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THREE CLASSES OF COPOSITIVE-TYPE TENSORS AND
TENSOR COMPLEMENTARITY PROBLEMS∗

Ting Zhang, Zheng-Hai Huang and Yu-Fan Li†

Abstract: In the field of complementary problems, an important issue is to investigate under what con-
ditions feasibility of the problem can lead to its solvability. For the linear complementarity problem, such
an issue has been studied when the matrix involved is a copositive star matrix, a pseudomonotone matrix,
or a copositive plus matrix. In this paper, we first introduce the concepts of copositive star tensors, pseu-
domonotone tensors, and copositive plus tensors, which are natural extensions of copositive star matrices,
pseudomonotone matrices, and copositive plus matrices, respectively. We discuss the relationships among
these three classes of tensors and give a complete characterization. Then we establish an existence result
of solutions to the tensor complementarity problem under the assumption that the tensor involved is one of
these three classes of tensors and an addition condition. Finally we show the equivalence of solvability and
feasibility for the tensor complementarity problem with the tensor involved being one of these three classes
of tensors.

Key words: tensor complementarity problem, copositive star tensor, pseudomonotone tensor, copositive
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1 Introduction

The theory and algorithm of the linear complementarity problem (LCP) have been studied
a lot due to its large number of practical applications [6]. It is well known that some special
types of matrices play an important role in the study of LCPs, and at least there are more
than 50 matrix classes discussed in the literature of the LCP before 2010 [7]. These matrix
classes describe some characteristics of the LCP and provide some good features from the
perspective of algorithms.

In the era of big data, many practical problems need to be described by tensors (hyper-
matrices), so tensors and their related issues have become one of the research hotspots in
recent years. As a generalization of the LCP, the tensor complementarity problem (TCP)
has been developed rapidly since 2015, and has achieved fruitful results in both theory
[1, 2, 20, 29, 30, 31, 34, 33, 37, 39] and algorithm [10, 13, 21, 22, 32, 35, 36, 38]. An applica-
tion on multiplayer non-cooperative games was given in [14]. More research can be found in
the survey papers [15, 26, 16]. It can be seen that various types of tensors play an important
role in the study of the TCP.
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It is well known that in the study of the LCP, an important issue is to investigate its
solvability under the feasibility and some additional conditions. The study of this issue is
closely related to three kinds of matrices: copositive star matrices, pseudomonotone matrices
and copositive plus matrices, which was introduced by Cottle, Habetler and Lemke [8]. The
related studies can be found in [9, 12, 18, 24]. For the TCP, although many results for
the existence of solutions have been obtained, we have not seen the relevant results for the
existence of solutions which are achieved by using feasibility and other conditions. In this
paper, we consider such an issue. After the necessary notation, concepts, and results are
introduced in the next section, we begin our investigation.

In Section 3, we extend the concepts of pseudomonotone matrices, copositive plus matri-
ces and copositive star matrices to the cases of tensors, named as pseudomonotone tensors,
copositive plus tensors and copositive star tensors, respectively. In particular, we give a
complete characterization of the relationships among these three classes of tensors.

In Section 4, we first establish an existence result of solutions to the TCP with a copositive
star tensor, and use an example to show that the obtained result is different from the existing
related result; and then, we obtain the existence result of solutions to the TCP with a
copositive plus tensor (or pseudomonotone tensor) by using the relationships among these
three classes of tensors.

In Section 5, we first give an equivalence result between solvability and feasibility for
a TCP with a copositive star tensor; and then, obtain the same result for a TCP with a
copositive plus tensor (or pseudomonotone tensor) by using the relationships among these
three classes of tensors.

Some conclusions are given in the last section.

2 Preliminaries

Throughout this paper, we assume that m and n are two positive integers with m,n ≥ 2,
and denote [n] := {1, 2, . . . , n}. Let Rn denote the n-dimensional Euclidean space with
Euclidean inner product denoted by ⟨·, ·⟩, and denote it by R when n = 1. We denote
Rn

+ = {x ∈ Rn : xi ≥ 0 for all i ∈ [n]}. A set K ⊆ Rn is called a cone if λx ∈ K holds for
all λ ≥ 0 and x ∈ K; and furthermore, it is called a closed convex cone if it is both closed
set and convex set. For any nonempty set C ⊆ Rn, we use int(C) to denote its interior and
C∗ := {x ∈ Rn : ⟨x, y⟩ ≥ 0 for all y ∈ C} to denote its dual cone. Obviously, C∗ is a closed
convex cone with 0 ∈ C∗.

An m-th order n-dimensional real tensor A = (ai1i2···im) consists of nm real entries:
ai1i2···im ∈ R for any ij ∈ [n] with j ∈ [m]. We use R[m,n] to denote the set of all m-th order
n-dimensional real tensors. Suppose that Pm denotes the permutation group of m indices
{1, 2, . . . ,m}, then a tensor A ∈ R[m,n] is said to be symmetric if ai1i2···im = aiσ(1)iσ(2)···iσ(m)

for all σ ∈ Pm. For any A = (ai1i2···im) ∈ R[m,n] and x ∈ Rn, we define

A xm−1 ∈ Rn with (A xm−1)i =

n∑
i2,i3,...,im=1

aii2i3···imxi2xi3 · · ·xim ∀i ∈ [n];

and

A xm =

n∑
i1,i2,...,im=1

ai1i2···imxi1xi2 · · ·xim .

Let K ⊆ Rn be a closed convex cone, A ∈ R[m,n] and p ∈ Rn. The tensor complemen-
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tarity problem over K, denoted by TCP(A ,K, p), is to find an x ∈ K such that

x ∈ K, A xm−1 + p ∈ K∗, and ⟨x,A xm−1 + p⟩ = 0. (2.1)

We denote its solution set by SOL(A ,K, p) and its feasible set by FEA(A ,K, p). We will
use the following notation:

S := SOL(A ,K, 0). (2.2)

When K = Rn
+, this problem reduces to the TCP, and in this case, we denote it, its solution

set and its feasible set by TCP(A , p), SOL(A , p) and FEA(A , p), respectively. Moreover,
when m = 2, the TCP reduces to the LCP.

A symmetric tensor A ∈ R[m,n] is called to be copositive if A xm ≥ 0 for all x ∈
Rn

+, which was introduced by Qi [25]. Since then, the copositive tensor has been studied
extensively (see, for example, [28, 5, 3, 4, 19]). If A ∈ R[m,n] is not symmetric, by defining
Ã = (ãi1i2···im) ∈ R[m,n] with

ãi1i2···im =
1

m!

∑
σ∈Pm

aiσ(1)iσ(2)···iσ(m)
, ∀ij ∈ [n], ∀j ∈ [m],

we can see that A xm = Ã xm and Ã is symmetric [27]; and hence, the copositivity of A
can be judged by the copositivity of symmetric tensor Ã . In this paper, we use the following
definition.

Definition 2.1. A tensor A ∈ R[m,n] is said to be copositive on cone K if

A xm ≥ 0 for all x ∈ K.

When K = Rn
+, A is called to be copositive.

In Definition 2.1, the symmetry of A ∈ R[m,n] is not required. In fact, the copositive
mapping has been studied in the literature (see, for example, [11, 23]), and when the mapping
is the form of A xm, the symmetry of A ∈ R[m,n] is also not required. The following result
is easy to be obtained from [11, Theorem 1] (or [23, Theorem 3.1]).

Lemma 2.2. If A ∈ R[m,n] is copositive on closed convex cone K and p ∈ int(S∗), then
the solution set of TCP(A ,K, p) is nonempty and compact.

3 Copositive-Type Tensors

In this section, we introduce three classes of copositive-type tensors, which are the natural
extensions of the corresponding matrices; and then, we discuss the relationships among
them.

Definition 3.1. Let A ∈ R[m,n] and K ⊆ Rn be a closed convex cone.

(i) A is called to be a pseudomonotone tensor on K if

⟨A xm−1, y − x⟩ ≥ 0, ∀x, y ∈ K =⇒ ⟨A ym−1, y − x⟩ ≥ 0. (3.1)

Especially, A is said to be a pseudomonotone tensor if it is a pseudomonotone tensor
on K with K = Rn

+.
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(ii) A is called to be a copositive plus tensor on K if A is copositive on K and

⟨A xm−1, x⟩ = 0, ∀x ∈ K =⇒ ⟨A ym−1, x⟩+ ⟨A xm−1, y⟩ = 0, ∀y ∈ K. (3.2)

Especially, A is said to be a copositive plus tensor if it is a copositive plus tensor on
K with K = Rn

+.

(iii) A is called to be a copositive star tensor on K if A is copositive on K and

∀x ∈ S =⇒ ⟨A ym−1, x⟩ ≤ 0, ∀y ∈ K. (3.3)

Especially, A is said to be a copositive star tensor if it is copositive star tensor on K
with K = Rn

+.

In the following, we discuss relationships among pseudomonotone tensors, copositive plus
tensors, and copositive star tensors.

Proposition 3.2. If A ∈ R[m,n] is a copositive plus tensor on K, then it is a copositive
star tensor on K.

Proof . Since A is a copositive plus tensor on K, it follows from Definition 3.1(ii) that (3.2)
holds. Thus, by Definition 3.1(iii), we need to show that (3.3) holds. For this purpose, for
any x ∈ S, by (3.2) we have

⟨A ym−1, x⟩+ ⟨A xm−1, y⟩ = 0, ∀y ∈ K.

Since y ∈ K and A xm−1 ∈ K∗, it follows that ⟨A xm−1, y⟩ ≥ 0. Thus, by the above equality
we obtain that

⟨A ym−1, x⟩ ≤ 0, ∀y ∈ K.

This means that (3.3) holds; and hence, the desired result holds.

Proposition 3.3. If A ∈ R[m,n] is a pseudomonotone tensor on K, then it is a copositive
star tensor on K.

Proof . Take x̂ ∈ S, then for any α > 0 and y ∈ K, we have

⟨A x̂m−1, αy − x̂⟩ = α⟨A x̂m−1, y⟩ ≥ 0.

Since A is a pseudomonotone tensor on K, it follows from Definition 3.1(i) that

⟨A (αy)m−1, αy − x̂⟩ ≥ 0, ∀y ∈ K, ∀α > 0,

which implies that

α⟨A ym−1, y⟩ ≥ ⟨A ym−1, x̂⟩, ∀y ∈ K, ∀α > 0.

Let α → 0, we can further obtain that ⟨A ym−1, x̂⟩ ≤ 0 for all y ∈ K. This, together with
the arbitrariness of x̂, implies that (3.3) holds; and hence, A is a copositive star tensor on
K.

Let K = Rn
+, from Propositions 3.2 and 3.3 we have the following results.

Corollary 3.4. (i) A copositive plus tensor must be a copositive star tensor. (ii) A pseu-
domonotone tensor must be a copositive star tensor.
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In the following, we construct several examples to further discuss the relationships among
pseudomonotone tensors, copositive plus tensors and copositive star tensors.

Example 3.5. Let K := R2
+. Consider A = (ai1i2i3i4) ∈ R[4,2], where a1111 = a2222 = 1,

a1122 = −4, a2112 = 2 and all other ai1i2i3i4 = 0.

For any x ∈ R2, it is obvious that

A x3 =

(
x3
1 − 4x1x

2
2

2x2
1x2 + x3

2

)
.

First, we show that A is a copositive star tensor. On one hand, since

⟨A x3, x⟩ = (x2
1 − x2

2)
2 ≥ 0, ∀x ∈ R2,

it follows that A is copositive. On the other hand, by noting that

{x ∈ K : A x3 ∈ K∗, ⟨A x3, x⟩ = 0} = {0},

we always have that (3.3) holds. Thus, A is a copositive star tensor.
Second, we show that A is not a pseudomonotone tensor. Take x̄ = (0, 1)⊤ and ȳ =

( 12 , 1)
⊤, then ȳ − x̄ = ( 12 , 0)

⊤, A x̄3 = (0, 1)⊤, and A ȳ3 = (− 15
8 , 3

2 )
⊤; and hence,

⟨A x̄3, ȳ − x̄⟩ = 0, ⟨A ȳ3, ȳ − x̄⟩ = −15

16
< 0.

Thus, A is not a pseudomonotone tensor.
Third, we show that A is not a copositive plus tensor. Obviously,

{x ∈ K : ⟨A x3, x⟩ = 0} = {x ∈ R2 : x1 = x2 ≥ 0}.

Take x̄ = (1, 1)⊤, then A x̄3 = (−3, 3)⊤; and take ȳ = ( 12 , 1)
⊤, then A ȳ3 = (− 15

8 , 3
2 )

⊤.
Then,

⟨A ȳ3, x̄⟩+ ⟨A x̄3, ȳ⟩ = 9

8
̸= 0.

Thus, A is not a copositive plus tensor.
Example 3.5 indicates that the inverses of two results in Corollary 3.4 are not true.

That is, a copositive star tensor might not be a pseudomonotone tensor; and a copositive
star tensor might not be a copositive plus tensor. In the following, we further discuss the
relationship between pseudomonotone tensors and copositive plus tensors.

Example 3.6. Let K := R2
+. Consider A = (ai1i2i3i4) ∈ R[4,2], where a1111 = a2222 = 1,

a1122 = a2112 = 4 and all other ai1i2i3i4 = 0.

For any x ∈ R2, it is obvious that

A x3 =

(
x3
1 + 4x1x

2
2

4x2
1x2 + x3

2

)
.

On one hand, since all the entries of A are nonnegative, it is obvious that ⟨A x3, x⟩ ≥ 0 for
all x ∈ R2

+. Thus, A is copositive. Furthermore, it is easy to see that {x ∈ K : ⟨A x3, x⟩ =
0} = {0}, which implies that (3.2) holds, and hence, A is a copositive plus tensor. On the
other hand, take ȳ := (2, 1)⊤ and x̄ := (1, 2)⊤, then

⟨A x̄3, ȳ − x̄⟩ = 1 > 0, ⟨A ȳ3, ȳ − x̄⟩ = −1 < 0.

Thus, A is not a pseudomonotone tensor.
Example 3.6 indicates that a copositive plus tensor might not be a pseudomonotone

tensor.



512 T. ZHANG, Z.-H. HUANG AND Y.-F. LI

Example 3.7. Let K := R2
+. Consider A = (ai1i2i3) ∈ R[3,2], where a112 = a122 = −1,

a211 = a212 = 2 and all other ai1i2i3 = 0.

For any x ∈ R2, it is obvious that

A x2 =

(
−x1x2 − x2

2

2x2
1 + 2x1x2

)
.

Thus,
⟨A x2, x⟩ = x1x2(x1 + x2), ∀x ∈ R2,

which implies that A is copositive.
First, we show that A is a pseudomonotone tensor. For any x, y ∈ R2, we have

⟨A x2, y − x⟩ = (x1 + x2)[2x1y2 − x2(x1 + y1)], (3.4)
⟨A y2, y − x⟩ = (y1 + y2)[y2(x1 + y1)− 2x2y1]. (3.5)

Let

Ω := {x, y ∈ R2
+ : ⟨A x2, y − x⟩ ≥ 0}. (3.6)

We need to show that ⟨A y2, y−x⟩ ≥ 0 holds for all x, y ∈ Ω. For any x, y ∈ Ω, if x1+x2 = 0,
then x = 0. In this case, it follows from x = 0 and (3.5) that ⟨A y2, y − x⟩ ≥ 0. In the
following, we assume that x, y ∈ Ω and x1 + x2 ̸= 0. By (3.4) and (3.6), we have

2x1y2 − x2(x1 + y1) ≥ 0. (3.7)

If x1 = 0, then it follows from (3.7) that −x2y1 ≥ 0. Thus, by (3.5), we can obtain that
⟨A y2, y − x⟩ ≥ 0. Next, we assume that x1 ̸= 0. Then, by (3.7) we have that

y2 ≥ (2x1)
−1x2(x1 + y1).

Thus, by using (3.5) we can obtain that

⟨A y2, y − x⟩ = (y1 + y2)[y2(x1 + y1)− 2x2y1]

≥ (y1 + y2)
[
(2x1)

−1x2(x1 + y1)
2 − 2x2y1

]
= (y1 + y2)

{
(2x1)

−1x2

[
(x1 + y1)

2 − 4x1y1
]}

= (y1 + y2)(2x1)
−1x2(x1 − y1)

2

≥ 0.

So, A is a pseudomonotone tensor.
Second, we show that A is not a copositive plus tensor. We need to show that there

exists some x ∈ K satisfying ⟨A x2, x⟩ = 0 and some y ≥ 0 such that

⟨A y2, x⟩+ ⟨A x2, y⟩ ̸= 0.

Take x̄ = (0, 3)⊤, then x̄ ≥ 0 and ⟨A x̄2, x̄⟩ = 0; and take ȳ = (1, 1)⊤. Then, we have

⟨A ȳ2, x̄⟩+ ⟨A x̄2, ȳ⟩ = 3 ̸= 0.

So, A is not a copositive plus tensor.
Example 3.7 indicates that a pseudomonotone tensor might not be a copositive plus

tensor.
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Example 3.8. Let K := R2
+. Consider A = (ai1i2i3i4) ∈ R[4,2], where a1111 = a2222 = 1

and all other ai1i2i3i4 = 0.

For any x ∈ R2, it is obvious that

A x3 =

(
x3
1

x3
2

)
.

First, it is easy to show that ⟨A x3−A y3, x− y⟩ ≥ 0 for all x, y ∈ K, which implies that
A is a pseudomonotone tensor.

Second, it is easy to see that ⟨A x3, x⟩ = x4
1 + x4

2 ≥ 0 for all x ∈ R2, which implies that
A is copositive. Moreover, it is also obvious that {x ∈ K : ⟨A x3, x⟩ = 0} = {0}, which
implies that (3.2) holds. Thus, A is a copositive plus tensor.

Example 3.8 indicates that the classes of copositive plus tensors and pseudomonotone
tensors have a nonempty intersection.

Up to now, we can see that Corollary 3.4 and Examples 3.5-3.8 describe full relationships
among pseudomonotone tensors, copositive plus tensors, and copositive star tensors. To see
them more intuitively, we depict the full relationships among these tensors in Figure 1.

Figure 1: Relationships among several classes of copositive-type tensors

4 Solvability Results

In this section, we discuss the existence of solutions to the TCP with the tensor involved
being one of the concerned copositive-type tensors.

Theorem 4.1. Denote Ω := {x ∈ S \ {0} : ⟨x, p⟩ ≤ 0}. Suppose that A ∈ R[m,n] is
copositive star on closed convex cone K and FEA(A ,K, p) ̸= ∅. If Ω

∩
FEA(A ,K, p)

̸= ∅ when Ω ̸= ∅, then TCP(A ,K, p) is solvable.

Proof . On one hand, for any x ∈ K, it is obvious that ⟨x,A ym−1 + p⟩ ≥ 0 for all y ∈
FEA(A ,K, p); and hence, for any x ∈ S, we have that

⟨x,A ym−1⟩+ ⟨x, p⟩ ≥ 0, ∀y ∈ FEA(A ,K, p). (4.1)
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On the other hand, since A is copositive star on K, it follows from (3.3) that for any x ∈ S,
⟨x,A ym−1⟩ ≤ 0 for all y ∈ K, and hence,

⟨x,A ym−1⟩ ≤ 0, ∀y ∈ FEA(A ,K, p). (4.2)

Combining (4.1) with (4.2), we may assert that

⟨x, p⟩ ≥ 0, ∀x ∈ S. (4.3)

Obviously, 0 ∈ S. In the following, we divide the proof into two cases:
Case 1. Suppose that S = {0}. In this case, we have S∗ = Rn, which implies that

p ∈ int(S∗). Thus, by Lemma 2.2, we obtain that the solution set of TCP(A ,K, p) is
nonempty and compact.

Case 2. Suppose that S ̸= {0}. If Ω = ∅, then, by (4.3) we have that ⟨x, p⟩ > 0 for all
x ∈ S \ {0}, which means that p ∈ int(S∗). Furthermore, by Lemma 2.2, we obtain that the
solution set of TCP(A ,K, p) is nonempty and compact. Moreover, if Ω ̸= ∅, then it follows
from the assumed condition that there exists a point x̄ ∈ Ω

∩
FEA(A ,K, p). In this case,

we have

0 ≤ ⟨x̄,A x̄m−1 + p⟩ = ⟨x̄,A x̄m−1⟩+ ⟨x̄, p⟩ = ⟨x̄, p⟩ ≤ 0, (4.4)

where the first inequality holds from x̄ ∈ K and A x̄m−1 + p ∈ K∗, the second equality and
the second inequality hold from x̄ ∈ S \ {0} and ⟨x̄, p⟩ ≤ 0, respectively. From (4.4), we
obtain that ⟨x̄,A x̄m−1 + p⟩ = 0. This, together with x̄ ∈ FEA(A ,K, p), implies that x̄ is a
solution to TCP(A ,K, p).

Combining Case 1 with Case 2, we can obtain the desired result.
In the following, we construct an example, in which all the conditions of Theorem 4.1

are satisfied, but at least one condition of Lemma 2.2 is not satisfied.

Example 4.2. Consider TCP(A ,K, p) where A = (ai1i2i3) ∈ R[3,2] with a121 = a122 = 1,

a211 = a212 = −1 and all other ai1i2i3 = 0, K = {x ∈ R2 : x1 ≥ x2 ≥ 0} and p =

(
−1
1

)
.

It is obvious that

A x2 =

(
x2(x1 + x2)
−x1(x1 + x2)

)
, ∀x ∈ R2.

Since K∗ = {x ∈ R2 : x1 ≥ 0 and x1 + x2 ≥ 0}, it is easy to see that the feasible set
of TCP(A ,K, p) is

FEA(A ,K, p)
= {x ∈ R2 : x1 ≥ x2 ≥ 0, x2(x1 + x2) ≥ 1, (x2 − x1)(x1 + x2) ≥ 0}
= {x ∈ R2 : x1 = x2 ≥ 1√

2
}.

For any x ∈ K, we have that

⟨x,A x2⟩ = x1x2(x1 + x2)− x1x2(x1 + x2) = 0,

which means that A is copositive on K. Furthermore, it can be verified that the
solution set of TCP(A ,K, 0) is

S = SOL(A ,K, 0) = {x ∈ R2
+ : x1 = x2}.
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It is easy to check that for any x ∈ S, it follows that

⟨x,A y2⟩ = x1(y2 − y1)(y1 + y2) ≤ 0, ∀y ∈ K.

Thus, A is copositive star on K.

It is easy to see that FEA(A ,K, p) ⊂ S.

Therefore, from Theorem 4.1, it follows that TCP(A ,K, p) is solvable. In fact, the solution
set of TCP(A ,K, p) is {x ∈ R2 : x1 = x2 ≥ 1√

2
}. However, it is obvious that p /∈ int(S∗),

i.e., one condition of Lemma 2.2 is not satisfied.
When K = Rn

+, from Theorem 4.1 we have the following results.

Theorem 4.3. Let A ∈ R[m,n] be a copositive star tensor and FEA(A , p) ̸= ∅. If

{x ∈ SOL(A , 0) \ {0} : ⟨x, p⟩ ≤ 0}
∩

FEA(A , p) ̸= ∅

when {x ∈ SOL(A , 0) \ {0} : ⟨x, p⟩ ≤ 0} ̸= ∅, then TCP(A , p) is solvable.

Remark 4.4. Combining the relationships among copositive star tensors, pseudomonotone
tensors and copositive plus tensors established in Secton 3 with Theorem 4.3, we have the
following result: For Theorem 4.3, if condition “A is a copositive star tensor" is replaced by
“A is a copositive plus tensor" (or “A is a pseudomonotone tensor"), then the same results
still hold.

5 Equivalence of Solvability and Feasibility

Theorem 5.1. Let A ∈ R[m,n] be copositive star on closed convex cone K and S be defined
by (2.2). Then, the following three statements are equivalent:

(a) TCP(A ,K, p) is solvable for all p ∈ Rn;

(b) TCP(A ,K, p) is feasible for all p ∈ Rn;

(c) S = {0}.

Proof . The proof is similar to one in [12, Theorem 5.2], and we give it here for completeness.
First, “(a) ⇒ (b)” is obvious.
Second, we show “(b) ⇒ (c)”. For any fixed x∗ ∈ S, since A is a copositive star tensor

on K, it follows that

⟨x∗,A ym−1⟩ ≤ 0, ∀y ∈ K. (5.1)

Take p := −x∗. By (b) we have that TCP(A ,K, p) is feasible, i.e., there exists x̄ ∈
FEA(A ,K, p) ⊆ K such that A x̄m−1 − x∗ ∈ K∗. Thus,

⟨x∗,A x̄m−1⟩ − ⟨x∗, x∗⟩ = ⟨x∗,A x̄m−1 − x∗⟩ ≥ 0.

This, together with (5.1), implies that −⟨x∗, x∗⟩ ≥ 0, which yields x∗ = 0. Thus, (c) holds.
Third, we show “(c) ⇒ (a)”. In this case, by S = {0}, we have S∗ = Rn. Thus, all the

conditions in Lemma 2.2 are satisfied. By Lemma 2.2 we obtain that (a) holds.
Therefore, (a) ⇔ (b) ⇔ (c).
When K = Rn

+, from Theorem 5.1 we have the following results.



516 T. ZHANG, Z.-H. HUANG AND Y.-F. LI

Theorem 5.2. Suppose that A ∈ R[m,n] is a copositive star tensor, then the following three
statements are equivalent:

(a) TCP(A , p) is solvable for all p ∈ Rn;

(b) TCP(A , p) is feasible for all p ∈ Rn;

(c) SOL(A , 0) = {0}.

Remark 5.3. (i) Combining the relationships among copositive star tensors, pseudomono-
tone tensors and copositive plus tensors established in Secton 3 with Theorem 5.2, we have
the following result: For Theorem 5.2, if condition “A is a copositive star tensor" is re-
placed by “A is a copositive plus tensor" (or “A is a pseudomonotone tensor"), then the
same results still hold. (ii) When m = 2, the results of Theorem 5.2 reduce to those in [12].

As a natural extension of Q0-matrix, we introduce the following concept.

Definition 5.4. A ∈ R[m,n] is called a Q0-tensor if for all p ∈ Rn, feasibility of TCP(A , p)
implies its solvability.

Recall that A ∈ R[m,n] is called a Q-tensor [30, 17] if TCP(A , p) is solvable for all
p ∈ Rn. Theorem 5.2 and Remark 5.3 indicate that if A is one of copositive star tensors,
pseudomonotone tensors and copositive plus tensors, then it is a Q-tensor if and only if it
is a Q0-tensor.

6 Concluding Remarks

The main purpose of this paper is to investigate the conditions under which the feasibility
of the TCP can lead to its solvability. For this purpose, we introduced three classes of
tensors: copositive star tensors, pseudomonotone tensors and copositive plus tensors, and
gave a complete characterization of the relationships among these three classes of tensors.
For the TCP with the tensor involved being one of these three classes tensors, we achieved an
existence result of solutions if an additional condition holds. We also obtain the equivalence
result between solvability and feasibility for these three classes of TCPs.

In recent years, many special types of tensors have been studied. A further issue is to
study the properties of these three tensors themselves such as the eigenvalue theory. In this
paper, we show that copositive star tensors, pseudomonotone tensors and copositive plus
tensors are Q0-tensors. It’s worth investigating which tensors are Q0-tensors besides these
three classes of tensors. In addition, it is possible that the results obtained in this paper
can be extended to more general complementarity problems such as the complementarity
problem with a polynomial mapping (or more generally, a weakly homogeneous mapping).

References

[1] X.L. Bai, Z.H. Huang and Y. Wang, Global uniqueness and solvability for tensor com-
plementarity problems, J. Optim. Theory Appl. 170 (2016) 72–84.

[2] M. Che, L. Qi and Y. Wei, Positive-definite tensors to nonlinear complementarity prob-
lems, J. Optim. Theory Appl. 168 (2016) 475–487.

[3] H.B. Chen, Z.H. Huang and L. Qi, Copositivity detection of tensors: theory and algo-
rithm, J. Optim. Theory Appl. 174 (2017) 746–761.



COPOSITIVE-TYPE TENSORS AND TENSOR COMPLEMENTARITY PROBLEMS 517

[4] H.B. Chen, Z.H. Huang and L. Qi, Copositive tensor detection and its applications in
physics and hypergraphs, Comput. Optim. Appl. 69 (2018) 133–158.

[5] H.B. Chen and Y.J. Wang, High-order copositive tensors and its applications, J. Appl.
Anal. Comput. 8 (2018) 1863–1885.

[6] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem, Aca-
demic Press, Boston, 1992.

[7] R.W. Cottle, A field guide to the matrix classes found in the literature of the linear
complementarity problem, J. Global Optim. 46 (2010) 571–580.

[8] R.W. Cottle, G.J. Habetler and C.E. Lemke, Quadratic forms semi-definite over convex
cones, in: Proc. Princeton Sympos. Math. Programming, H.W. Kuhn (edi), Princeton
University Press, 1970, pp. 551–565.

[9] R.W. Cottle, G.J. Habetler and C.E. Lemke, On classes of copositive matrices, Linear
Algebra Appl. 3 (1970) 295–310.

[10] S. Du and L. Zhang, A mixed integer programming approach to the tensor complemen-
tarity problem, J. Global Optim. 73 (2019) 789–800.

[11] M.S. Gowda, Complementarity problems over locally compact cones, SIAM J. Control
Optim. 27 (1989) 836–841.

[12] M.S. Gowda, Pseudomonotone and copositive star matrices, Linear Algebra Appl. 113
(1989) 107–118.

[13] L. Han, A continuation method for tensor complementarity problems, J. Optim. Theory
Appl. 180 (2019) 949–963.

[14] Z.H. Huang and L. Qi, Formulating an n-person noncooperative game as a tensor
complementarity problem, Comput. Optim. Appl. 66 (2017) 557–576.

[15] Z.H. Huang and L. Qi, Tensor complementarity problems part I: basic theory, J. Optim.
Theory Appl. 183 (2019) 1–23.

[16] Z.H. Huang and L. Qi, Tensor complementarity problems part III: applications, J.
Optim. Theory Appl. 183 (2019) 771–791.

[17] Z.H. Huang, Y. Suo and J. Wang, On Q-tensors, Pac. J. Optim. 16 (2020) 67–86.

[18] C.E. Lemke, On complementary pivot theory, in: Mathematics of Decision Sciences,
Part Z, G.B Dantzig and A.F Veinott Jr, Amer. (eds.), Math. Sot., Providence, 1988.

[19] L. Li, X. Zhang, Z.H. Huang and L. Qi, Test of copositive tensors, J. Ind. Manag.
Optim. 15 (2019) 881–891.

[20] L. Ling, H. He and C. Ling, On error bounds of polynomial complementarity problems
with structured tensors, Optim. 67 (2018) 341–358.

[21] D. Liu, W. Li and S.W. Vong, Tensor complementarity problems: the GUS-property
and an algorithm, Linear Multilinear Algebra 66 (2018) 1726–1749.

[22] Z. Luo, L. Qi and N. Xiu, The sparsest solutions to Z-tensor complementarity problems,
Optim. Lett. 11 (2017) 471–482.



518 T. ZHANG, Z.-H. HUANG AND Y.-F. LI

[23] X.X. Ma, M.M. Zheng and Z.H. Huang, A note on the nonemptiness and compactness
of solution sets of weakly homogeneous variational inequalities, SIAM J. Optim. 30
(2020) 132–148.

[24] J.S. Pang, On Q-matrices, Math. Program. 17 (1979) 243–247.

[25] L. Qi, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl. 439
(2013) 228–238.

[26] L. Qi and Z.H. Huang, Tensor complementarity problems part II: solution methods, J.
Optim. Theory Appl. 183 (2019) 365–385.

[27] L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for
Industrial and Applied Mathematics, 2017.

[28] Y. Song and L. Qi, Necessary and sufficient conditions for copositive tensors, Linear
Multilinear Algebra 63 (2015) 120–131.

[29] Y. Song and L. Qi, Tensor complementarity problem and semi-positive tensors, J.
Optim. Theory Appl. 169 (2016) 1069–1078.

[30] Y. Song and L. Qi, Properties of tensor complementarity problem and some classes of
structured tensors, Ann. Appl. Math. 33 (2017) 308–323.

[31] Y. Song and G. Yu, Properties of solution set of tensor complementarity problem, J.
Optim. Theory Appl. 170 (2016) 85–96.

[32] X. Wang, M. Che, L. Qi and Y. Wei, Modified gradient dynamic approach to the tensor
complementarity problem, Optim. Methods Softw. 35 (2020) 394–415.

[33] X. Wang, M. Che and Y. Wei, Global uniqueness and solvability of tensor complemen-
tarity problems for H+-tensors, Numer. Algo. 84 (2020) 567–590.

[34] Y. Wang, Z.H. Huang and X.L. Bai, Exceptionally regular tensors and tensor comple-
mentarity problems, Optim. Methods Softw. 31 (2016) 815–828.

[35] S.L. Xie, D.H. Li and H.R. Xu, An iterative method for finding the least solution to
the tensor complementarity problem, J. Optim. Theory Appl. 175 (2017) 119–136.

[36] H.R. Xu, D.H. Li and S.L. Xie, An equivalent tensor equation to the tensor complemen-
tarity problem with positive semi-definite Z-tensor, Optim. Lett. 13 (2019) 685–694.

[37] W. Yu, C. Ling and H. He, On the properties of tensor complementarity problems, Pac.
J. Optim. 14 (2018) 675–691.

[38] X. Zhao and J. Fan, A semidefinite method for tensor complementarity problems, Op-
tim. Methods Softw. 4 (2019) 758–769.

[39] M.M. Zheng, Y. Zhang and Z.H. Huang, Global error bounds for the tensor comple-
mentarity problem with a P -tensor, J. Ind. Manag. Optim. 15 (2019) 933–946.

Manuscript received 22 February 2021
revised 10 May 2021

accepted for publication 12 May 2021



COPOSITIVE-TYPE TENSORS AND TENSOR COMPLEMENTARITY PROBLEMS 519

Ting Zhang
School of Mathematics and Physics
University of Science and Technology Beijing
Beijing 100083, P.R. China
E-mail address: zhangting@ustb.edu.cn

Zheng-Hai Huang
School of Mathematics, Tianjin University
Tianjin 300350, P.R. China
E-mail address: huangzhenghai@tju.edu.cn

Yu-Fan Li
School of Mathematics (Zhuhai)
Sun Yat-sen University
Zhuhai 519082, P.R. China
E-mail address: liyufan@mail.sysu.edu.cn


