.3).

5 Numerical Examples

In this section, we investigate some data to show that they can be approximated by noneg-
ative triple decomposition of low triple rank very well.

Example 5.1. Let X ∈ R10×15×100 be a randomly generated nonnegative tensor. Set
the corresponding triple rank r = 15. A noise term is added such that X = X + λε,
ε = randn(10, 15, 100), where λ = 1e−3 is the parameter to control the noise term. The
experimental result is shown in Figure 1.

We compute the triple decomposition approximation ABC by Algorithm 3.1 and calculate
the relative error of nonnegative low triple rank approximation

RelativeError =
∥X −ABC∥F

∥X∥F
.

Figure 1 illustrates the relative error of the low triple rank approximation and the relative
error is about 1.7%.

Example 5.2. Let X ∈ RN1×N2×N3 be a randomly generated nonnegative tensor, where
N1, N2, N3 ∈ N. The triple rank is considered in three different cases. A noise term is added
such that X = X + λε, ε = randn(N1, N2, N3), where λ = 1e−3 is the parameter to control
the noise term. Experimental results are shown in Table 1.
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Figure 1: Relative error of low nonnegative triple rank approximation of the X ∈ R10×15×100

Table 1: The numerical results of the problem in Example 5.1

N1 N2 N3 r relerr Time IT error
10 2.2% 3.42 250 2.5307

10 20 100 15 1% 42.4 1000 0.6675
20 0.71% 113 968 0.3766
15 1.03% 54.1 1000 1.4881

15 30 100 25 0.62% 392 1000 0.6311
30 0.60% 100 733 0.7422
10 0.60% 70 136 61.3114

200 200 200 15 0.45% 312 282 46.1830
20 0.36% 977 449 34.0303

In Table 1, “relerr” denotes the relative error, “IT” denotes the number of iterations,
“Time” denotes the CPU time in seconds and error = ∥X −ABC∥F . This result shows
clearly the three order nonnegative tensor can be approximated by low rank triple decom-
position very well and we can see that the rank increases, the relative error of the tensor by
this method decreases.

Example 5.3. In this test, we randomly generate a nonnegative tensor X ∈ R10×30×100,
and set three different triple rank of the tensor respectively. In this experiment, we compare
the test results with and without non-negative constraints. Experimental results are shown
in Table 2.

Table 2: The numerical results of the problem in Example 5.3

r relerr Time IT error
10 2.2% 8.32 501 3.8206

constrained 15 1.56% 32.1 613 2.4464
30 1.37% 92.6 985 2.0827
10 1.97% 17.47 1000 3.0881

unconstrained 15 1.02% 46.46 904 1.0352
30 0.71% 100 738 0.6121
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Figure 2: Relative error of the tensor recovery of X ∈ R200×200×200

In the theory point of view, its apparent that the rank of the nonnegative triple decom-
position for a third order nonnegative tensor is greater than or equal to the rank associated
to the unconstrained triple decomposition. From Table 2, for given fixed rank, the error and
relative error for the unconstraint case are less than the nonnegative constraint case.

Example 5.4. Let X ∈ R200×200×200 be a randomly generated nonnegative tensor. Set
the corresponding triple rank r = 15. We sample fifty percent of elements of this tensor.
Experimental result is shown in Figure 2.

Figure 2 illustrates the relative error of the tensor recovery via nonnegative triple de-
composition and the relative error is about 0.02202%.

Example 5.5. Let X ∈ RN1×N2×N3 be a randomly generated nonnegative tensor, where
N1, N2, N3 ∈ N. The sampling rate is considered in three different cases. Experimental
results are shown in Table 3.

Table 3: The numerical results of the problem in Example 5.5

N1 N2 N3 r sr relerr Time IT
0.3 6.9309× 10−4 11.7 94

10 20 100 20 0.5 5.6981× 10−4 10.5 90
0.9 4.2789× 10−4 10.6 83
0.3 3.4973× 10−4 93.5 76

15 30 100 30 0.5 2.9805× 10−4 82.9 68
0.9 2.1418× 10−4 89.3 73
0.3 2.8398× 10−4 89.7 81

200 200 200 15 0.5 2.3535× 10−4 65.7 59
0.9 2.2021× 10−4 42.8 37

In Table 2, “sr” denotes sampling rate. As the sampling rate increases, the relative error
decreases. Clearly, through the proposed method can achieve very good result.
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6 Conclusions

In this paper, we introduced a nonnegative triple decomposition for third order nonnega-
tive tensors, which decomposes a third order nonnegative tensor to three third order low
rank nonnegative tensors in a balanced way. A nonnegative tensor completion method was
proposed based on such low rank nonnegative triple decomposition. Furthermore, an alter-
nating proximal gradient algorithm was provided and its convergence was also established.
Numerical experiments confirmed the efficiency of the method.
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