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where N corresponds to the set of origins and the set of destinations, and T denotes the
total number of the time intervals. Then, with the help of the CP decomposition, they
developed a traffic data recovery model with temporal and spatial constraints. However,
the third-order tensor modeled by Zhou et al. [24] cannot fully utilize the traffic periodicity
in the traffic data, so the recovery accuracy is not very high. Moreover, taking the Abilene
data [1] as an example, the size of the tensor modeled in [24] is 11× 11× 1008, which does
not satisfy the balance of the three dimensions, which will also greatly affect the recovery
performance. In order to make full use of the traffic features of the temporal periodicity, Xie
et al. [20] modeled the considered traffic data as a third-order tensor Z ∈ Ro×t×d, where
o corresponds to the set of N × N OD pairs, t denotes the total number of time intervals
in each day and d corresponds to the total number of days to consider. And then they
proposed two tensor completion algorithms to recover Internet traffic data. The tensor in
R144×288×168 modeled in [20] has better recovery performance than the one in[24] due to the
more balanced size of its three dimensions.

In order to accurately recover internet traffic data, it is necessary to consider temporal
and spatial prior knowledge, that is, the temporal stability and periodicity features of the
original traffic data. Inspired for the successful application of total variation (TV) in spatio-
temporal video recovery [13], this paper applies TV regularization to the network traffic
data recovery problem.

The structure of this paper is as follows. In the next section, we introduce some notations
and preliminary knowledge of tensors. In Section 3, we propose a new internet traffic tensor
recovery model based on tensor decomposition and TV regularization. The PAM algorithm
is proposed to solve the model and the convergence of the algorithm is analyzed in Section 4.
In Section 5, we conduct extensive numerical experiments on Abilene and GÉANT datasets
to evaluate the performance of the proposed algorithm. Conclusions and future work are
discussed in Section 6.

2 Notations and Preliminaries

In this section, we briefly introduce some symbols, basic definitions and lemmas used in this
paper.

2.1 Notations

In this paper, matrices are denoted by capital letters (A,B, . . .), tensors by Euler script
letters (A,B, . . .), and R represents a real number space, C represents the complex number
space. For a third-order tensor A ∈ Rm1×m2×m3 , its (i, j, k)-th element A(i, j, k) can be
represented by aijk, and we use the Matlab notations A(i, :, :), A(:, i, :) and A(:, :, i) to
represent the i-th horizontal, lateral and frontal slice of the A respectively[11]. The frontal
slice A(:, :, i) is represented by Ai. We also use the Matlab notation A(:) and define ‖A‖l1 :=
‖A(:)‖1 = Σijk|aijk|, ‖A‖F := ‖A‖l2 = ‖A(:)‖2 =

√
〈A,A〉 =

√
Σijk|aijk|2. A∗ and A†

respectively represent the conjugate transpose and pseudo-inverse of A.
Discrete Fourier Transformation (DFT) plays a core role in the tensor-tensor product

introduced later. For the tensor A ∈ Rm1×m2×m3 , Ā ∈ Cm1×m2×m3 represents the result
of DFT on A along the third dimension. In fact, we can use the Matlab command Ā =
fft(A, [ ], 3) to directly calculate Ā, and can use the inverse DFT to calculate A from Ā,
that is, A = ifft(Ā, [ ], 3).
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The projection operator on Ω is denoted by PΩ, which is defined as:

(PΩ(A))i1,··· ,iN =

{
xi1,··· ,iN , Ωi1,··· ,iN = 1,

0, others.

2.2 Preliminaries

Definition 2.1. (block-diagonal matrix)[25]: Given the tensor Ā ∈ Cm1×m2×m3 , then

Ā = bdiag(Ā) =


Ā1

Ā2

. . .
Ām3


is a block diagonal matrix of size m1m3 ×m2m3.

Definition 2.2. (block circulant matrix)[25]: For a given tensor with m3 frontal slices
A ∈ Rm1×m2×m3 , then

bcirc(A) =



A1 Am3
Am3−1 . . . A3 A2

A2 A1 Am3
. . . A4 A3

A3 A2 A1 . . . A5 A4

...
...

...
. . .

...
...

Am3−1 Am3−2 Am3−3 . . . A1 Am3

Am3 Am3−1 Am3−2 . . . A2 A1


is a block circulant matrix of size m1m3 ×m2m3.

Definition 2.3. (Identity tensor)[21]: The identity tensor I ∈ Rm1×m1×m3 is defined as
the tensor whose first frontal slice I(:, :, 1) is the identity matrix of size m1 × m1, and all
other frontal slices are zeros.

Definition 2.4. (f -diagonal tensor)[10]: A tensor A ∈ Rm1×m2×m3 is called f-diagonal
tensor if each of its frontal slices is a diagonal matrix.

Definition 2.5. (tensor-tensor product)[21]: A ∈ Rm1×r×m3 and B ∈ Rr×m2×m3 are two
real tensors, then the tensor product A∗B is a real tensor of size m1 ×m2 ×m3 defined by
the following formula

A ∗ B = fold(bcirc(A) · unfold(B))

where unfold(A) = [A1;A2; · · · ;Am3
] ∈ Rm1m3×r and its inverse operator fold is defined as

fold(unfold(A)) = A, “ · ” represents the standard matrix product.

Definition 2.6. (Conjugate transpose)[21]: The conjugate transpose of tensor A ∈
Rm1×m2×m3 is a tensor of size Rm2×m1×m3 , denoted by A∗. A∗ is obtained by conju-
gate transposing each of the frontal slices and then reversing the order of transposed frontal
slices 2 through m3.

Definition 2.7. (Orthogonal tensor)[21]: Tensor A ∈ Rm1×m1×m3 is an orthogonal tensor,
if it satisfies

A ∗ A∗ = A∗ ∗ A = I
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Definition 2.8. (t-SVD)[10]: Tensor A ∈ Rm1×m2×m3 can be decomposed into

A = U ∗ S ∗ V∗

Where U ∈ Rm1×m1×m3 and V ∈ Rm2×m2×m3 are orthogonal tensors, S ∈ Rm1×m2×m3 is
f -diagonal tensor.

Definition 2.9. (Tensor tubal rank)[9]: The tubal rank rankt(A) of tensor A ∈ Rm1×m2×m3

is defined as the number of non-zero singular tubes of S.i.e., rankt(A) = ♯{i|S(i, i, :) 6= 0},
where S is from A = U ∗ S ∗ V∗.

Lemma 2.10. [25] If rankt(F) = r, then F can be written into the form of tensor product
F = G ∗ H, where G ∈ Rm1×r×m3 and H ∈ Rr×m2×m3 are two tensors of smaller sizes and
they meet rankt(G) = rankt(H) = r.

Lemma 2.11. [10] Suppose that A ∈ Rm1×m2×m3 and B ∈ Rm2×m4×m3 are two arbitrary
tensors, let F = A ∗ B, then the following properties hold:
(1)‖A‖2F = 1

m3
‖(Ā)‖2F

(2)F = A ∗ B is equivalent to F̄ = ĀB̄.

3 Tensor Completion Model for Internet Traffic Data Imputation

Let G = (gi1i2i3) ∈ Rm1×m2×m3 be a given incomplete tensor, we use the tensor W ∈
Rm1×m2×m3 to model the internet traffic data. Based on the low rank of traffic data, the
problem of traffic data recovery can be formulated as the following tensor rank minimization
problem:

min
W

rank(W)

s.t.PΩ(W) = PΩ(G),
(3.1)

where rank(W) represents the rank of tensor W, Ω is the set of the positions of the observed
data, PΩ is a linear operator, which extracts the known elements in the subset Ω, and the
elements outside Ω are filled with 0.

Since solving the problem (3.1) directly is NP-hard, nuclear norm minimization methods
[5, 14] were proposed to approximate the rank by using the convex relaxation substitute.
However, the nuclear norm minimization methods require the calculation of Singular Value
Decomposition (SVD), which is very expensive in computation. To avoid calculating SVD,
Zhou et al.[25] proposed a tensor decomposition method based on tensor-tensor product
(t-product):

min
X ,Y,W

1

2
‖X ∗ Y −W‖2F

s.t.PΩ(W) = PΩ(G)
X ∈ Rm1×r×m3 ,Y ∈ Rr×m2×m3 ,W ∈ Rm1×m2×m3 .

(3.2)

In real-world internet, traffic data usually changes slowly over time, which exhibit tem-
poral stability feature; users often have similar network access behaviors in the same time
period on different dates, which exhibit the periodicity of traffic data. The tensors D1 ∈
Rm1×m1×m3 and D2 ∈ Rm2×m2×m3 are used to characterize the traffic temporal properties,
where D1 is used to capture the stability of the traffic data at two adjacent times, D2 is
used to capture the periodicity of traffic data. The proposed tensor completion model by
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spatio-temporal regularization tensor factorization with TV regularization (SRTFTV) can
be described as follows.

min
W,X ,Y

1

2
‖X ∗ Y −W‖2F + α1‖D1 ∗W‖l1 + α2‖W ∗ D2‖l1

s.t.PΩ(W) = PΩ(G)
vmin ≤ W ≤ vmax

X ∈ Rm1×r×m3 ,Y ∈ Rr×m2×m3 ,W ∈ Rm1×m2×m3 .

(3.3)

Here

D1(:, :, i) =

{
L(m1), i = 1,

O(m1), i > 1.
D2(:, :, i) =

{
L∗
(m2)

, i = 1,

O(m2), i > 1.

L(m) =



0 0 0 . . . 0 0
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . −1 1


∈ Rm×m

α1 and α2 are regularization parameters, ‖D1 ∗W‖l1 + ‖W ∗D2‖l1 is the TV regularization,
and the second constraint in (3.3) imposes all values of the output tensor to be included in
a range [vmin, vmax].

The optimization problem (3.3) can be rewritten as the following unconstrained opti-
mization problem:

minF (X ,Y,W) =
1

2
‖X ∗ Y −W‖2F + α1‖D1 ∗W‖l1 + α2‖W ∗ D2‖l1 + δS(W), (3.4)

where
S ={W ∈ Rm1×m2×m3 |W(i, j, k) = G(i, j, k) for (i, j, k) ∈ Ω,

W(i, j, k) ∈ [vmin, vmax] for (i, j, k) /∈ Ω},

δS(W) =

{
0, W ∈ S,

+∞, W /∈ S.

4 Proximal alternating minimization algorithm for the problem
(3.4)

4.1 Algorithm description

In this section, we will introduce the algorithm for the internet traffic data completion prob-
lem (3.4) in detail. The objective function in (3.4) is not a convex function of (X ,Y,W),
but it is a convex function for each variable X ,Y,W. So, we can use the alternate mini-
mization strategy to solve the problem. In order to improve the theoretical convergence and
numerical stability of the alternate minimization algorithm, proximal items are suggested
to add to the sub-problems generated by the AM algorithm, which is called the Proximal
Alternate Minimization (PAM) algorithm.
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Given the initial point (X (0),Y(0),W(0)) of the problem (3.4), the PAM iteration is
defined as follows:

X (k+1) = argmin
X

F (X ,Y(k),W(k)) +
ρ1
2
‖X − X (k)‖2F (4.1)

Y(k+1) = argmin
Y

F (X (k+1),Y,W(k)) +
ρ2
2
‖Y − Y(k)‖2F (4.2)

W(k+1) = argmin
W

F (X (k+1),Y(k+1),W) +
ρ3
2
‖W −W(k)‖2F (4.3)

where ρ1, ρ2, ρ3 are the given parameters with ρ1, ρ2, ρ3 > 0.
It can be seen that the sub-problems (4.1)-(4.3) are all strongly convex optimization

problems, the existence and uniqueness of the solutions are guaranteed. The details are as
follows:

X -Subproblem

X (k+1) = (ρ1X (k) +W(k) ∗ (Y(k))∗)((Y(k)) ∗ (Y(k))∗ + ρ1I)
† (4.4)

Y-Subproblem

Y(k+1) = ((X (k+1))∗ ∗ X (k+1) + ρ2I)
†((X (k+1))∗ ∗W(k) + ρ2Y(k)) (4.5)

W-Subproblem
Equation (4.3) is equivalent to the following equality constraint problem:

W = argmin
W,Q1,Q2

1

2
‖X (k+1) ∗ Y(k+1) −W‖2F + α1‖Q1‖l1

+ α2‖Q2‖l1 +
ρ3
2
‖W −W(k)‖2F + δS(W)

s.t.Q1 = D1 ∗W ,Q2 = W ∗D2

(4.6)

Let P and Z be the Lagrange multiplier of (4.6). The iterative scheme for (4.6) can be
described as follows:

Q(k+1)
1 = argmin

Q1

α1‖Q1‖l1 +
β

2
‖Q1 −D1 ∗W(k) +

P(k)

β
‖2F (4.7)

Q(k+1)
2 = argmin

Q2

α2‖Q2‖l1 +
λ

2
‖Q2 −W(k) ∗ D2 +

Z(k)

λ
‖2F (4.8)

W(k+1) = argmin
W

1

2
‖X (k+1) ∗ Y(k+1) −W‖2F +

β

2
‖Q(k+1)

1 −D1 ∗W +
P(k)

β
‖2F

+
λ

2
‖Q(k+1)

2 −W ∗ D2 +
Z(k)

λ
‖2F +

ρ3
2
‖W −W(k)‖2F + δS(W),

(4.9)

with

P(k+1) = P(k) + β(Q(k+1)
1 −D1 ∗W(k+1)) (4.10)

and

Z(k+1) = Z(k) + λ(Q(k+1)
2 −W(k+1) ∗ D2), (4.11)
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where β > 0 and λ > 0 are the penalty parameters. According to the soft threshold, (4.7)
and (4.8) have the following unique solutions:

Q(k+1)
1 (i1, i2, i3) = Tα1

β
((D1 ∗W(k) +

P(k)

β
)(i1, i2, i3)), (4.12)

Q(k+1)
2 (i1, i2, i3) = Tα2

λ
((W(k) ∗ D2 +

Z(k)

λ
)(i1, i2, i3)), (4.13)

here, for y ∈ R,

Tµ(y) :=

{
(|y| − µ)sign(y), |y| > µ,

0, |y| ≤ µ.

According to Lemma 2.2, (4.9) is equivalent to following problem

W̄ (k+1) = argmin
W̄

1

2
‖W̄ − X̄(k+1)Ȳ (k+1)‖2F +

β

2
‖Q̄(k+1)

1 − D̄1W̄ +
P̄ (k)

β
‖2F

+
λ

2
‖Q̄(k+1)

2 − W̄ D̄2 +
Z̄(k)

λ
‖2F +

ρ3
2
‖W̄ − W̄ (k)‖2F + δS(W̄ )

(4.14)

Treating real part and imaginary part of W̄ as real variables of the objective function, then
the unique solution of the above problem is actually the solution of the following matrix
equation.

W̄ + βD̄∗
1D̄1W̄ + λW̄D̄2D̄

∗
2 + ρ3W̄ = Γ, (4.15)

where Γ = X̄(k+1)Ȳ (k+1) + D̄∗
1(βQ̄

(k+1)
1 + P̄ (k)) + (λQ̄

(k+1)
2 + Z̄(k))D̄∗

2 + ρ3W̄
(k). Note that

the matrices in (4.15) all have block diagonal structure. From the definition of D1 and D2,
it can be seen that the diagonal blocks of D̄1, D̄2 are identical. Therefore, the formula (4.15)
is equivalent to m3 matrix equations of smaller size as follows:

W̄l + βH(m1)W̄l + λW̄lH(m2) + ρ3W̄l = Γl, l = 1, 2, . . . ,m3, (4.16)

where W̄l and Γl represent the lth diagonal block of W̄ and Γ respectively, and

H(m) := LT
(m)L(m) =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 ∈ Rm×m, H0
(m) := I(m).

It is easy to verify that H(m) has the following orthogonal diagonalization form

H(m) = K(m)Λ(m)K
T
(m),

K(m) =

√
2

m

[√
(1 + δj,1)−1cos(

π(2i− 1)(j− 1)

2m
)

]m
i,j=1

,

δj,1 =

{
1, j = 1,

0, otherwise,

Λ(m) = 4× diag

(
sin2

(
(i− 1)π

2m

))m

i=1

.
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That is, Λ(m) is a non-negative diagonal matrix of size m×m, so (4.15) is further equivalent
to

W̄l+βK(m1)Λ(m1)K
T
(m1)

W̄l+λW̄lK(m2)Λ(m2)K
T
(m2)

+ρ3W̄l = Γl, l = 1, 2, . . . ,m3. (4.17)

Multiplying KT
(m1)

from the left and K(m2) from the right on both sides of (4.17), then we
can obtain the following equation

(1 + ρ3)Ŵl + βΛ(m1)Ŵl + ŴlλΛ(m2) = Γ̂l, l = 1, 2, . . . ,m3, (4.18)

where Ŵl = KT
(m1)

W̄lK(m2), Γ̂l = KT
(m1)

ΓlK(m2). For a positive integer n, denote Ξ(n) :=

{1, 2, · · · , n}, then

Ŵl(m,n) =
Γ̂l(m,n)

((1 + ρ3)I + βΛ(m1))(m) + λΛ(m2)(n)
, (m,n) ∈ Ξ(m1)× Ξ(m2). (4.19)

Therefore, W in (4.6) can be solved by

W(k+1)(i1, i2, i3)

=

min
{
max{ifft(blockdiag(K(m1)ŴlK

T
(m2)

)m3

l=1, [ ], 3), vmin}, vmax

}
, (i1, i2, i3) /∈ Ω,

G(i1, i2, i3), (i1, i2, i3) ∈ Ω.

(4.20)

The detail pseudo code is described as follows.

Algorithm (SRTFTV, tensor completion by spatio-temporal regularization tensor factor-
ization with TV regularization)

Input: The tensor data G ∈ Rm1×m2×m3 , the initialized rank r0 ∈ Rm3 , the observed set
Ω, the regularization parameters α1, α2, β, λ, ρ1, ρ2, ρ3 > 0, and ϵ = 1e− 6.
while not converge do

(1) For every k ∈ [m3], fix Y(k) and W(k) to update X (k+1) via (4.4).
(2) For every k ∈ [m3], fix X (k+1) and W(k) to update Y(k+1) via (4.5).
(3) For every k ∈ [m3], fix X (k+1) and Y(k+1) to update W(k+1) via (4.20).
(4) Check the termination criterion:∥W

(k+1)−W(k)∥2
F

∥W(k+1)∥2
F

≤ ϵ.
end while
Output : X (k+1),Y(k+1),W(k+1)

4.2 Convergence analysis

In this subsection, we will prove the global convergence of the proposed algorithm. To
formalize the discussion, we express the tensor-form variables X ,Y and W as vectors in
what follows.

For positive integers l1,l2,l3, define bijections V[l1,l2,l3] : A ∈ Rl1×l2×l3 7→ V[l1,l2,l3](A) ∈
Rl1l2l3×1 and I[l1,l2,l3] : (i1, i2, i3) ∈ Ξ (l1) × Ξ (l2) × Ξ (l3) 7→ I[l1,l2,l3] (i1, i2, i3) ∈ Ξ (l1l2l3)
by:

V[l1,l2,l3] (A) := A (:) ,

Ã (i1, i2, i3) =
[
Ã (:)

] (
I[l1,l2,l3] (i1, i2, i3)

)
holding for each Ã ∈ Rl1×l2×l3 .
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where Ξ (l1l2l3) = {1, 2, . . . , l1l2l3}. Note that I[l1,l2,l3] maps an index (i1, i2, i3) of an entry
in A ∈ Rl1×l2×l3 into the index of the same entry in A(:) and V[l1,l2,l3] is a bi-continuous
linear bijection.

Denote V[m1,r,m3], V[r,m2,m3], V[m1,m2,m3], I[m1,r,m3], I[r,m2,m3], I[m1,m2,m3] as
V1,V2,V3,I1,I2,I3, respectively. Denote s1 = m1rm3, s2 = rm2m3,s3 = m1m2m3, s =
s1 + s2 + s3. Then, (3.4) can be equivalently rewritten as the following vector form

argmin
v∈Rn

F̃ (v) , (4.21)

where v = (v1; v2; v3) ∈ Rs, vi ∈ Rsi (i = 1, 2, 3) ,

F̃ (v) := G (v) + δS̃ (v3) + g (v3) ,

G (v) =
1

2
‖V−1

1 (v1) ∗ V−1
2 (v2)− V−1

3 (v3) ‖2ℓ2 ,

g (v3) := α1‖D1 (v3) ‖ℓ1 + α2‖D2 (v3) ‖ℓ1 ,
D1 (v3) := D1 ∗

[
V−1

3 (v3)
]
,

D2 (v3) :=
[
V−1

3 (v3)
]
∗ D2,

S̃ := {w ∈ Rs3 |w (i) = [V3 (M)] (i) for i ∈ I3 (Ω) , w (i) ∈ [vmin, vmax] for i /∈ I3 (Ω)} ,

and

δS̃ (v3) :=

{
0, v3 ∈ S̃,

+∞, v3 /∈ S̃.

Due to the bilinearity of "∗" operation, it is clear that D1 : Rm1m2m3×1 → Rm1×m2×m3 and
D2 : Rm1m2m3×1 → Rm1×m2×m3 are both linear operators. Moreover, it is easy to see that
S̃ is a non-empty closed set, which means δS̃ (·) is a proper lower semi-continuous (PLSC)
function on Rs3 and F̃ (·) is a PLSC function on Rs.

(4.1)-(4.3) is equivalent to

v
(k+1)
1 ∈ argmin

v1

F̃
(
v1; v

(k)
2 ; v

(k)
3

)
+

ρ1
2
‖v1 − v

(k)
1 ‖22, (4.22)

v
(k+1)
2 ∈ argmin

v2

F̃
(
v
(k+1)
1 ; v2; v

(k)
3

)
+

ρ2
2
‖v2 − v

(k)
2 ‖22, (4.23)

v
(k+1)
3 ∈ argmin

v3

F̃
(
v
(k+1)
1 ; v

(k+1)
2 ; v3

)
+

ρ3
2
‖v3 − v

(k)
3 ‖22, (4.24)

where (v
(0)
1 ; v

(0)
2 ; v

(0)
3 ) is an initial guess for (4.21).

Before proceeding with our convergence analysis, let us briefly review the Kurdyka-
Łojasiewicz(KŁ) property, which is the core of the convergence analysis.

Definition 4.1. (KŁ property[3])

(a) The function f : Rn → R ∪ {+∞} is said to have the KŁ property at x̄ ∈ dom (∂f),
if there exist η ∈ (0,+∞], a neighbourhood U of x̄ and a continuous concave function
ϕ : [0, η) → [0,+∞), such that:

(i) ϕ (0) = 0,

(ii) ϕ is first-order continuous on (0, η),

(iii) ϕ′ is positive on (0, η),
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(iv) for each x ∈ U ∩ [f (x̄) < f < f (x̄) + η], the KŁ inequality holds:

ϕ′ (f (x)− f (x̄)) dist (0, ∂f (x)) ≥ 1.

(b) PLSC functions which satisfies the KŁ property at each point of dom (∂f) are called KŁ
functions, where the norm involved in dist (·, ·) is ‖ · ‖2 and the convention dist (0, ∅) :=
+∞.

Lemma 4.2. [3] Let f : Rn → R ∪ {+∞} be a PLSC function. Let
{
x(k)

}
k∈N ⊂ Rn be a

sequence such that

H1 (Sufficient decrease condition) For each k ∈ N, there exits a ∈ (0,+∞) such that
f
(
x(k+1)

)
+ a‖x(k+1) − x(k)‖22 ≤ f

(
x(k)

)
hold,

H2 (Relative error condition) For each k ∈ N, there exits w(k+1) ∈ ∂f
(
x(k+1)

)
and a

constant b ∈ (0,+∞) such that‖w(k+1)‖2 ≤ b‖x(k+1) − x(k)‖2 hold,

H3 (Continuity condition)There exists a subsequence
{
x(kj)

}
j∈N and x̄ ∈ Rn such that

x(kj) → x̄ and f
(
x(kj)

)
→ f (x̄) , j → ∞.

If f has the KŁ property at x̄, then

(i) x(k) → x̄

(ii) x̄ is a critical point of f , i.e., 0 ∈ ∂f (x̄);

(iii) the sequence
{
x(k)

}
k
∈ N has a finite length, i.e.,

+∞∑
k=0

‖x(k+1) − x(k)‖2 < +∞.

Next, we show that the objective function F̃ in (4.21) and the iterative sequence
(v

(k)
1 ; v

(k)
2 ; v

(k)
3 )k∈N generated by iteration (4.22)-(4.24) satisfy the assumptions imposed in

Lemma 4.2, by which we establish the convergence of the proposed algorithm.
Denote Ŝ = Rs1 × Rs2 × S̃ ⊂ Rs. Firstly, we prove that F̃ satisfies the KŁ property at

each v ∈ Ŝ.

Lemma 4.3. F̃ is semi-algebraic on Ŝ. Hence, F̃ satisfies the KŁ property at each v ∈ Ŝ.

Proof. On Ŝ, F̃ can be expressed as

F̃ := G (v) + g (v3) , v ∈ Ŝ.

It’s clear that Ŝ is a semi-algebraic set([13] Proposition 2).
Note that V−1

i (i = 1, 2, 3) are linear mappings between finite-dimensional spaces. Hence,
each element of V−1

i (vi) (i = 1, 2, 3) is actually a linear polynomial of v := (v1; v2; v3). Ad-
ditionally, by the definition of ‖ · ‖ℓ2 , we know that G (v) is a polynomial of v. Thus, G is
semi-algebraic on Ŝ([13] Proposition 2)

D1 and D2 are linear mappings between finite-dimensional spaces. Hence, each element
of D1 (v3) and D2 (v3) can be regarded as a linear polynomial of v = (v1; v2; v3), therefore,
g (v3) are simply finite sums of compositions of absolute value function and linear polynomial
of v. So, g (v3) is semi-algebraic on Ŝ([13] Proposition 2,3).

In summary, F̃ is semi-algebraic on Ŝ([13]Proposition 2). The proof is complete.



TENSOR FACTORIZATION FOR INTERNET TRAFFIC DATA IMPUTATION 497

Theorem 4.4. Assume that the sequence v(k) = (v
(k)
1 ; v

(k)
2 ; v

(k)
3 ) generated by iteration

(4.22)-(4.24) is bounded, then it converges to a critical point of F̃ .

Proof. It has been mentioned above that F̃ is a PLSC function on Rs. From (4.22)-(4.24),
we see that

F̃ (v
(k+1)
1 ; v

(k)
2 ; v

(k)
3 ) +

ρ1
2
‖v(k+1)

1 − v
(k)
1 ‖22 ≤ F̃ (v

(k)
1 ; v

(k)
2 ; v

(k)
3 ), k ∈ N,

F̃ (v
(k+1)
1 ; v

(k+1)
2 ; v

(k)
3 ) +

ρ2
2
‖v(k+1)

2 − v
(k)
2 ‖22 ≤ F̃ (v

(k+1)
1 ; v

(k)
2 ; v

(k)
3 ), k ∈ N,

F̃ (v
(k+1)
1 ; v

(k+1)
2 ; v

(k+1)
3 ) +

ρ3
2
‖v(k+1)

3 − v
(k)
3 ‖22 ≤ F̃ (v

(k+1)
1 ; v

(k+1)
2 ; v

(k)
3 ), k ∈ N.

Summing over the three inequalities above, we obtain

F̃ (v(k+1)) +
ρmin

2
‖v(k+1) − v(k)‖22 ≤ F̃ (v(k)), k ∈ N. (4.25)

Where ρmin = min{ρ1, ρ2, ρ3}. Hence, H1(sufficient decrease condition) is satisfied, where
a = ρmin/2.

Let ∂vi and ∇vi denote sub-differential and gradient with respect to variable vi, respec-
tively, for i = 1, 2, 3. G is a polynomial function and thus is infinitely differentiable. (4.22)
and Proposition 1[13] imply that

0 ∈ ∂v1

[
F̃ (·; v(k)2 ; v

(k)
3 ) +

ρ1
2
‖ · −v

(k)
1 ‖22

] ∣∣∣∣
v1=v

(k+1)
1

= ∂v1 F̃ (v
(k+1)
1 ; v

(k)
2 ; v

(k)
3 ) + ρ1‖v(k+1)

1 − v
(k)
1 ‖22

= ∇v1G(v
(k+1)
1 ; v

(k)
2 ; v

(k)
3 ) + ρ1(v

(k+1)
1 − v

(k)
1 ), k ∈ N (4.26)

Similarly, (4.23)-(4.24) and Proposition 1[13] imply that

0 ∈ ∇v2G(v
(k+1)
1 ; v

(k+1)
2 ; v

(k)
3 ) + ρ2(v

(k+1)
2 − v

(k)
2 ), k ∈ N, (4.27)

0 ∈ ∇v3G(v
(k+1)
1 ; v

(k+1)
2 ; v

(k+1)
3 ) + ∂(δS̃ + g)(v

(k+1)
3 ) + ρ3(v

(k+1)
3 − v

(k)
3 ), k ∈ N. (4.28)

(4.26)-(4.28) imply that there exists w
(k+1)
1 ∈ ∂(δS̃ + g)(v

(k+1)
3 ) such that

−w̃(k+1) = u(k) + (ρ1(v
(k+1)
1 − v

(k)
1 ); ρ2(v

(k+1)
2 − v

(k)
2 ); ρ3(v

(k+1)
3 − v

(k)
3 )), k ∈ N,

where

w̃(k+1) = (0; 0;w
(k+1)
1 ),

u(k) = (∇v1G(v
(k+1)
1 ; v

(k)
2 ; v

(k)
3 );∇v2G(v

(k+1)
1 ; v

(k+1)
2 ; v

(k)
3 );∇v3G(v

(k+1)
1 ; v

(k+1)
2 ; v

(k+1)
3 )).

Denote w(k+1) = w̃(k+1) +∇G(v(k+1)). It’s clear that w(k+1) ∈ ∂F̃ (v(k+1)) and

−w(k+1) = u(k)−∇G(v(k+1))+(ρ1(v
(k+1)
1 −v

(k)
1 ); ρ2(v

(k+1)
2 −v

(k)
2 ); ρ3(v

(k+1)
3 −v

(k)
3 )), k ∈ N,

(4.29)
Denote E = {v(k)|k ∈ N}. For v = (v1; v2; v3) ∈ Rs, vi ∈ Rsi(i = 1, 2, 3), define the
coordinate projections by

Πi(v) := vi, i = 1, 2, 3.



498 G. YU, L. WANG, S. WAN, L. QI AND Y. XU

Denote Ê = Π1(v)×Π2(v)×Π3(v). Since E is bounded, therefore, Ê ⊂ Rs is also bounded.
Since G is a polynomial, it is easy to prove that ∇G is Lipschitz continuous on any bounded
subset of Rs. Hence, there exists a constant c > 0 such that

‖∇G(v)−∇G(w)‖22 ≤ c‖v − w‖22, v, w ∈ Ê.

Hence,

‖u(k) −∇G(v(k+1))‖2 =
[
‖∇v1G(v

(k+1)
1 ; v

(k)
2 ; v

(k)
3 )−∇v1G(v(k+1))‖22

+‖∇v2G(v
(k+1)
1 ; v

(k+1)
2 ; v

(k)
3 )−∇v2G(v(k+1))‖22

] 1
2

≤
[
c2(‖v(k)2 − v

(k+1)
2 ‖22 + ‖v(k)3 − v

(k+1)
3 ‖22) + c2(‖v(k)3 − v

(k+1)
3 ‖22)

] 1
2

≤
√
2c‖v(k+1) − v(k)‖22, k ∈ N,

According to (4.29), there are

‖w(k+1)‖2 ≤ ‖u(k) −∇G(v(k+1))‖2 + ρmax‖v(k+1) − v(k)‖2
≤ (

√
2c+ ρmax)‖v(k+1) − v(k)‖2, k ∈ N.

where ρmax = max{ρ1, ρ2, ρ3}. Therefore, H2(Relative error condition) is satisfied with
b =

√
2c+ ρmax.

Moreover, since
{
v(k)

}
k∈N ⊂ Rs is bounded and thus relative compact, there exists a

subsequence
{
v(kj)

}
j∈N and v̄ ∈ Rs such that v(kj) → v̄, j → +∞. Since

{
v
(k)
3 |k ∈ N

}
⊂ S̃,

so
{
v(k)|k ∈ N

}
⊂ Ŝ holds. Since Ŝ is closed, v̄ ∈ Ŝ, and F̃ is continuous on Ŝ. Therefore,

F̃
(
v(kj)

)
→ F̃ (v̄), j → +∞. Hence, H3(Continuity condition) is satisfied.

By Lemma 4.3, F̃ satisfies the KŁ property at v̄ ∈ Ŝ. According to Lemma 4.2, the
sequence {v(k)}k∈N converges to the critical point of F̃ . The proof is complete.

5 Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance of the
SRTFTV method, and compare it with the following seven data completion methods, the
first is the matrix completion via iterated soft thresholding algorithm(IST MC)[5], which
does not consider the temporal and spatial structure of the internet traffic matrix, the second
is the sparse regularized matrix factorization (SRMF) method [16], which is a low-rank ma-
trix completion method with spatio-temporal regularization, the third method is the CP ten-
sor completion method [2], and the fourth method is the CP tensor completion method with
spatio-temporal regularization(STTC)[24], the fifth approach is tensor completion based on
tensor-SVD(t-SVD)[22], the sixth method is a tensor completion method based on tensor
decomposition(TCTF)[25], the last one is a tensor completion method that combines tensor
decomposition, TV regularization and Tikhonov regularization (TCTFTVT)[13]. A series
of loss scenarios are simulated, from low loss to high loss probability, from random loss to
highly structured loss patterns. We use the normalized mean absolute error (NMAE) in the
missing value as a measure of the recovered data. NMAE is defined as follows

NMAE =
Σ(i,j)/∈Ω|Xij − X̂ij |

Σ(i,j)/∈Ω|Xij |
,
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where X and X̂ are the original data and estimated data respectively.
The method parameters used for compared methods were the parameters given in the

paper. The proposed method is implemented with parameters α1 = µ
∥D1∗Winit∥l1

∥GΩ∥l1
, α2 =

µ
∥Winit∗D2∥l1

∥GΩ∥l1
,µ = 10, β = 80, λ = 0.1, ρ1 = 10, ρ2 = ρ3 = 5e − 6, we set the parameter

µ = 0.01, ρ1 = 5e − 6 for consecutive data missing scenario, where Winit corresponds to
an initial estimate values. In all experiments, we set tolerance ϵ = 1e − 6. If the number
of iterations reaches 200, the methods are stopped. The platform is Matlab R2017a under
Windows 10 on a PC of a 1.19GHz CPU and 8GB memory.

5.1 Dataset

We conduct experiments on two real-world traffic datasets. The first is the widely used
Abilene dataset [1], which has 11 routers and therefore 11 × 11 = 121 OD pairs. From
December 8, 2003 to December 14, 2003, the network traffic data of each OD pair is recorded
every 5 minutes. Therefore, each OD pair has 7 × 24 × 12 = 2016 numbers, so we obtain
a network traffic matrix X of size 121 × 2016. To make full use of the time stability and
periodicity of the traffic data, the size of the tensor modeled in this paper is 288× 7× 121.
The second real-world dataset is the GÉANT traffic dataset [18], which has 23 routers, so
there are 529 OD pairs. For each OD pair, network traffic is recorded for every 15 minutes
in a month from March 21, 2005 to April 15, 2005, so we obtain an internet traffic matrix
X of size 529× 2496, which can be modeled into a tensor of size 96× 26× 529.

5.2 Performance under random loss

Random missing patterns referred to the elements of a given traffic matrix (TM) data are
uniformly and randomly missing. We randomly drop the data independently with probabil-
ity from 10% to 95% to evaluate the performance.
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Figure 1: Abilene data, NMAE under random loss
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Figure 2: GÉANT data, NMAE under random loss

Figure 1 shows the experimental results applied to the Abilene dataset. The X axis
represents the probability of data missing, and the Y axis represents the value of NMAE. It
can be seen from Figure 1 that the proposed method SRTFTV is significantly better than the
normal TCTF method. Similarly, the performance of the spatio-temporal regularized SRMF
method is better than that of the non-regularized IST MC method, and the performance
of the spatio-temporal regularized STTC method is better than that of the non-regularized
CPWOPT method. This phenomenon shows that the spatio-temporal structure in the
internet traffic data is very valuable and has been used to improve the recovery accuracy.
Further, the performance of the method SRTFTV method is better than that of TCTFTVT,
indicating that the method SRTFTV can capture the structural features of traffic data better
than TCTFTVT. When the probability of data loss is less than 95%, the performance of
the SRTFTV is better than all other methods. SRMF is just behind SRTFTV and achieves
strong performance over the entire loss range. In addition, we apply these methods to the
GÉANT traffic dataset, similar results could be observed from Figure 2.

5.3 Performance under structured loss

Not all data loss is random. In fact, network traffic losses are often highly structured due
to software or hardware reasons[15]. In this section, we simulate two typical data structure
loss patterns.

Time-mode Loss(TL): Usually, the overload of the monitoring equipment would cause
some random proportion of data to be lost in a certain period of time. We simulate this loss
by randomly selecting a certain percentage of time intervals and dropping data points with
a certain probability.

Spatial-mode Loss(SL): Unreliable transport protocol (UDP) may cause random data
loss of some nodes. We simulate this loss by randomly selecting a certain proportion of OD
pairs and dropping data points with a certain probability.
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Figure 3: Abilene dataset, TL, 60% time intervals chosen
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Figure 4: GÉANT dataset, SL, loss probability=0.6

Figure 3 shows the TL pattern, where 60% sampling time intervals are randomly chosen.
In these time intervals, loss probability is from 0.1 to 0.9. In this case, SRTFTV achieves
the best performance.

Figure 4 shows the SL pattern, where OD pairs are randomly selected from 10% to 90%.
In these OD pairs, loss probability is fixed at 0.6. In this case, SRTFTV is superior to other
algorithms. SRMF cannot make good use of the correlation between adjacent data to fill
the missing data due to the density of data loss, while SRTFTV makes good use of the
three-dimensional structure of the tensor, and performs better than SRMF.

Traffic data is usually obtained through continuous measurement. We conduct experi-
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ments on Abilene dataset, let the measurement of Wednesday and Thursday be lost, and
then calculate the NMAE on the two day’s data, as shown in Figure 5. Obviously, The
consecutive data missing results in the consecutive column missing in the traffic matrix.
From the related literature [6], we know that the normal matrix completion algorithm can
recover data only when there is no row or the column is completely empty. If a row or
column is missing, the matrix completion algorithm is invalid to fill these missing elements,
so under the matrix completion algorithm IST MC, NMAE is 1. The tensor completion
method utilizes information along three dimensions, while matrix completion only considers
constraints along two specific dimensions, therefore, the tensor completion method SRTFTV
performs better than matrix completion-based algorithm SRMF.

In order to observe the recovery accuracy more intuitively, we illustrate the recovered
data for the NYCM-LOSA OD pair of Abilene data, as we can see in Figure 6, SRTFTV
method can achieve better recovery performance than the compared methods.
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Figure 5: NMAE under consecutive data missing from Abilene Data
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Figure 6: Visualization of the recovered data by t-SVD, SRMF, STTC, TCTFTVT and
SRTFTV
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6 Conclusion

Considering the global structure and local smoothness features of network traffic data, we
propose a network traffic data imputation model based on low rank tensor completion and
TV regularization. In addition, an easy-to-operate and relatively effective algorithm PAM
is used to solve the problem, and the convergence of the algorithm is proved. Numerical
experiments on widely used real-world datasets show that the method has excellent perfor-
mance.
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