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Abstract: In this paper, a quarticly convergent method is proposed for solving a system of nonlinear
equations, which is a three-step iterative method. This method is used to find the largest H eigenvalue of
irreducible nonnegative tensor and the Z eigenvalues of general tensors, where its computational complexity
is slightly greater than Newton method. Due to the particular structure of the problem, the computation
of three order tensor and four order tensor are implicit, and a economic computing scheme is given in the
algorithm. The global and quartic convergence of the new method are proved. Numerical results indicate
that the proposed method is competitive and efficient on some tensor problems.
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Introduction

Let R be the real field, and m,n be positive integers. An m order n dimensional tensor A
consists of n'™ entries in R:

A= (Ciyiyin)s  Qiyigein, € By 1 <linyin, oo iy < (1.1)

A is called nonnegative (or positive) [1] if @ 45...5,, > 0 (or @ijip..s,, > 0). A is called
symmetric [17] if its entries a;,4,...4,, are invariant under any permutation of their indices.
A, is called semi-symmetric [14] if @i, ...c,, = Qio(iy..i,,), Where 1 < <n and o(iz---ip)
is any permutation of is -+ - iy,.
An m order n dimensional tensor A is called reducible [1] if there exists a nonempty
proper index subset I C {1,2,--- ,n} such that

Qiqin-iy, = O7 Vil S I,Vig, o ,im ¢ I.

If A is not reducible, then we call A irreducible.

Since Qi [17] introduced two kinds of eigenvalues, H-eigenvalue and Z-eigenvalue, for
even order real symmetric tensor, the tensor eigenvalue problems have become an important
part of numerical multilinear algebra.
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A real number A is called an H-eigenvalue of A if it and a nonzero real vector x are
solutions of the following homogeneous polynomial equation:

Azm=t = \glm=1l, (1.2)

where
n

m—1 _ o T
Az = E Qiigeviy, Tig = * T, (1.3)

Q2,0 i, =1 1<i<n

is an n-dimensional column vector,

(x[m—l])i — x;n—l’
and z is called an H-eigenvector of A associated with the H-eigenvalue A. A real number A
and a real vector x € R™ are called a Z-eigenvalue of A and a Z-eigenvector of A associated
with the Z-eigenvalue, respectively, if they satisfy:

Az P =Xz and zTz=1. (1.4)

In the H-eigenvalue setting, Lim [12] and Chang et al. [1, 2] defined irreducible ten-
sors and extended Perron-Frobenius theorem to nonnegative irreducible tensors. After that,
scholars begun to study the largest H-eigenvalue of a nonnegative irreducible tensor in depth.
Ng et al. [13] proposed the NQZ method for the largest H-eigenvalue of a nonnegative ir-
reducible tensor. Pearson [16] and Chang et al. [3] introduced essential positive tensors
and primitive tensors, respectively. The linear or R-linear convergence of the NQZ method
was established in [3, 27, 9] under primitivity or weak primitivity. Yang and Yang [22, 23]
generalized the weak Perron-Frobenius theorem to general nonnegative tensors. Chen et
al. [4] provided inexact power-type methods for computing the largest H-eigenvalue of a
general nonnegative tensor. Ni and Qi [14] employed Newton method for finding the largest
eigenvalue of a nonnegative homogeneous polynomial map, and obtained the quadratic con-
vergence. They also defined the semi-symmetric tensors, and proved that there is an unique
semi-symmetric tensor A, for any tensor A.

Much of the properties concerning the Perron-Frobenius theorem fail to hold in the
Z-eigenvalue setting. It is NP-hard to compute the extreme Z-eigenvalues of higher order
tensors. Qi et al. [18] proposed an elimination method for computing the largest Z-eigenvalue
when (n,m) = (2,3). Kolda et al. [10] proposed a shifted power method(SS-HOPM)
for computing a Z-eigenvalue and its associated eigenvector for a symmetric tensor. Zeng
and Ni [26] proposed a quasi-Newton method for computing Z-eigenpairs of a symmetric
tensor. Based on sequential semidefinite programming, Hu et al. [8] proposed a method
for computing the extreme Z-eigenvalues. Hao et al. [6] proposed a sequential subspace
projection method for computing extreme Z-eigenvalues.

Chang et al. [2] defined generalized eigenvalue which unified the definitions of H-
eigenvalue, Z-eigenvalue in Qi [17], and that of the D-eigenvalue in Qi et al. [19]. Then
there are a few methods for solving generalized eigenvalues. Han [7] proposed an uncon-
strained optimization method for even order symmetric tensors, and obtained superlinearly
convergence by using BFGS method. Jacobian SDP relaxations in polynomial optimization
was used to compute all real eigenvalues of symmetric tensors in [5]. Kolda et al. [11]
improved the shifted power method(SS-HOPM), which can choose the shift automatically,
and applied to compute generalized tensor eigenvalues. Based on [6], Yu et al. [25] pro-
posed an adaptive gradient method for computing generalized tensor eigenpairs, which is
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linearly convergent. Nearly, Zhang et al. [28] studied the properties of semi-symmetric ten-
sor, and proposed a convergent Newton algorithm for computing Z-eigenvalues of an almost
nonnegative irreducible tensor.

When the order and dimension of tensor are large, the convergence of general methods
for computing tensor eigenvalue will be slow. Hence, methods with rapid convergence need
to be investigated. In this paper, we will propose a quarticly convergent method for comput-
ing generalized eigenvalues of general tensors. We will transform the solving problem into
nonlinear equations and propose a three-step iterative method to solve it. The associated
semi-symmetric tensor of a general tensor can be obtained. Due to the particular structure
of tensor eigenvalues, the computation of Jacobian matrices, three order tensors and fourth
order tensors are implicit, and a economic computing scheme is given in the algorithm.
We will also prove the descent property of the quartic direction. The global and quartic
convergence can be established.

Preliminaries

In this section, we will recall some important definitions and theories. The definition of the
generalized eigenvalue can be seen in the following.

Definition 2.1. [2] Let A and B be two m order n dimensional symmetric tensors on RI™™,
Assume that both Az™~1 and Bz™~! are not identical to zero. We say (A, x) € Rx (R"\{0})
is a generalized eigenpair of (A, B), if the system of equations

(A= MB)z™ ! =0 (2.1)
possesses a solution.

Remark 2.2. According to Lemma 2.1 in [28], we know that Az™~! and Bx™~! are not
identical to zero if and only if their associated semi-symmtric tensors As and B are not

zero. The computational formula to the associated semi-symmtric tensors Ag and By can
refer to [14] and [28].

Assume that m is even. If B is an unit tensor U, whose entries are

1 ifi == =,
Yirizewsim = { 0 otherwise, (2.2)

then the generalized eigenpair is H-eigenpair.
Let I, be the n x n unit matrix. If B = I}, where | = 5, which is the tensor product of
I copies of the unit matrices I, then the formula (2.1) becomes

Azt = )\(xTx)x.

The generalized eigenpair reduces to Z-eigenpair if 2Ty =1,
Chang et al. [1] extended Perron-Frobenius theorem to nonnegative irreducible tensors.

Theorem 2.3 ([1]). If A is an irreducible nonnegative tensor of order m and dimension n,
then there exist A\g > 0 and zo > 0,29 € R such that

Axg“l = )\Oxgm—l} ,

Moreover, if A is an eigenvalue with nonnegative eigenvector, then A = Ag. If X is an
eigenvalue of A, then || < Ao.
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Clearly, from this result, g is the largest eigenvalue of A.
Based on Theorem 2.3, Ng et al. [13]| proposed the NQZ method for computing the
largest H-eigenvalue of a nonnegative irreducible tensor.

Algorithm 2.1 (The NQZ method).
Step 0. Choose (®) > 0,2(®) € R". Let y(® = A(z(®)™! and set k := 0.
Step 1. Compute

(k) \[77]
LB+ — (y ); ’

y(k:Jrl) _ ‘A(x(kJrl))mfl’

_ . (y(k+1))i
Apy1 = L (zFFDym—1’
i 7

3 _ (y(k+1))i
Akt1 = zéﬂ%’io (x(k+1))m__17
i 7

Step 2. If A\pyq1 = Apy1, stop. Otherwise, replace k by k + 1 and go to Step 1.

Definition 2.4. [28] A tensor A of order m and dimension n is called almost nonnegative
and irreducible, if its associated semi-symmetric tensor A is nonnegative and irreducible.

Based on this, we can solve the eigenvalue problem of a wider range of tensors, as long
as A is an almost nonnegative and irreducible tensor. For detailed description, it can be
seen in [28].

For computing Z-eigenpairs of a symmetric tensor, the classical method is the shifted
power method(SS-HOPM). It was provided by Kolda et al. [10] based on S-HOPM, where
a suitably modified function is proposed to guarantee the convergence.

Algorithm 2.2 (The SS-HOPM method).
Step 0. Choose xy € R™ with ||xo|| = 1. Let Ao = Az{'. @ € R,e > 0. Let k = 0.
Step 1. If a > 0,

N —1
Tpyr = Az + axy,

otherwise
j}k+1 = —(AZZ?ZL_l + O[l'k).

Step 2.

Try1

Th+1 = 5 )‘k-l-l = Amzlﬂ

[Z5 41

Step 3. If |Ax+1 — \i| < &, stop, otherwise k := k + 1, go to Step 1.
A Quarticly Convergent Algorithm for Computing the Eigenval-
ues of Tensors

At first, we propose a quarticly convergent algorithm for solving general system of nonlinear
equations, then use this algorithm to find the generalized eigenvalues of tensors.
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A quarticly convergent algorithm for solving general system of nonlinear
equations

In order to solve (2.1), we consider a system of nonlinear equations
F(w) =0, (3.1)

where F : Rt — R
There is a Chebyshev method in [21] for solving (3.1) where the k-th iteration is

F'(wp)ar = —F(wr),
Frlanhe = —Fln) ~ 3Pl 62
Wpt1 = Wi +bg, £=0,1,2,3,------ )

This method possesses locally cubic convergence.
Inspiring by this idea, we present a new method with higher order convergence where
the k-th iteration is computed by the following formula

F'(wy)ag = —F(wg),
F'(w)by = —F(wi) — 5 F" (wy)ai,
F'(wr)er = —F(wi) — %F

Wi+l =wg +cx, K=0,1,2,3,------ .

(3.3)

Remark 3.1. (1) This new method is meaningful in theory. In the following section, it
is proved that the new method possesses locally quartic convergence. (2) It needs huge
computation for the second and third derivatives, and is not suitable for solving general
system of nonlinear equations.

However, we can give an economical computing scheme of higher derivative of special
system of nonlinear equations generated from tensor eigenvalue problems, and can obtain an
quartic convergent algorithm for solving tensor eigenvalue problem with appropriate amount
of computation.

Some economical computing scheme of higher derivative in tensor eigen-
value problems

In this paper, we consider the general tensors A. Its associated semi-symmetric tensor Ag
can be computed by Lemma 2.1 in [14]. For convenience, we use A to denote semi-symmetric
tensor Ay in the following. Now we transform (2.1) into a system of nonlinear equations

re - (4% ).

where w = (z,\), and A is a semi-symmetric tensor.
By taking the derivative of F'(w), we can easily obtain the Jacobian matrix J(w) as
tensors Ay, B are at least semi-symmetric,

(3.4)

o (m=1)(A—=AB)z™2 —Bgm~!
Py = (O Y, 35)
where n
(Axm_Q)ij = Z a/iji3"'7;'mxi3 o xi'r)x’i’j = 1’ e ’n' (3.6)

i3, im=1
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In the derivative process, we use the following formula

=d(Az%,;; 3.7

St = d(Aa ), (3.7

where 1 < d < m, which can be seen in [14]. Then we can also compute F"(w) and

F"(w). For any n + 1 dimensional vector y = (y1,%2,"** , Un,Yns1)* = (J%,yns1)?, where
U= (y1,y2, - ,yn)T is for convenience we have

= 2)Q(z, A, Y) — ynt1P(z, )z
F"(w 2:m—l([(m T It ’ , 3.8
( )y ( ) f:ETP(x,y)y ( )
=3)Q(z, A, Y) = 2yn1P(2,9)]y
F(3)OJ 3:m_1 m—2 ([(m » D __+ ) , 3.9
(@) = (m = 1)m—2) sl (3:9)

where Q(I’, A, y) = (A - )\B)Im74y27 P(IE, g) = meisga

n

(Axm_4g2)ij = Z Qijig i Lig " xim—2gi7nflgi7n7i?j =12,---.,n, (310)

i3, im =1
The formulas (3.8)-(3.9) hold when tensor A is semi-symmetric, because
Axm_4y2x _ .Axm_?’gf.

From (3.8)-(3.9), it is easy to see that the main computation focuses on (A—\B)z™ %, (A—
AB)2z™m =3 (A — AB)z™~2 and (A — AB)z™~!. By the idea in [20], we first compute (A —
AB)z™~%, and then compute

(A= AB)z™ 3 = (A - \B)z™ . 1,

(A= MB)z™ 2 = (A - \B)z2™ 3 .z,
(A= AB)z™ ' = (A—-AB)z™ 2. 2,

which is an economic computational scheme.
We use the nested scheme as above to multiply tensors by vectors. Let A be an m order
n dimensional tensor, and Az* is an m — k order n dimensional tensor. There are

upy = < m—k+n—1 )
n—1
different elements in Az*. Suppose that Az*~! is known, Az* = Az*~1.z, each element of
Az* needs n multiplications. Then we need wuy - n multiplications to get Az*. So the total
multiplications to get Az* are Zle u; -n. Therefore, by the formulas (3.4) and (3.5), we can
compute the multiplications to get a Newton direction. It needs O((n + 1)?) multiplications

to solve a linear equations by LU-decomposition. And from Table 1, a Newton direction
needs (p1 + p2) - n + O((n + 1)3) multiplications, where

m—1 m
P11 = g Uk, P2= E Uk
k=1 k=1

By the formulas (3.8), we can compute the multiplications of a Chebyshev direction.

From Table 2, there are (p1 + p2) - n multiplications to get F”(wy)ai. From Table 3, a
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Table 1: The main multiplications of a Newton direction

F' (w) F(wr)
(A—\B)z}]? B! (A= AB)z" ' | Bal®
multiplications Zk:_f Uk - N ZZ;I Up - N Up—1 * T U * T
Table 2: The multiplications of F"(wy)aj
(A—AB)z"* B3 (A—AB)z;"%a? | Bx]" Pa; | Others

m—4 m—3 2
b1 Uk T Doy Uk | (U3 Um—2) N | Up_2-n | 20°+n

Chebyshev direction needs (p1 + p2 + p3) - n + O((n + 1)3) multiplications, where

m—1 m
p3 = Z ug + Z Uk -

k=m—3 k=m—2

By the formulas (3.9), we can compute the multiplications of a Quartic direction. From
Table 4, a Quartic direction needs (p; + p2 + 2p3) - n +n? +n + O((n + 1)®) multiplications.

Remark 3.2. (1) When tensor B is a special tensor, such as an unit tensor, the computation
of Bx™~3 is simple. (2) For linear equations, the main computation is LU-decomposition of
F'(wy,). Hence, the difference between the computation of three directions is very small. (3)
When m = 4,
p1 =p2 =p3 = a(n) +o(a(n)),

where a(n) = n(n + 1)(n + 2)/6. The calculation of a Quartic direction is 4/3 times as
Chebyshev direction, and twice as Newton direction. When m > 4, the principal term of
multiplications is include in pj,p2, then the calculation of the three directions is almost the
same.

Quarticly convergent algorithm for tensor eigenvalue problem

In order to guarantee the descent property, we deduce a sufficient descent condition of
Quartic direction.
Define the merit function

fw) = 5 IFE)I,
then
Viw) = F () F).

Lemma 3.3. Let wy be a current iterate point, F(wy) # 0, and ax be a Newton direction
which satisfies
F’(wk)ak = —F(wk),

and by satisfies
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Table 3: The main multiplications of a Chebyshev direction

F"(wk)ai F'(wy) F(wy)
(A— Bz B! (A= AB)z;* ' | Bal®
(p1+p2) 1 | (Um—3+Um—2) 1 | (Um—2+ Upn_1) -7 Ump—1 - N Uy

Table 4: The main multiplications of a Quartic direction

e (wk)bz F”(wk)bi F”(wk)bi F'(wy) | F(wy)
(p1+p2)-n| n*+n P3N P3N

It
—F(wi) TF" (w)b? — §F<wk>TF<3><wk>b2 < 29| F(wp))? (3.11)

holds, where ~v € (0,1), then Quartic direction ci, defined by (3.3) is a descent direction.

Proof. From (3.3), we have that Quartic direction ¢y, satisfies
/ Lo 2 1 (3) 3
Fllwr)ew = —F(wr) = S F (wi)by — 7 (wi)b,

and

Viwe)Ter = Flw)TF (wi)er
— —F(wr) TF(wr) = LF(n) TP (@r)b2 — LF () T F® ()b
< (v = DIF(wi)l* <0,

where the first inequality is obtained by (3.11). Then Quartic direction defined by (3.3) is
a descent direction. O

Algorithm 3.1 (Quarticly convergent algorithm).

Step 0. Choose starting guess wo € R"*!, and parameters v € (0,1), € > 0. Set k := 0,
Flag=0.

Step 1. If || F(wg)|| < €, then stop.

Step 2. Compute an LU-decomposition of F’(wy) by Gauss elimination.

Step 3. Solve the linear systems

F’(wk)ak = —F(wk),

1 1 /
F (wk)bk = —F(wk) - EF '(wk)aﬁ.

Step 4. If (3.11) is satisfied, solve the linear system
/ Lo 2 1 (3) 3
F (wk)ck = —F(wk) — §F (wk)bk - éF (wk)bk,

set dy = ¢k, go to Step 5; Otherwise, set dy = ag, go to step 5.
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Step 5. Determine oy, satisfying the Wolfe conditions

fwr + agdy) < flwi) + craxV f(wi) T dg,

|V f(wr + ardy)Tdy| < —coV f(wp) T dg, (3.12)

where 0 < ¢ < ¢cg < 0.5.
Step 6. wry1 = wi + axdg. Set k: =k + 1, go to Step 1.

Remark 3.4. In Steps 3-4, the coefficient matrices of the three line systems are the same.
In Step 4, the line system which is used for solving dj could have other forms, which do not
change the convergence result. For example, F”'(wy,)b? can be replaced by F”(wg)ayb, and
F®)(wy,)b} can also be replaced by F®)(wy)a3, F®)(wy,)aiby, or FO)(wy,)arb?.

Remark 3.5. If B is an unit tensor U/, then from Theorem 2.3 and Definition 2.4, as long as
we keep xj, is positive, we can find the largest H-eigenvalue by Algorithm 3.1 for an almost
irreducible nonnegative tensor 4. The equations become

Axmfl + (O _ )\)x[mfl]
F(iﬂ, )‘) = 1 < m )
(1= Z)l i)
where o is a positive number. Then from Lemma 3.2 in [14], A— o is the largest H-eigenvalue
of A. Given a positive initial vector wy, the step length «y, satisfies both (3.12) and

wr + apdg € Riil, (3.13)
then wy, must be positive.

m
2

Remark 3.6. If m is even, B = I,> , where I is the n x n unit matrix, the equation becomes

Azm=1 — \glm—1
ren= (TR )

then for different initial values we can find different Z-eigenpairs by Algorithm 3.1.

Convergence Analysis

Lemma 4.1. Let wg € R"™!, and the level set L = {w € R"TY||F(w)| < ||F(wo)ll}. If
B=U, or B=17?, then L is bounded.

Proof. The proof can refer to Lemma 4.1 in [24]. O

Lemma 4.2. Suppose that N is some open neighborhood of L. Then there exists a constant
L > 0 such that
||F(w1) — F(UJQ)” < Lle — WQ”,le,WQ S Rn+1. (41)

Proof. From the boundness of w and Lemma 4.2 in [14], the conclusion can be proved. O

From the formula (3.1) we see that F'(w) is at least twice continuously differentiable
for m > 3. Since {f(wx)} is decreasing, it is clear that the sequence {wy} generated by
Algorithm 3.1 is contained in £ and hence is bounded. In addition, it is easy to see that
there is a constant ; > 0 such that

IF (W) <7,Vw e N. (4.2)
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Theorem 4.3. Assume that w* € R"! satisfies F(w*) = 0 and F'(w*) is nonsingular. Let
{wi} be generated by Algorithm 8.1. Then

lim inf || F|| = 0. (4.3)
k—o0
Proof. From Theorem 3.2 in [15] and Lemmas 3.3, 4.1 and 4.2 we have
lim Vf(wk) = 0,
k—o0
where V f(wy) = F’(wk)TF(wk). Hence, {wy} is convergent. As F’(w*) is nonsingular [14],
0 (4.3) holds. O

Theorem 4.4. Let w* € L be a solution of F(w) = 0, where F'(w*) is nonsingular, and
{wi} be the convergent sequence of iterates generated by Algorithm 3.1. Assume that dy, is
Quartic direction, oy = 1 are obtained for k > ko where ko is sufficiently great. Then we
have

s — w0 = O(Jep — |1, (4.4)

Proof. Tf w belongs to some sufficient small neighbourbood of w*, then F’(w) is nonsingular,
and there are positive constants Bs and Bjs such that

1" (@)™ < Ba, | F"(w)l| < Bs. (4.5)

Let Gy, = F'(wy). If Quartic direction dj, in (3.3) is chosen, then we have
1 1" 2 1 (3) 3
dek = —Fk - §F (wk)bk - EF (wk)bk,

where by, = —G;l(Fk + %F”(wk)a%), ay = —G,;le, and

Gk(wk+1 — w*) = Gk(wk +dj, — w*)
= Gk(wk — w*) + Grdy,

1 1
= —Fk — Gk(w* — wk) - iFﬁ(wk)bz — EF(S)(wk)bi

1 1
= —F, — Gp(w* —wy) — §F”(wk)(w* —wi)? — EF(g)(wk)(w* —wi)?

1 1

+ §F”(wk)(w* —wp) (W —wp —by) + §F"(wk)(w* — wy, — by)by,
1. 1 .

+ éF(‘S)(wk)(w* —wp — b)) (W —wip)? + 6F<3>(wk)(w* — wp, — by)b?
1

- éF(g)(wk)(w* — Wi — b)) (W — wi) by

By doing a Taylor series expansion at w*, and combining it with F(w*) = 0, we have

Fr 4 Gr(w” — wi) = O(J|lw* — wil?),
1 / * *
Fy 4 G(w* —wp) + §F' (wi) (W* — w)? = O(|lw* — will®),

1 1
Fiet Gr(w” = wp) + 5 F"(wi) (0" —wi)? + g FO () (0" = wi)? = O(l|w” — wi]|*). (4.6)
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Then by (4.5), we have

lw* = wr — ag| = |w* = wi + G |
= |G, (Fk + Gr(w* — wy))|| wn
< NG Fr + Gr(w* — wi)| :
= O([lw — w™|1?),
laxll = G Full = |G (Fr — F7)|
= |G G(wk + tw*) (wy — w*)| (4.8)

= O([lwx, — w™[]),
* * - 1
lw* — wi — bi|| = [lw* —wi + G (Fr + gFﬂ(wk)ai)”

L *
= ||G,;1(Fk + G’k(w* — wk) + iF ’(wk)(w — wk)Q

1 / * * 1 *
- iF/ (wp) (W™ — wp)(W* —wg — ag) — iF”(wk)(w —wg — ag)ag)||
— * 1 *
< NG I1F, + Gr(w® —wi) + §F"(wk)(w — wi)?||

1 1 .
+§||F”(wk)(w* —wi) (W = w —ag)|| + 5\\F”(wk)(w — wi — ag)a||

= O(||wr — w* %), (4.9)

and
_ 1,
k]l = 1G5 (Fi + 5 P (wi)ap) |
1
= G (i + Gi(wr —w") = Gil(wr —w™) + S F " (wr)ap)|
(4.10)
— * * 1 !
< NG IF + Grwn = w4 1Gr(wr = ) + 15 F (@r)ap)|
= O([lwr = ™).
Then by (4.6), (4.9) and (4.10), we have

lwrs1 = [l = |G} Gr(wisr — w?)l|
< NIG NGk (@rar = w?)

1 1 ,
NG| 1Bk + Gr(w” = wi)+ 5 F" (wi) (w” = wk)2+6F(3)(wk)(W* —w)’|

1 1

+ §||F”(Wk)(W* —wi)(W* —w = b)|| + §||F”(wk)(W* — Wk — by )b ||
1 « 1 .

+ EHF(S)(%)(W* — wpy — b)) (W* — wp)?|| + 6||F(3)(Wk)(w — wy, — be)bi |
1 (3) * *

+ EHF (wi)(W* — wp — br) (W™ — wi)bie|

= O(flwr, = w*|1*).
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Numerical Results

In this section, we present some preliminary numerical tests. All tests are implemented by
using Matlab R2014b on a PC with CPU 2.00 GHz and 8.00 GB RAM. Firstly, we set B = U
where U is an unit tensor, and use Algorithm 3.1 to compute the largest H eigenvalues of
some nonnegative irreducible tensors.

The test problems TPI and TPII are from [14], where P(z) = Az™~!, m is even.

TPL P(x) = Az™ 1 is defined as

n n

(a1 +7)2" " +0.5(3 bz X w) T er 3 bim + b1 Y. ciwi)
=1 =1 =1

=1 i=
Px)=| (a;+7)z] "+ 0503 bims Y cows) ey X biwi +b; Y cima) |
=1 =1 1=1 =1

bizi Y ciwy) 2 " Hew 3 biwg + by Y cixy)
i—=1 i=1 i=1

1 %

(an +7)25 =1 +0.5(

n
1=

where a;, b;,c;(i = 1,--+ ,n) are random number in [0,1], v > 0 is a parameter.
TPIL P(z) = Az™"! is defined as

(a1 +7)2 + 0.5(21 b)) Bap 4 0.5(21 %ﬂ)(é bizs) b,
P(x) = (a; + 7)1;;”—1 + 0.5(2:1 blxz)%xfl n 0.5(121 x?)(;n:l biz;) % b, 7
(an + )t + 0.5({7231 blxn)%xn%—l N 0.5(4753196?)(47121@%)%716”
i= i= iz
where a;,b;(i = 1,--- ,n) are random number in [0,1], v > 0 is a parameter.

The numerical results of Algorithm 3.1, Chebyshev’s method and Newton method are
listed in Table 5 and Table 6. The numerical results of Algorithm 3.1 and Algorithm 2.1
(the power algorithm) can be seen in Table 8 and Table 9. In Tables 5-9, "m", "n" are the
number of order and dimension in tensor, "Iter" is the number of iterations, "Term" is the
last value of |A\p — A\g+1], "Cpu" is cpu time in seconds. In problems TPI and TPIIL, v > 0
is chosen from 10 to 107, in problem TPIII, o = 10. In order to compare these algorithms,

we choose the same initial point o = (1,-- -, 1)T, and the same termination conditions
_ -1 -
A = Aera] £ 1077 || P(agg) = Apaafyy 1< 1075,

If the termination conditions are not satisfied in 500 iteration, then the algorithm stops.
From Tables 5 and 6, we can see that the number of iteration of Algorithm 3.1 is the
least, and the time of Algorithm 3.1 is a little less then the other two methods. For TPII,
the precision of Algorithm 3.1 and Chebyshev’s method is higher than Newton method.
For TPI, there is only one Quartic direction which is not descent and is in the initial
iteration, and the search direction is then chosen as Newton direction. For TPII, when
m = 4, both Quartic directions and Chebyshev directions are descent in most cases; for
the other cases, these directions are not descent in the last few iterations, and the search
direction is then chosen as Newton direction. These situations can be seen in Table 7.
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Table 5: Numerical results of TPI

TPI Algorithm 3.1 Chebyshev’s method Newton method

m/n/y Iter Term Cpu  Iter Term Cpu  Iter Term Cpu
4/20/10 6 1.0759¢-06 0.0065 8 1.9280e-07 0.0077 9 1.1087¢-06 0.0069
4/20/10? 6 1.6578e-06 0.0088 8  2.0524e-07  0.0140 9 2.0911e-06 0.0075
4/20/103 6 3.4022¢-06 0.0072 8 3.9859e-07 0.0104 9 4.1517e-06 0.0074
4/20/10% 6 1.5409e-06 0.0153 8 1.4950e-07 0.0188 9 1.8029e-06 0.0214
4/20/10° 6 3.7059e-06 0.0412 8 1.7581e-07  0.0456 9 3.0815e-06 0.0409
4/60/102 8 5.6504e-07 0.0515 9 6.3164e-06 0.0655 12 2.0044e-07 0.0616
4/60/103 8 1.6306e-07 0.0287 9 2.2150e-06 0.0315 12 1.3420e-07  0.0234
4/60/10% 8 2.9761e-07 0.0263 9 3.7188e-06 0.0281 12 2.0190e-07  0.0256
4/60/10° 8 7.4494e-07 0.0438 9 5.7501e-06  0.0479 12 3.7400e-07  0.0474
4/60/108 8 2.3406e-07 0.1168 9 2.7370e-06 0.1231 12 1.5730e-07 0.1234
4/100,/103 9 1.4769e-07 0.0546 10 1.8423e-06  0.0592 13 2.2513e-06 0.0528
4/100/10% 9 1.5529e-07 0.0522 10 1.2401e-06  0.0623 13 2.2390e-06  0.0562
4/100/10° 9 1.1736e-07 0.0559 10 9.0957e-07 0.0671 13 1.4478e-06 0.0578
4/100/108 9 4.1768e-07 0.0933 10 1.0710e-06 0.1083 13 5.3829e-06  0.0961
4/100/107 9 8.6407e-06 0.2128 11 4.0749e-06 0.2233 14 3.1937e-07 0.2211
6,/20/10° 16 7.4161e-07 0.0624 17 5.4144e-06  0.0666 24 8.5985e-08  0.0605
6,/20/10% 16 9.3618e-07 0.0162 17 6.2063e-06  0.0192 24 1.0667e-07 0.0221
6,/20/10° 16 1.6598e-06  0.0686 17 6.5616e-06 0.0646 24 1.4238e-07 0.0636
6,/20/10° 16 3.5723e-06 0.0703 17 1.13088-07 0.0692 24 2.9486e-07 0.0710
6,/20/107 17 5.3842¢-07 0.1176 18 6.9337¢-06 0.1207 25 1.2273e-06 0.1465

From Tables 8 and 9 we can see that Algorithm 3.1 performs more stably even though
~ changes a lot, while Algorithm 2.1 present the opposite case. When = is relative small,
Algorithm 2.1 use less time then Algorithm 3.1 , While 7 increases, Algorithm 3.1 needs the
shorter time. The number of iteration of Algorithm 2.1 is much more then Algorithm 3.1.

Secondly, we set B = IQ% where m is even, and use Algorithm 3.1 to compute Z-eigenpair.
The test problems are from [5]. We compare the performance of Algorithm 3.1 with Algo-
rithm 2.2.

TPIII. Consider the symmetric tensor A € R4 where

aiilil = 0.2883, aille = —0.0031, ai1113 — 0.19737 a1122 — —0.24857
a1123 — —02939, a1133 — 03847, a1222 = 02972, a1223 — 0.18627
a1133 = 00919, a1333 — 703619, a929222 = 01241, a92223 — 703420,
ag233 = 02127, az333 = 02727, a3333 = —03054,

and the values of other elements can be obtained from symmetry.

We choose an n + 1-dimensional vector whose elements are uniformly distributed in
(—1,1) randomly as the initial point for TPIII, and perform the two algorithms 50 times,
respectively. The numerical results can be seen in Tables 10 and 11, where "Iter" is the
average number of iterations in 50 times, "CPU" is the average cpu time in 50 times in
seconds, "Occ" is the occurrence probability in the 50 experiments for every eigenvalue.
There are a pair of opposite eigenvectors corresponding to each eigenvalue, we only record
one of them. In Algorithm 2.2, we set o = 2.
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Table 6: Numerical results of TPII

TPII Algorithm 3.1 Chebyshev’s method Newton method
m/n/y Tter Term Cpu  TIter Term Cpu  Tter Term Cpu
4/20/10 4 1.4863e-10 0.0077 5 4.3027e-13  0.0112 6 3.2707e-06  0.0097
4/20/10% 4 2.7682e-10 0.0147 5 4.1652e-13  0.0160 6 1.9712e-06 0.0170
4/20/103 4 2.1600e-10 0.0142 5 3.7933e-13  0.0187 6 2.7310e-06 0.0177
4/20/10% 4 4.2058e-10  0.0080 5  1.2205e-12  0.0098 6  4.5939e-06 0.0094
4/100,/10? 5 6.7819e-13  0.0763 6 1.3632e-12  0.0963 8 5.5806e-09 0.0879
4/100/10% 5 7.8076e-13  0.0805 6 1.4120e-12  0.0996 8 5.4337e-09 0.1197
4/100/10% 5 7.0997e-13  0.0619 6 1.7481e-12 0.0740 8  6.3194e-09 0.0939
4/100/10° 5 5.6707e-12  0.0562 6 5.6980e-12 0.0647 8 3.9230e-09 0.0755
6/20/10 5 7.0477e¢-07  0.0089 6 1.9151e-11  0.0099 7 1.1560e-07  0.0088
6,/20/102 5 7.3097e-07 0.0178 6 2.4924e-11 0.0187 7 1.2873e-07 0.0183
6,/20/10° 5 2.0372e-06 0.0213 6 3.0223e-11  0.0230 7 1.1090e-07 0.0172
6,/20/10* 5 3.7762e-07 0.0141 6 2.2794e-12  0.0206 7 2.0458e-08 0.0199
6,/100,/102 6 1.8554e-09 0.0966 7 1.0525e-09 0.0944 9  2.4459e-10  0.1059
6,/100/10% 6 2.3251e-09 0.0733 7 6.7196e-10  0.0657 9 5.2670e-10  0.0760
6,/100/10% 6 2.3390e-09 0.1001 7 1.2669¢-09 0.0862 9 1.1513e-09 0.1065
6,/100/10° 6 1.7547e-09 0.0586 7 9.6412¢-10  0.0659 9 7.5397e-10  0.0885
8/20/10 6 5.5640e-12  0.0279 7 7.5012e-08 0.0337 8  4.9566e-11  0.0215
8/20/102 6  9.6193e-12  0.0095 7 1.4575e-08  0.0098 8 4.3410e-12  0.0073
8/20/10° 6 1.5210e-11  0.0290 7  5.6325e-08 0.0415 8 3.4184e-11 0.0264
8/20/10* 6 8.1522¢-12  0.0240 7 1.6389e-08 0.0270 8 4.7382¢-12  0.0164

Table 7: The number of Newton direction used

Problem TPI TPII
Scale m=4 m=06 m=4 m=6 | m=6 | m=8
n=20,60,100 | n=20 | n=20,100 | n=20 | n=100 | n=20
Algorithm 3.1 1 1 0 2 2 3
Chebyshev’s method 1 1 0 3 2 3
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Table 8: Numerical results of TPI

TPI Algorithm 3.1 Algorithm 2.1

m/n/y Iter Term Cpu Iter Term Cpu
4/20/10 6 7.2677e-06 0.0065 7 3.8593e-07 0.0033
4/20/10? 6 1.6578e-06 0.0088 12 9.4410e-06 0.0016
4/20/10° 6 3.4022e-06 0.0072 44 8.2796e-06  0.0034
4/20/10* 6 1.5409e-06 0.0153 412 9.8264e-06 0.0311
4/20/10° 6 3.7059e-06 0.0412 > 500
4/60/102 8 5.6504e-07 0.0515 8 1.8534e-06 0.0049
4/60/10° 8 1.6306e-07 0.0287 10 9.2411e-07  0.0040
4/60/10* 8 2.9761e-07 0.0263 31 7.5659e-06 0.0072
4/60/10° 8 7.4494e-07 0.0438 214 9.8432e-06 0.0416
4/60/10° 8 2.3406e-07 0.1168 > 500
4/100/103 9 1.4769e-07 0.0546 9 5.3419e-07  0.0040
4/100/10% 9 1.5529e-07  0.0522 14 9.3397e-06  0.0056
4/100/10° 9 1.1736e-07 0.0559 47 7.1193e-06 0.0170
4/100/10° 9 4.1768e-07 0.0933 330  9.6937e-06 0.1046
4/100/107 9 8.6407e-06 0.2128 > 500
6,/20/10° 16 7.4161e-07 0.0624 8 7.3774e-07 0.0141
6/20/10% 16  9.3618e-07 0.0162 20 7.2058e-06 0.0019
6/20/10° 16 1.6598e-06 0.0686 83  9.3859e-06 0.0286
6,/20/10° 16 3.5723e-06 0.0703 271  9.8257e-06 0.0884
6,/20/107 17 5.3842e-07 0.1176 > 500

Table 9: Numerical results of TPII
TPII Algorithm 3.1 Algorithm 2.1
m/n/y Iter Term Cpu Iter Term Cpu

4/60/10° 4 2.3506e-06  0.0090 17 1.6932e-10 0.0087

4/60/103 4 2.9075e-06  0.0087 32 9.0272e-10 0.0120

4/60/10* 4  2.7891e-06 0.0102 166  1.2197e-08 0.0613

4/60/10° 4 2.9736e-06 0.0076 > 500

6,/60/10° 6  7.6223e-09 0.0155 23 3.9337e-14  0.0084

6,/60,/10* 6 7.3604e-09 0.0149 31  1.2187e-13  0.0126

6/60/105 6 6.9093e-09 0.0163 102 9.7514e-13  0.0370

6,/60,/10° 6  8.9972e-09 0.0151 > 500

8/60/10d 6 2.2140e-06  0.0180 27 1.1136e-17  0.0105

8/60/10* 6 4.1664e-06  0.0190 26 2.8303e-17  0.0158

8/60/10° 6 7.7349e-06  0.0180 33 2.0283e-17  0.0192

8/60/106 6  6.1480e-06 0.0181 78 1.9403e-16  0.0315

10/20/10° 6 3.3169e-08  0.0081 24 6.2283e-17  0.0059

10/20/104 7 1.8292e-11  0.0089 29  6.0435e-17  0.0085

10/20/10° 6 4.8338e-08 0.0059 227  1.0426e-15 0.0197

10/20/10° 7 9.8427e-11  0.0072 374 4.3409e-15  0.0557

481
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Table 10: Numerical results of TPIII by Algorithm 3.1

A 2T Iter CPU | Occ
0.8893 | [0.6672  0.2476 -0.7026] | 22.68 | 0.0453 | 6%
0.8169 | [0.8410 -0.2639  0.4723] | 28.66 | 0.0494 | 12%
0.3633 | [0.2679  0.6448  0.7159] | 22.57 | 0.0400 | 14%
0.2682 | [0.6099 0.4362 0.6616] | 21.00 | 0.0525 | 2%
0.2433 | [0.9896  0.0945 -0.1084] | 18.50 | 0.0289 | 8%
0.1735 | [0.3358  0.9070  0.2541] | 26.50 | 0.0365 | 4%
-0.0451 | [0.7797  0.6135  0.1250 6.90 | 0.0130 | 22%
-0.5629 | [0.1762 -0.1795  0.9678] | 13.77 | 0.0275 | 18%
-1.0954 | [0.5913 -0.7468 -0.3043] 21 0.0364 | 14%

Table 11: Numerical results of TPIII by Algorithm 2.2

A 2T Iter CPU | Occ
0.8893 | [0.6672  0.2477 -0.7025] | 37.34 | 0.0309 | 52%
0.8169 | [0.8410 -0.2641  0.4723] | 10.00 | 0.0127 | 2%
0.3633 | [0.2684 0.6449  0.7156] | 20.64 | 0.0182 | 28%

TPIV. Consider the symmetric tensor A € R[4 such that
aijir =sin(i +j+k+1) (1<4,4,k1<n).
TPV. Consider the symmetric tensor A € RI*™ such that
a;jr = tan(i) + tan(j) + tan(k) + tan(l) (1 <14,4,k,1 <n).

We choose an n + 1-dimensional vector whose elements are uniformly distributed in
(=1,1) randomly as the initial point for TPIV and TPV, and perform the two algorithms
30 times, respectively. For TPIV, let n = 5, = 10 in Algorithm 2.2. For TPV, let n = 6,
« = 2 in Algorithm 2.2. The relative numerical results are listed in Tables 12-15. There are
several eigenvectors corresponding to eigenvalue 0, we only record one of them.

From Table 10 - Table 15, it is easy to see that Algorithm 3.1 can compute much more
eigenvalues than Algorithm 2.2. Especially for TPIV, TPV, all the eigenvalues are found by

Table 12: Numerical results of TPIV by Algorithm 3.1

A xT Iter CPU Occ
7.2595 0.2686 0.6150 0.3959 -0.1872 -0.5982] | 17.62 | 0.1076 | 26.66%
4.6408 | [-0.5055  0.1228 0.6382  0.5669 -0.0256] | 25.50 | 0.2333 | 6.66%
0.0000 | [-0.6181  0.6179 -0.4213 -0.2042 0.1302] | 17.56 | 0.1154 | 53.33%
-3.9204 0.1785 -0.4847 -0.7023 -0.2742  0.4060| | 12.00 | 0.0806 | 3.33%
-8.8463 | [-0.5809 -0.3563  0.1959  0.5680  0.4179] | 11.33 | 0.0883 10%
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Table 13: Numerical results of TPIV by Algorithm 2.2

A T Iter CPU Occ
7.2595 0.2689 0.6152 0.3958 0.1869  0.5980] | 18.82 | 0.0637 | 53.33%
4.6408 | [-0.5061 0.1233 0.6381 0.5664 -0.0253] | 24.35 | 0.1193 | 46.66%

Table 14: Numerical results of TPV by Algorithm 3.1

A 2T Iter CPU Occ
45.5045 -0.6281 -0.0717 -0.3754 -0.5687  0.1060 -0.3533| | 11.42 | 0.1229 | 23.33%
0.0000 -0.0904 0.4786  0.5937 -0.0878 -0.3608 -0.5220| | 23.88 | 0.3090 60%
-133.2871 0.1936  0.5222  0.3429 0.2287 0.6272  0.3559 11.2 | 0.1232 | 16.66%

Table 15: Numerical results of TPV by Algorithm 2.2
A 2T Iter CPU | Occ
0.0000 -0.4921  -0.3833 0.0945 0.3987 -0.6629 0.0597] | 5.00 | 0.0162 | 10%
-133.2871 0.1936  0.5222 0.3429 0.2287  0.6271 0.3559] | 16.59 | 0.1017 | 90%

Algorithm 3.1. Although the CPU of Algorithm 2.2 is shorter, the confirming procedure of
« is long.

From numerical results,we find that Algorithm 3.1 is the least for the number of iteration.
This is consistent with the fourth order convergence of Algorithm 3.1. For the precision and
time, Algorithm 3.1 is comparable with Chebyshev’s method and Newton method. Hence,
Algorithm 3.1 is theoretically superior, and numerically slightly better than the existing
algorithms.

References

[1] C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors,
Commu. Math. Sci. 6 (2008) 507—520.

[2] C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors,
J. Math. Anal. Appl. 350 (2009) 416-422.

[3] C. Chang, K. Pearson and T. Zhang, Primitivity, the convergence of the NQZ method,
and the largest eigenvalue for nonnegative tensors, SIAM J. Matriz Anal. Appl. 32
(2011) 806-819.

[4] Z. Chen, L. Qi, Q. Yang and Y. Yang, The solution methods for the largest eigenvalue
(singular value) of nonnegative tensors and convergence analysis, Linear algebra Appl.
439 (2013) 3713-3733.

[6] C. Cui, Y. Dai and J. Nie, All real eigenvalues of symmetric tensors, SIAM J. Matriz
Anal. Appl. 35 (2014) 1582-1601.

[6] C. Hao, C. Cui and Y. Dai, A sequential subspace projection method for extreme Z-
eigenvalues of supersymmetric tensors, Numer. Linear Algebr. Appl. 22 (2015) 283-298.



484
7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

21]

22]

[23]

[24]

W.-W. YANG, H. LIU AND Q. NI

L. Han, An unconstrained optimization approach for finding real eigenvalues of even
order symmetric tensors, Numer. Algebr. Control Optim. 3 (2013) 583-599.

S. Hu, G. Li, L. Qi and Y. Song, Finding the maximum eigenvalue of essentially non-
negative symmetric tensors via sum of squares programming, J. Optimiz. Theory App.
158 (2013) 717-738.

S. Hu, Z. Huang and L. Qi, Strictly nonnegative tensors and nonnegative tensor parti-
tion, Sci. China Math. 57 (2014) 181-195.

G. Kolda and R. Mayo, Shifted power method for computing tensor eigenpairs, STAM
J. Matriz Anal. Appl. 32 (2011) 1095-1124.

G. Kolda and R. Mayo, An adaptive Shifted power method for computing generalized
tensor eigenpairs, SIAM J. Matriz Anal. Appl. 35 (2014) 1563-1581.

H. Lim, Singular values and eigenvalues of tensors, a variational approach, In: Pro-
ceedings of the 1st IEEE International Workshop on Computational Advances of Multi-
tensor Adaptive Processing. 1 (2005) 129-132.

M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor,
SIAM J. Matriz Anal. Appl. 31 (2009) 1090-1099.

Q. Ni and L. Qi, A quadratically convergent algorithm for finding the largest eigenvalue
of nonnegative homogeneous polynomial map, J. Glob. Optim. 61 (2015) 627—-641.

J. Nocedal and J. Wright, Numerical Optimization, Science Press, Beijing 2006.
K. Pearson, Essentially positive tensors, Int. J. Algebra. 4 (2010) 421-427.

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40 (2005) 1302—
1324.

L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization
problem, Mathematical Programming. 118 (2009) 301-316.

L. Qi, Y. Wang and E.X. Wu, D-Eigenvalues of diffusion kurtosis tensors, J. Compu.
Appl. Math. 221 (2008) 150-157.

D. Schatz, M. Low, A. Van De Geijn and G. Kolda, Exploiting symmetry in tensors
for high performance: multiplication with symmetric tensors, SIAM J. Sci. Comput.
36 (2014) 453-479.

W. Werner, Iterative solution of systems of nonlinear equations based upon quadratic
approximations, Comp. Maths. with Appls. 12A (1986) 331-343.

Y. Yang and Q. Yang, Further results for Perron-Frobenius Theorem for nonnegative
tensors, SIAM J. Matriz Anal. Appl. 31 (2010) 2517-2530.

Q. Yang and Y. Yang, Further results for Perron-Frobenius theorem for nonnegative
tensors II, STAM J. Matriz Anal. Appl. 32 (2011) 1236-1250.

W. Yang and Q. Ni, A cubically convergent method for solving the largest eigenvalue
of a nonnegative irreducible tensor, Numer. Algorithms. 77 (2018) 1183-1197.



QUARTICLY CONVERGENT METHOD FOR TENSOR EIGENVALUES 485

[25] G. Yu, F. Yu, Y. Xu, Y. Song and Y. Zhou, An adaptive gradient method for computing
generalized tensor eigenpairs. Comput. Optim. Appl. 65 (2016) 781-797.

[26] M. Zeng and Q. Ni, Quasi-Newton method for computing Z-eigenpairs of a symmetric

tensor, Pacilc J. Optim. 11 (2009) 279-290.

[27] L. Zhang and L. Qi, Linear convergence of an algorithm for computing the largest
eigenvalue of a nonnegative tensor, Numer. Linear Algebra Appl. 19 (2012) 830-841.

[28] X.Zhang, Q. Niand Z. Ge, A convergent Newton algorithm for computing Z-eigenvalues
of an almost nonnegative irreducible tensor, Optim. Method Softw. 35 (2020) 377-393.

WEI-WEI YANG

School of Physical and Mathematical Sciences
Nanjing Tech University, Nanjing 211816, P.R. China
E-mail address: yangweiwei0810@126.com

Hao Liv

School of Physical and Mathematical Sciences
Nanjing Tech University, Nanjing 211816, P.R. China
E-mail address: lhmath@njtech.edu.cn

QIN N1
College of Science, NUAA, Nanjing 211106, P.R. China
E-mail address: nigfs@nuaa.edu.cn

Manuscript received 21 January 2021
revised 31 May 2021
accepted for publication 18 June 2021





