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solved image restoration problems as an application of the symmetric system. Meanwhile,
many researchers have dealt with monotone systems of nonsmooth equations (namely, F
is monotone). Inspired by the projection method in [33], Zhan and Zhou [37] proposed a
spectral residual projection method. Following their research, various conjugate gradient
methods with the same projection technique have been proposed [4,7,11,21,34]. Moreover,
in [2, 3], the authors presented conjugate gradient methods with the projection technique
to solve constrained monotone systems of nonsmooth equations and applied the proposed
methods to signal recovery and image restoration problems. Recent research of matrix-free
methods for solving systems of equations can be categorized into two classes. The first is
smooth and not necessarily monotone systems, and the second is nonsmooth and monotone
systems. We emphasize that there are few existing studies on nonsmooth and nonmonotone
systems.

To solve systems of nonsmooth equations, gradient methods such as Newton’s method or
Newton-like methods cannot be directly applied to problem (1.1). Thus, smoothing methods
based on the following smoothing function are often used.

Definition 1.1. A function F̃ : R × Rn → Rn is a smoothing function of F if F̃ is
continuously differentiable on R++ ×Rn and satisfies

lim
t→+0

F̃ (t, x) = F̃ (0, x) = F (x)

for any x, where R++ = {t ∈ R | t > 0}.

Defining a function H : R×Rn → R1+n by

H(t, x) =

(
t

F̃ (t, x)

)
,

we solve the system of equations H(t, x) = 0 instead of (1.1). Moreover, we define a merit
function Ψ : R×Rn → R by

Ψ(t, x) =
1

2
∥H(t, x)∥2 =

1

2
{t2 + ∥F̃ (t, x)∥2}, (1.2)

where ∥ · ∥ denotes the ℓ2-norm. Then, (1.1) is equivalent to finding a global minimizer of
the unconstrained optimization problem:

minΨ(t, x). (1.3)

Note that Ψ is continuously differentiable on R++ ×Rn, but not necessarily continuously
differentiable on the other region (namely, t ≤ 0). Many researchers have proposed Newton’s
method or Newton-like methods based on (1.2) and (1.3), as those are reviewed in [32].
However, these methods need to store some matrices, and so cannot necessarily be applied
to large-scale problems.

To develop an algorithm for solving large-scale problems, some smoothing conjugate
gradient methods have been proposed by incorporating the smoothing technique into con-
jugate gradient methods for usual unconstrained optimization. Narushima [23] proposed
a smoothing three-term Polak-Ribière-Polyak (PRP) type conjugate gradient (STPRP)
method, based on the three-term PRP type conjugate gradient method given by Zhang,
Zhou, and Li [38] which solves smooth unconstrained optimization problems. As scaling
conjugate gradient methods are efficient for solving large-scale smooth unconstrained opti-
mization problems, it is expected that smoothing and scaling conjugate gradient methods
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can be efficient for solving nonsmooth equations (1.1). From this perspective, Narushima,
Ootani, and Yabe [27] gave a smoothing and scaling PRP type conjugate gradient (SSPRP)
method, based on the scaling PRP type conjugate gradient method given by Cheng [5].
However, the parameter of the SSPRP method includes a term whose denominator can be
close to zero, causing numerical instability. Thus, we consider another type of smoothing and
scaling conjugate gradient method such that a denominator of its parameter does not tend
to zero. For this purpose, we propose a smoothing and scaling conjugate gradient method
based on the scaling Fletcher-Reeves (FR) type conjugate gradient method by Zhang, Zhou,
and Li [39].

This paper is organized as follows. In Section 2, we review usual conjugate gradient
methods for solving smooth unconstrained optimization problems and smoothing conjugate
gradient methods (namely, STPRP and SSPRP methods) for solving (1.1). In Section 3, we
give an algorithm of our method. In Section 4, we prove the global convergence property of
the proposed method. Finally, in Section 5, we present preliminary numerical results.

2 Preliminaries

In this section, we first recall conjugate gradient (CG) methods for solving the smooth
unconstrained optimization problem:

min f(z),

where f : Rℓ → R is a continuously differentiable function and its gradient ∇f is available.
CG methods are iterative methods of the form:

zk+1 = zk + αkdk, dk =

{
−∇f(zk), k = 0,
−∇f(zk) + βkdk−1, k ≥ 1,

where zk ∈ Rℓ is the kth approximation to a solution, αk is a positive step size, and dk ∈ Rℓ

is a search direction. Since CG methods do not need to store matrices, they have been
explored for solving large-scale unconstrained optimization problems. Choices of βk are
known to affect the numerical performance of the method. Well-known formulas for βk are
the Hestenes-Stiefel (HS) [16], Fletcher-Reeves (FR) [12], Polak-Ribière-Polyak (PRP) [29],
and Dai-Yuan (DY) [8] formulas, which are respectively given by

βHS
k =

∇f(zk)
T ŷk−1

dTk−1ŷk−1
, βFR

k =
∥∇f(zk)∥2

∥∇f(zk−1)∥2
,

βPRP
k =

∇f(zk)
T ŷk−1

∥∇f(zk−1)∥2
, βDY

k =
∥∇f(zk)∥2

dTk−1ŷk−1
,

where ŷk−1 = ∇f(zk) − ∇f(zk−1). Recent development of CG methods and their global
convergence properties is reviewed in [14, 24]. A weakness of CG methods is that many
CG methods do not necessarily satisfy the descent condition ∇f(zk)

T dk < 0. To overcome
this weakness, some researchers recently proposed three-term or scaling CG methods that
always generate descent search directions (for example, see [1,5,13,17,22,25,38–40]). Zhang,
Zhou, and Li proposed a three-term PRP method in [38] and a scaling FR method in [39],
respectively given by

dk = −∇f(zk) + βPRP
k dk−1 −

∇f(zk)
T dk−1

∥∇f(zk−1)∥2
ŷk−1, (2.1)



550 Y. NARUSHIMA AND H. YABE

dk = −
dTk−1ŷk−1

∥∇f(zk−1)∥2
∇f(zk) + βFR

k dk−1. (2.2)

Cheng [5] gave the following modified PRP method:

dk = −∇f(zk) + βPRP
k

(
I − ∇f(zk)∇f(zk)

T

∥∇f(zk)∥2

)
dk−1

= −
(
1 + βPRP

k

∇f(zk)
T dk−1

∥∇f(zk)∥2

)
∇f(zk) + βPRP

k dk−1. (2.3)

It can be easily verified that these methods always satisfy the sufficient descent condition
in the sense that ∇f(zk)

T dk = −∥∇f(zk)∥2 < 0 whenever ∇f(zk) ̸= 0. We note that (2.2)
can be written as

dk = −
(
1 +

∇f(zk)
T dk−1

∥∇f(zk−1)∥2

)
∇f(zk) + βFR

k dk−1. (2.4)

by using the relation ∇f(zk)
T dk = −∥∇f(zk)∥2. This form will be referred to in subsequent

sections.
Next, we review two types of smoothing CG methods for solving (1.3) to therefore solve

(1.1). To this end, we introduce some notations and relations. For any Fréchet-differentiable
mapping G : Rn → Rm, we denote its transposed Jacobian at x ∈ Rn by ∇G(x) ∈ Rn×m.
Note that, when m = 1, the term ∇G(x) ∈ Rn refers to the gradient vector of G at x. The
gradient of a smoothing function F̃ of F is given by

∇F̃ (t, x) =

(
∇tF̃ (t, x)

∇xF̃ (t, x)

)
.

Also, by (1.2), we have

∇Ψ(t, x) =

(
∇tΨ(t, x)
∇xΨ(t, x)

)
=

(
t+∇tF̃ (t, x)F̃ (t, x)

∇xF̃ (t, x)F̃ (t, x)

)
. (2.5)

Note that ∇tF̃ (t, x) ∈ R1×n is a row vector, and so ∇tF̃ (t, x)F̃ (t, x) is a scalar, while
∇xF̃ (t, x)F̃ (t, x) ∈ Rn is a column vector. We often write (t, x) ∈ R × Rn instead of
(t, xT )T ∈ R1+n. For simplicity, we set v = (t, x).

Narushima [23] proposed the STPRP method, which is an iterative method of the form:

vk+1 = vk + αkdk, (2.6)

where vk ∈ R1+n is the kth approximation to a solution of (1.3), αk is a positive step size,
and dk ∈ R1+n is a search direction. Similar to v = (t, x), we use the symbol vk = (tk, xk).
In addition, we often use the conventional abbreviation:

F̃k = F̃ (vk),

and we adopt the same manner for the other functions. The search direction in (2.6) is given
by

dk =

(
t̄γk − tk

d̃k

)
, (2.7)

where
γk = γ(vk), γ(v) = γ̄min{1,Ψ(v)}, (2.8)
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and γ̄ and t̄ are positive constants such that γ̄t̄ < 1. Here, t̄γk − tk ∈ R is a search direction
associated with the variable t, and d̃k ∈ Rn is a search direction associated with the variable
x. Moreover, by modifying the three-term PRP method (2.1), d̃k ∈ Rn is defined by the
following:

If ∇xΨk = 0, then
d̃k = 0. (2.9)

Else,

d̃k =


−ζk∇xΨk k = 0,

−ζk∇xΨk + βPRP ′

k d̃k−1 −
∇xΨ

T
k d̃k−1

∥∇Ψk−1∥2
yk−1 k ≥ 1,

(2.10)

where η ∈ (0, 1) is a constant,

ζk =


1, η∥∇xΨk∥2 ≥ ∇tF̃kF̃k(t̄γk − tk),

1 +
∇tF̃kF̃k(t̄γk − tk)

∥∇xΨk∥2
, otherwise,

(2.11)

βPRP ′

k =
∇xΨ

T
k yk−1

∥∇Ψk−1∥2
,

and yk−1 = ∇xΨk −∇xΨk−1. Narushima [23] showed the global convergence of the STPRP
method with an Armijo type line search.

Since scaling CG methods are often very efficient for large-scale problems, Narushima,
Ootani and Yabe [27] presented the SSPRP method by proposing another d̃k based on the
scaling PRP method (2.3). Specifically, they used the following d̃k instead of (2.10):

d̃k =


−ζk∇xΨk, k = 0.

−

(
ζk + βPRP ′

k

∇xΨ
T
k d̃k−1

∥∇xΨk∥2

)
∇xΨk + βPRP ′

k d̃k−1, k ≥ 1.
(2.12)

They showed the global convergence of the SSPRP method with an Armijo type line search,
which is same as STPRP. In their numerical comparison of these methods, the SSPRP
method could not outperform the STPRP method. We suggest this is because ∥∇xΨk∥2 is
included in the denominator of (2.12), and ∥∇xΨk∥2 can approach zero, even if ∥∇xΨk∥2 ̸= 0
for all k. Thus, the method could be unstable. Note that ∥∇xΨk∥2 is also included in ζk,
but ζk = 1 is almost always chosen in our numerical experiments, and so we expect that
∥∇xΨk∥2 in ζk will not be a major cause of numerical instability. Considering the above
arguments, we propose a smoothing and scaling CG method that does not involve ∥∇xΨk∥2
in the denominators in d̃k.

3 Proposed Method

In this section, we develop a new smoothing and scaling CG method with the same framework
as the STPRP method. Specifically, based on the scaling FR method (2.4), we propose the
following d̃k instead of (2.10):

d̃k =

 −ζk∇xΨk k = 0,

−(ζk + θk)∇xΨk + βkd̃k−1 k ≥ 1,
(3.1)
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where

βk =
∥∇xΨk∥2

∥∇Ψk−1∥2
, and θk =

∇xΨ
T
k d̃k−1

∥∇Ψk−1∥2
. (3.2)

We now introduce the set:
Ω = {v | t ≥ t̄γ(v)}, (3.3)

which is originally given in [31]. Note that if {vk} ⊂ Ω, then definition (2.8) yields the
following statements:

• The search direction associated with the variable t is nonpositive, namely,

t̄γk − tk ≤ 0 (3.4)

holds.

• If Ψk ̸= 0 holds, then we have tk > 0 for all k.

• If tk approaches zero, then Ψk also approaches zero.

Therefore, we construct our algorithm such that the generated sequence {vk} is included
in Ω. To establish {vk} ⊂ Ω, we need relations 0 < tk+1 ≤ tk and Ψk+1 < Ψk. The next
proposition is proved in [23, Proposition 2.1].

Proposition 3.1. Assume that vk ∈ Ω and tk > 0. Then 0 < tk + α(t̄γk − tk) ≤ tk holds
for any α ∈ (0, 1].

Note that F̃ (vk) ̸= 0 was assumed in [23, Proposition 2.1] but it was not used in the
proof. Proposition 3.1 implies that 0 < tk+1 ≤ tk holds for any step size αk ∈ (0, 1]. To
establish Ψk+1 < Ψk, it is important that the search direction (2.7) with (2.9) and (3.1) is
a descent search direction of the merit function, namely, ∇ΨT

k dk < 0 for all k. The next
lemma is useful to show that the search direction becomes a descent direction for the merit
function.

Lemma 3.2. Assume that ∇xΨk ̸= 0. Then, d̃k in (3.1) satisfies

∇xΨ
T
k d̃k = −ζk∥∇xΨk∥2. (3.5)

Proof. When k = 0, we immediately have (3.5). Thus, we consider the case k ≥ 1. Multi-
plying both sides of (3.1) by ∇xΨ

T
k from the left, it follows from (3.2) that

∇xΨ
T
k d̃k = −

(
ζk +

∇xΨ
T
k d̃k−1

∥∇Ψk−1∥2

)
∥∇xΨk∥2 +

∥∇xΨk∥2

∥∇Ψk−1∥2
∇xΨ

T
k d̃k−1 = −ζk∥∇xΨk∥2,

and hence, (3.5) holds.

To establish that the search direction (2.7) with (2.9) and (3.1) is a descent search
direction, we give the following lemma.

Lemma 3.3. Consider any point v ∈ Ω such that t ∈ (0, 1] and ∇xF̃ (v) is nonsingular. If
∇xΨ(v) = 0, then we have

t̄γ(v)− t < 0. (3.6)
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Proof. It follows from (3.3) that t̄γ(v) − t ≤ 0, and so we consider the case t̄γ(v) − t = 0.
Since ∇xΨ(v) = ∇xF̃ (v)F̃ (v) = 0 and ∇xF̃ (v) is nonsingular, the relation F̃ (v) = 0 holds.
Therefore, we have from (1.2), (2.8), t = t̄γ(v) and γ̄t̄ < 1 that

t = γ̄t̄min{1,Ψ(v)} < Ψ(v) =
1

2
t2.

This contradicts 0 < t ≤ 1, and hence, (3.6) holds.

We now prove that the search direction (2.7) with (2.9) and (3.1) is a descent search
direction.

Proposition 3.4. Assume that vk ∈ Ω and 0 < tk ≤ 1. If ∇xF̃k is nonsingular, then the
following holds:

∇ΨT
k dk ≤ −(1− η)∥∇xΨk∥2 + tk(t̄γk − tk) < 0. (3.7)

Proof. It follows from (2.5) and (2.7) that

∇ΨT
k dk = ∇xΨ

T
k d̃k + tk(t̄γk − tk) +∇tF̃kF̃k(t̄γk − tk). (3.8)

Now we consider two cases corresponding to (2.9) and (3.1).

The case ∇xΨk = 0 :
Since ∇xF̃k is nonsingular and ∇xΨk = ∇xF̃kF̃k = 0, we have F̃k = 0. Therefore, from
(3.8), ∇xΨk = 0 and F̃k = 0, we have

∇ΨT
k dk = tk(t̄γk − tk) = −(1− η)∥∇xΨk∥2 + tk(t̄γk − tk).

It follows from Lemma 3.3 that t̄γk − tk < 0 holds. Thus, (3.7) is obtained.

The case ∇xΨk ̸= 0 :
Note that the case k = 0 can be proven in the same way as the case k ≥ 1. Hence, we
consider only the case k ≥ 1 in the following. If η∥∇xΨk∥2 ≥ ∇tF̃kF̃k(t̄γk − tk), then it
follows from (2.11), (3.4), (3.5), (3.8) and ∇xΨk ̸= 0 that

∇ΨT
k dk = −∥∇xΨk∥2 + tk(t̄γk − tk) +∇tF̃kF̃k(t̄γk − tk)

≤ −(1− η)∥∇xΨk∥2 + tk(t̄γk − tk) < 0.

On the other hand, if η∥∇xΨk∥2 < ∇tF̃kF̃k(t̄γk − tk), then from (2.11), (3.4), (3.5), (3.8),
and ∇xΨk ̸= 0, we have

∇ΨT
k dk = −

(
1 +

∇tF̃kF̃k(t̄γk − tk)

∥∇xΨk∥2

)
∥∇xΨk∥2 + tk(t̄γk − tk) +∇tF̃kF̃k(t̄γk − tk)

≤ −∥∇xΨk∥2 + tk(t̄γk − tk) < −(1− η)∥∇xΨk∥2 + tk(t̄γk − tk) < 0.

Therefore, the proof is complete.

Now we are ready to give an algorithm of the scaling and smoothing FR (SSFR) method
satisfying 0 < tk+1 ≤ tk and Ψk+1 < Ψk.

Algorithm SSFR.

Step 0. Choose t̄ ∈ (0, 1], γ̄ ∈ (0, 1), σ ∈ (0, 1)., and δ ∈ (0, 1). Set t0 = t̄, and give an
initial point v0 = (t0, x0) ∈ Ω. Let k := 0.
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Step 1. If ∥F (xk)∥ = 0, then stop.

Step 2. Compute dk by (2.7) with (2.9) and (3.1).

Step 3. Find the smallest nonnegative integer ℓ satisfying

Ψ(vk + σℓdk) ≤ Ψ(vk) + δσℓ∇ΨT
k dk, (3.9)

and set αk = σℓ.

Step 4. Update vk+1 by (2.6).

Step 5. Set k := k + 1, and return to Step 1.

In Step 0, an initial point v0 must be chosen so that it belongs to Ω. This is easily done
by taking t0 = t̄ because (t̄, x0) ∈ Ω for any x0 ∈ Rn. In Step 3, we can find the integer
ℓ because Ψ is continuously differentiable and dk is a descent search direction (namely,
∇ΨT

k dk < 0 for all k). Also in Step 3, we use the Armijo condition, which diverges from the
STPRP and SSPRP methods.

Although we adopt the bisection method in Step 3, we can also use another procedure:

Step 3’. Set ℓ = 0 and α(ℓ) = 1.

Step 3.1. If
Ψ(vk + α(ℓ)dk) ≤ Ψ(vk) + δα(ℓ)∇ΨT

k dk,

set αk = α(ℓ) and go to Step 4.

Step 3.2. Choose σ(ℓ) ∈ [σmin, σmax] and set α(ℓ+1) = σ(ℓ)α(ℓ).

Step 3.3. Let ℓ := ℓ+ 1, and return to Step 3.1.

Here, σmin and σmax are positive constants such that 0 < σmin ≤ σmax < 1. If we set
σmin = σmax = σ, then Step 3’ reduces to the original Step 3. On the other hand, if we set

σ(ℓ) = max

{
σmin, min

{
σmax,

0.5α(ℓ)∇ΨT
k dk

Ψk + α(ℓ)∇ΨT
k dk −Ψ(vk + α(ℓ)dk)

}}
,

then it becomes the quadratic interpolation line search. We will show the global convergence
of Algorithm SSFR with Step 3 only for simplicity. However, we can show the global
convergence of Algorithm SSFR with Step 3’ in the same way.

4 Global Convergence

In this section, we prove the global convergence of Algorithm SSFR. Let {vk} be a sequence
generated by Algorithm SSFR. We make the following assumption.

Assumption 4.1.

A1. For any positive constant t, the following holds:

lim
∥x∥→∞

∥F̃ (t, x)∥ = ∞.
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A2. In some neighborhood N of the level set L at the initial point v0 :

L = {v ∈ R1+n | Ψ(v) ≤ Ψ(v0), t ∈ [0, 1]},

∇Ψ is Lipschitz continuous, i.e., there exists a positive constant L such that

∥∇Ψ(u)−∇Ψ(v)∥ ≤ L∥u− v∥ for all u, v ∈ N .

A3. For any v ∈ (R++ ×Rn) ∩ Ω, it holds that ∇xF̃ (v) is nonsingular.

Assumption A1 ensures the compactness of the level set L. If F is level-bounded, namely,
the level set of ∥F (x)∥ is bounded at any point, Assumption A1 seems reasonable. Moreover,
if we employ a regularization technique, for example, using G(t, x) := F̃ (t, x)+ tx instead of
F̃ (t, x) as a smoothing function, Assumption A1 could be satisfied under weaker conditions
than the level boundedness of F .

Remark 4.1. From the decreasing property of {Ψk}, we have {vk} ⊂ L. Thus, it follows
from Assumption A1 (namely, the boundedness of L) that {vk} is bounded.

Under Assumption 4.1, we obtain the following proposition, which is originally given
in [23]. The proof is identical, and so we omit it here.

Proposition 4.2 ([23, Proposition 2.3]). Suppose Assumption 4.1 holds. Then, we have
{vk} ⊂ Ω.

Remark 4.3. Proposition 4.2 guarantees {vk} ⊂ Ω, which implies from Proposition 3.1
that 0 < tk+1 ≤ tk holds for all k ≥ 0. Thus, there exists the limit value of the sequence
{tk}.

Remark 4.4. From Propositions 3.1 and 4.2, we have {vk} ⊂ (R++×Rn)∩ Ω. Thus, from
Assumption A3, it holds that ∇xF̃k is nonsingular for any k.

The following lemma is also given by [23].

Lemma 4.5 ([23, Lemma 3.1]). Suppose Assumption 4.1 holds. If limk→∞ tk ̸= 0, then
there exists a positive constant c1 such that

∥∇Ψk∥ ≥ c1

holds for all k.

We give the following lemma for showing the global convergence theorem.

Lemma 4.6. Suppose Assumption 4.1 holds. If limk→∞ tk ̸= 0, then there exists a positive
constant c2 such that

|∇ΨT
k dk| ≥ c2

holds for all k.

Proof. By Remark 4.3 and the assumption of the lemma, there exists the positive limit
limk→∞ tk ≡ t̂ > 0. Let us define a set Ω̂ by

Ω̂ = ([t̂, 1]×Rn) ∩ Ω ∩ L. (4.1)

Because L is compact by Assumption A1, Ω is closed, and [t̂, 1]×Rn is closed, we find that Ω̂
is compact. To show this lemma by contradiction, we assume that lim infk→∞ |∇ΨT

k dk| = 0.
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Then, it follows from (3.4), (3.7) and vk ∈ Ω̂ that there exists a subsequence K ⊂ N and a
limit point v̂ such that

lim
k∈K,k→∞

vk = v̂ ∈ Ω̂, ∇xΨ(v̂) = 0, t̂(t̄γ(v̂)− t̂) = 0.

Since t̂ > 0 and ∇xF̃ (v̂) is nonsingular, this contradicts Lemma 3.3. Therefore, the proof is
complete.

We now show the global convergence theorem.

Theorem 4.7. Suppose Assumption 4.1 holds. Then, the sequence {vk} has at least one
accumulation point, and limk→∞ tk = 0 holds. Moreover, any accumulation point v∗ =
(0, x∗) satisfies H(v∗) = 0, and so x∗ is a solution of (1.1).

Proof. By Remark 4.1, {vk} has at least one accumulation point. Also from Remark 4.3,
there exists the limit limk→∞ tk ≡ t̂ ≥ 0. In order to prove t̂ = 0 by contradiction, we
assume that t̂ > 0.

We have from (3.9) that

Ψ(vk)−Ψ(vk+1) ≥ δαk|∇ΨT
k dk|. (4.2)

Since {Ψk} is bounded below and nonincreasing, there exists a limit of {Ψk}. Therefore,
Lemma 4.6 yields limk→∞ αk = 0. Then, the line search rule (3.9) with ℓ = 0 is not satisfied
for all sufficiently large k. Hence, we have

δσ−1αk∇ΨT
k dk < Ψ(vk + σ−1αkdk)−Ψk. (4.3)

On the other hand, by the mean-value theorem and Assumption A2, there exists a positive
constant τ ∈ (0, 1) such that the following relations hold:

Ψ(vk + σ−1αkdk)−Ψk = σ−1αk∇Ψ(vk + τσ−1αkdk)
T dk

= σ−1αk∇ΨT
k dk + σ−1αk(∇Ψ(vk + τσ−1αkdk)−∇Ψk)

T dk

≤ σ−1αk∇ΨT
k dk + Lσ−2α2

k∥dk∥2.

Accordingly, (4.3) yields

αk ≥ (1− δ)σ|∇ΨT
k dk|

L∥dk∥2
. (4.4)

It follows from (4.2) that
∞∑
k=0

αk|∇ΨT
k dk| < +∞,

which implies from (4.4) that
∞∑
k=0

(∇ΨT
k dk)

2

∥dk∥2
< +∞. (4.5)

It follows from Assumption A3, the compactness of Ω̂ in (4.1) and the continuity of ∇xF̃

on Ω̂ that there exists a positive constant c3 such that

∥∇xF̃
−1
k ∥ ≤ c3
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holds for any k, where ∥ · ∥ denotes the matrix norm induced by the ℓ2 vector norm. Ac-
cordingly, from (2.11), t̄γk = t̄γ̄min{1,Ψk} < 1 and tk ≤ 1, we have

ζk ≤ 1 +
|∇tF̃kF̃k(t̄γk − tk)|

∥∇xF̃kF̃k∥

= 1 +
∥∇xF̃

−1
k ∥ |∇tF̃kF̃k(t̄γk − tk)|
∥∇xF̃

−1
k ∥∥∇xF̃kF̃k∥

≤ 1 +
∥∇xF̃

−1
k ∥∥∇tF̃k∥∥F̃k∥|t̄γk − tk|
∥∇xF̃

−1
k ∇xF̃kF̃k∥

≤ 1 + c3(1 + t̄)∥∇tF̃k∥.

Since Ω̂ is compact and ∇tF̃ is continuous on Ω̂, there exists a positive constant ζ̄ such that
ζk ≤ ζ̄ holds for all k. If ∇xΨk = 0, then (2.9) implies ∥d̃k∥ = 0. Otherwise, we have from
(3.1) and (3.5) that

∥d̃k∥2 = β2
k∥d̃k−1∥2 − 2(ζk + θk)∇xΨ

T
k d̃k − (ζk + θk)

2∥∇xΨk∥2

= β2
k∥d̃k−1∥2 + 2ζk(ζk + θk)∥∇xΨk∥2 − (ζk + θk)

2∥∇xΨk∥2

= β2
k∥d̃k−1∥2 + (ζ2k − θ2k)∥∇xΨk∥2

≤ β2
k∥d̃k−1∥2 + ζ̄2∥∇xΨk∥2.

Since Ω̂ is compact and ∇xΨ is continuous on Ω̂, there exists a positive constant c4 such
that ∥∇xΨk∥ ≤ c4. Hence,

∥d̃k∥2 ≤ β2
k∥d̃k−1∥2 + ζ̄2c24.

Note that the above relation holds for the case ∇xΨk = 0 (namely, ∥d̃k∥ = 0). Therefore,
we obtain

∥d̃k∥2 ≤

(
k∏

i=1

β2
i

)
∥d̃0∥2 + ζ̄2c24

1 +

k∑
j=2

k∏
i=j

β2
i

 (4.6)

for all k. Since from (2.5) we have ∥∇xΨk∥ ≤ ∥∇Ψk∥ for all k, (3.2) and Lemma 4.5 yield
k∏

i=j

βi =
∥∇xΨj∥2

∥∇Ψj−1∥2
· ∥∇xΨj+1∥2

∥∇Ψj∥2
· · · ∥∇xΨk−1∥2

∥∇Ψk−2∥2
· ∥∇xΨk∥2

∥∇Ψk−1∥2
≤ ∥∇xΨk∥2

∥∇Ψj−1∥2
≤ c24

c21
,

for any k and j such that 1 ≤ j ≤ k. Therefore, (4.6) implies that

∥d̃k∥2 ≤ c44
c41

∥d̃0∥2 + ζ̄2c24

1 +

k∑
j=2

c44
c41

 ≤ c44
c41

∥d̃0∥2 + ζ̄2c24 max

{
1,

c44
c41

}
k ≡ c5 + c6k,

where c5 =
c44
c41
∥d̃0∥2 and c6 = ζ̄2c24 max{1, c44/c41}. Then, it follows from t̄γ̄ < 1, 0 ≤ tk ≤ 1,

vk ∈ Ω, (2.7) and (2.8) that

∥dk∥2 = ∥d̃k∥2 + (t̄γk − tk)
2 ≤ ∥d̃k∥2 + 1 ≤ c5 + c6k + 1.

Thus, from Lemma 4.6, we obtain

∥dk∥2

(∇ΨT
k dk)

2
≤ c5 + c6k + 1

c22
,

which contradicts (4.5), and so limk→∞ tk = t̂ = 0 holds. Therefore, from (2.8), (3.3), and
{vk} ∈ Ω, we obtain limk→∞ Ψk = 0. Thus, it follows from (1.2) that any accumulation
point v∗ satisfies H(v∗) = 0.
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5 Numerical Results

In this section, we give some preliminary numerical results of the proposed method. The
program was coded in MATLAB R2020a, and computations were carried out on HP Z4 G4
Workstation (Intel(R) Xenon(R) W-2133, @3.60GHz, 3.60GHz) with 32.0GB RAM running
Windows 10 Pro for Workstations. To compare our method with other methods, we tested
the following methods:

SSFR : Algorithm SSFR with the quadratic interpolation,
SSPRP : Smoothing and scaling PRP method [27] with the quadratic interpolation,
STPRP : Smoothing three-term PRP method [23] with the quadratic interpolation,
SNewton : Smoothing Newton method [31] with the bisection method.

As shown in [27], the quadratic interpolation is suitable for SSPRP and STPRP, and the
bisection method is suitable for SNewton. Also, in our experiments, the quadratic interpo-
lation is suitable for SSFR. The smoothing Newton method solves H(v) = 0, and its search
direction dk is obtained by solving the following Newton equation:

H(vk) +∇H(vk)
T dk = γ(vk)v̄, (5.1)

where v̄ = (t̄, 0, . . . , 0)T ∈ R1+n. The sequence {vk} generated by SNewton is included in
the set Ω. In our method, we set the parameters t̄ = min{0.1, 1/

√
n}, γ̄ = 0.9, η = 0.1,

σmin = 0.1, σmax = 0.9, and δ = 0.001. The stopping criterion was

∥F (xk)∥ ≤ 10−5.

The algorithms also stop when the number of iterations exceeds 1000, or a numerical overflow
occurs.

We solved problem (1.1) with F (x) = [F1(x), . . . , Fn(x)]
T and

P1 : Fi(x) =

{
e(x

2
i+x2

i+1)
1/2

− 1, i is odd,
xi−1 − xi, i is even,

P2 : Fi(x) =

{
e(x

2
i+x2

i+1)
1/2

− 1, i is odd,
min{xi−1, xi}, i is even,

P3 : Fi(x) =

{
max{0, xi + x2

i+1 + 2} − 2, i is odd,
(x2

i + x2
i+1)

1/2, i is even,

P4 : Fi(x) =

{
e(x

2
i+x2

i+1)
1/2

− 1, i is odd,
max{xi−1, xi}, i is even,

P5 : Fi(x) =

{
e|max{xi,xi+1}| − 1, i is odd,
min{xi−1, xi}, i is even,

P6 : Fi(x) = n− 1 + e|xi| −
n∑

j=1

cosxj .

The above functions have the unique solution x∗ = (0, . . . , 0)T . For P1–P6, we used the
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following smoothing functions:

f(α) =
√
α (α > 0) −→ f̃(t, α) =

√
α+ t2,

f(α) = |α| −→ f̃(t, α) =
√
α2 + t2,

f(α, β) = max{α, β} −→ f̃(t, α, β) =
1

2

(
α+ β +

√
(α− β)2 + t2

)
,

f(α, β) = min{α, β} −→ f̃(t, α, β) =
1

2

(
α+ β −

√
(α− β)2 + t2

)
.

We set the dimension n = 1000, 3000 and 5000. Note that the Jacobian matrices ∇H(v)
with P1–P5 have sparse structures. We made use of the sparsity when the Newton equation
(5.1) was solved in SNewton. For P1–P5, we randomly chose (for each dimension) 100 initial
points in the rectangle [−5, 5]n. For P6, we randomly chose 100 initial points in the rectangle
[−1, 1]n. Thus, in total, we tested 1800 instances.

To compare our method with the other methods, we adopted the performance profiles of
Dolan and Moré [9]. For ns solvers and np problems, the performance profile P : R → [0, 1]
is defined as follows:

Let P and S be the set of problems and the set of solvers, respectively. For
each problem p ∈ P and for each solver s ∈ S, we define tp,s = computing time
(similarly for the number of iterations) required to solve problem p by solver s.
The performance ratio is given by rp,s = tp,s/mins∈S tp,s. Then, the performance
profile is defined by P (τ) = 1

np
size{p ∈ P|rp,s ≤ τ}, for all τ > 0, where sizeA,

for any set A, stands for the number of the elements in that set. Note that P (τ)
is the probability for solver s ∈ S such that a performance ratio rp,s is within a
factor τ > 0 of the best possible ratio.

The performance profiles of our numerical results are shown in Figures 1–6. We see from
Figures 1, 2, 4, and 6 that SSFR performed better than or at least comparably with the
other tested methods. By contrast, Figures 3 and 5 show that SSFR is not superior to the
other methods. Summarizing the above arguments, SSFR is very efficient, but does not
always perform better than the other tested methods.

It is known that SNewton converges quickly to a solution in the neighborhood of the
solution. However, in our numerical experiments, the initial points were chosen randomly,
and hence might not belong to the neighborhood. In addition, it is not possible to clarify
the local behavior of the tested methods only by using performance profiles. Accordingly,
to compare the numerical behaviors of errors for SNewton with those for the other tested
methods, we give additional figures, Figures 7 and 8, which show log(∥xk − x∗∥) at each
iteration for P1 and P2 (n = 5000), respectively. The errors for SSFR, SSPRP, and STPRP
decrease quickly in both cases, but the convergence rates of the methods seem linear. On
the other hand, although SNewton converges q-superlinearly in the neighborhood of the
solutions, it needs more iterations to approach the neighborhood than the other tested
methods (especially for P2). To incorporate the merit of SNewton into SSFR, we tested
a hybrid method (called Hybrid). Hybrid uses SSFR while ∥F (xk)∥ ≥ 1 and switches to
SNewton when ∥F (xk)∥ < 1. Figures 7 and 8 show that Hybrid performed very well. In
particular, in Figure 8, we see that the sequences generated by SSFR, SSPRP and STPRP
are a little stagnant near the solution, whereas the sequence generated by Hybrid converges
very quickly to the solution. In our numerical experiments, we adopted a simple switching
rule. Developing efficient switching techniques will be part of our further study.
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6 Conclusion

In this paper, we proposed a smoothing and scaling Fletcher-Reeves type conjugate gradient
method for solving a system of nonsmooth equations. The proposed method always generates
descent search directions for the merit function. We showed the global convergence properties
of the proposed method with the Armijo line search condition. In numerical experiments, we
compared the proposed method with existing methods. The numerical results demonstrated
that the proposed method is efficient and at least comparable with existing methods. We also
tested a hybrid method, which combined the proposed method with the smoothing Newton
method, and showed promising results. Thus, developing efficient switching techniques is an
area of further study. Other future areas of study are to incorporate scaling techniques into
the proposed method to accelerate the method, and/or to extend the proposed method to
constrained systems of nonsmooth equations.
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