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problems, which has lots of applications in engineering design and portfolio optimization,
etc. Throughout this paper, we always assume that M is a symmetric matrix and the
LSOCCP (1.1) has a solution.

There have been proposed a list of methods for solving the LSOCCP (1.1) such as the
merit function methods [3, 2], the smoothing Newton methods [4, 5, 6], the semismooth
Newton methods [7, 8], and the interior-point methods [10, 9]. Recently, with the advent of
the era of big data, much attention has been paid on a class of iterative methods called the
matrix-splitting methods. Matrix-splitting methods were originally developed for systems of
linear equations [11, 12] and, subsequently, they were extended to linear variational inequal-
ity and complementarity problems in [13, 15, 14] and to LSOCCP in [16, 17, 18] successively.
In particular, Hayashi et al. [16] extended the matrix-splitting method given in [1] for LCP
and presented a block successive overrelaxation method (BSOR) for symmetric LSOCCP
with positive definite matrix. Xu and Zeng [17] extended the idea of multisplitting for sym-
metric LCP to symmetric LSOCCP with symmetric positive definite matrix. Zhang and
Yang [18] presented another BSOR method for symmetric LSOCCP with positive definite
matrix and, for the case where the matrix is only positive semidefinite, they suggested a
strategy with a constant regularization parameter.

In this paper, we present a regularized parallel matrix-splitting method for solving the
LSOCCP (1.1) in which the matrix M is assumed to be symmetric and positive semidefi-
nite. Compared with the methods introduced above, our method has the following advan-
tages:

The method can be implemented in parallel.

The method is convergent under suitable conditions for the symmetric and positive
semidefinite problems.

The subproblems involved in the methods can be solved explicitly.

Particularly, our regularized method is different from the one given in [18] in that the
regularization parameter in our method varies with the iterative step.

The paper is organized as follows: In Section 2, we briefly review the basic matrix-
splitting method in [16] for symmetric LSOCCP. In Section 3, we describe our regularized
parallel matrix-splitting method for the LSOCCP (1.1) with symmetric and positive semidef-
inite matrix and give some convergent results for the proposed method. In Section 4, we
discuss how to solve the subproblems. In Section 5, we report some numerical results with
the proposed method.

2 Basic Matrix-Splitting Method for Symmetric LSOCCP

In this section, we briefly review the basic matrix-splitting method presented in [16] for
symmetric LSOCCP with positive definite matrix. Let (B,C) be a splitting of M , that is,
M = B + C, where B and C do not need to be symmetric. The basic matrix-splitting
method for symmetric LSOCCP is stated as follows.

Algorithm 2.1.

S0. Choose a splitting (B,C) of M , an initial point z0 ∈ K, and a tolerance ε > 0. Set
k := 0.
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S1. Solve the LSOCCP

find z ∈ Rn

such that z ∈ K, Bz + Czk + q ∈ K, zT (Bz + Czk + q) = 0 (2.1)

to get a solution zk+1.

S2. If ∥zk+1 − zk∥ ≤ ε, terminate. Otherwise, return to S1 with k replaced by k + 1.

In order to guarantee Algorithm 2.1 to be well defined, we next recall some concepts.
The matrix M is called a K-Q matrix if the LSOCCP (1.1) has a solution for any q ∈ Rn.
A splitting (B,C) is called a K-Q splitting if B is a K-Q matrix. Therefore, if (B,C) is a
K-Q splitting, then LSOCCP (2.1) always has a solution. Moreover, a splitting (B,C) is
said to be (weakly) regular if B −C is positive (semi-)definite. The regularity of a splitting
plays an important role in convergence analysis of Algorithm 2.1. The matrix M is said
to be (strictly) K-copositive if zTMz ≥ 0 (> 0) for all z ∈ K\{0}. Apparently, every
positive semidefinite matrix is K-copositive and every positive definite matrix is strictly K-
copositive. The K-copositiveness of M can be used to show the boundedness of the sequence
{zk} generated by Algorithm 2.1.

Note that the subproblem (2.1) is not required to have a unique solution. If multiple
solutions exist, any one can be picked as zk+1. In addition, each subproblem (2.1) should
be relatively easy to solve.

Consider the quadratic second-order cone programming problem

min f(z) :=
1

2
zTMz + qT z (2.2)

s.t. z ∈ K.

Since M is symmetric, the LSOCCP (1.1) coincides with the KKT conditions of problem
(2.2). Since problem (2.2) apparently satisfies the Slater’s constraint qualification, by the
positive semi-definiteness of M , the LSOCCP (1.1) is equivalent to problem (2.2). By using
this relationship, Hayashi et al. [16] obtained the following lemma, which gives a sufficient
condition about the existence of accumulation points of the sequence generated by Algorithm
2.1.

Lemma 2.1. Let M be symmetric and strictly K-copositive. Then, for any initial point
z0 ∈ K, the sequence {zk} generated by Algorithm 2.1 with regular K-Q splitting (B,C) is
bounded and its arbitrary accumulation point is a solution of the LSOCCP (1.1).

3 Regularized Parallel Method for Symmetric LSOCCP

The matrix-splitting methods proposed in [16, 17] require M to be symmetric positive defi-
nite, while the regularized method given in [18] for the symmetric positive semidefinite case
assumes that the regularization parameter is sufficiently small but fixed. In this section, we
suggest a regularized parallel method for symmetric LSOCCP with positive semidefinite, in
which the regularization parameter decreases to zero monotonically.

Suppose that the matrix M is symmetric and positive semidefinite. Then, for any δ > 0,
M + δI is symmetric and positive definite and hence the LSOCCP (1.1) with M replaced
by M + δI has a unique solution, denoted by z∗(δ). By passing δ → 0, we may expect
that z∗(δ) converges to a solution of the original LSOCCP (1.1). This is the regularization
process mentioned above.
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In order to solve problems in a parallel way, the splitting (B,C) used in the Jacobi
method is represented as

B = λI, C = M −B.

Choose the parameter λ such that it is greater strictly than the maximum eigenvalue of
M
2 . Then both B and B − C are positive definite matrices and so (B,C) is a regular K-Q

splitting of M . Since M is symmetric positive semidefinite, we have λ > 0.
We now describe the regularized parallel algorithm for the LSOCCP (1.1) as follows.

Algorithm 3.1.

S0. Choose a constant δ0 > 0, an initial point z0 ∈ K, and a tolerance ε > 0. Set k := 0.

S1. Denote by Bk := λI + δkI and C := M − λI. Solve the LSOCCP

find z ∈ Rn

such that z ∈ K, Bkz + Czk + q ∈ K, zT (Bkz + Czk + q) = 0 (3.1)

to get a solution zk+1.

S2. Terminate if the stopping rule is satisfied. Otherwise, return to S1 with δk+1 ∈ (0, δk)
and k := k + 1.

Note that, since Bk − C = 2λI − M + δkI, both Bk and Bk − C are positive definite
for any δk > 0 and hence (Bk, C) is always a regular K-Q splitting of M + δkI. As a result,
problem (3.1) has a unique solution for each k.

In [18], the stopping criteria is suggested to use the residue of the original complemen-
tarity problem, that is, the iteration is terminated whenever

ρ :=

m∑
i=1

max{∥zk+1
i,2 ∥ − zk+1

i,1 , 0}+
m∑
i=1

max{∥wk+1
i,2 ∥ − wk+1

i,1 , 0}+ |(zk+1)Twk+1| ≤ ε,

where

zk+1 =


zk+1
1

zk+1
2
...

zk+1
m

 , wk+1 := Mzk+1 + q =


wk+1

1

wk+1
2
...

wk+1
m


with zk+1

i = (zk+1
i,1 , zk+1

i,2 ) ∈ R×Rni−1 and wk+1
i = (wk+1

i,1 , wk+1
i,2 ) ∈ R×Rni−1 for each i. In

our numerical experiments given in Section 5, we used the relative residue defined by

ρr :=
ρ

1 + ∥M∥1 + ∥q∥1
≤ ε,

where ∥ · ∥1 denotes the ℓ1-norm of matrix or vector, as the stopping criteria in S2 and
obtained satisfactory numerical results.

If we partition the matrix M as

M =


M11 M12 · · · M1m

M21 M22 · · · M2m

...
...

. . .
...

Mm1 Mm2 · · · Mmm

 ,
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where Mij ∈ Rni×nj (i, j = 1, 2, · · · ,m), and rewrite z and q as

z =


z1
z2
...
zm

 , q =


q1
q2
...
qm


respectively, where zi ∈ Rni , qi ∈ Rni , i = 1, 2, · · · ,m, then we can solve problem (3.1) in a
parallel way. In fact, by exploiting the decomposable structure of the SOC conditions, (3.1)
is equivalent to the following subproblems: For i = 1, 2, · · · ,m,

find zi ∈ Rni

such that zi ∈ Kni , (λ+ δk)zi + hk
i ∈ Kni , (zi)

T [(λ+ δk)zi + hk
i ] = 0, (3.2)

where

hk
i := (Mii − λI)zki +

m∑
j=1,j ̸=i

Mijz
k
j + qi.

Next we discuss the convergence properties of Algorithm 3.1. Consider the problem with
a parameter δ > 0

min fδ(z) :=
1

2
zT (M + δI)z + qT z (3.3)

s.t. z ∈ K.

Since M + δI is positive definite, problem (3.3) has a unique optimal solution. Note that
fδ(z) ≥ f(z) for any z, where f(z) is given by (2.2). By the assumption that the solution set
of (1.1) is nonempty, fδ is bounded below over the cone K. We further have the following
lemma.

Lemma 3.1. Let {zk} be a sequence generated by Algorithm 3.1. Then, for each k, we have

fδk(z
k)− fδk+1

(zk+1) ≥ 1

2
(zk − zk+1)T (Bk − C)(zk − zk+1) ≥ 0. (3.4)

Proof. By (3.1) and (3.3), we have

fδk(z
k)− fδk+1

(zk+1)

= (zk − zk+1)T (q +Mzk+1) +
1

2
(zk − zk+1)TM(zk − zk+1) +

1

2
δk∥zk∥2 −

1

2
δk+1∥zk+1∥2

=
1

2
(zk − zk+1)T (Bk − C)(zk − zk+1) + (zk − zk+1)T (q + Czk +Bkzk+1 − δkz

k+1)

− 1

2
δk∥zk − zk+1∥2 + 1

2
δk∥zk∥2 −

1

2
δk+1∥zk+1∥2

=
1

2
(zk − zk+1)T (Bk − C)(zk − zk+1) + (zk)T (q + Czk +Bkzk+1) +

δk − δk+1

2
∥zk+1∥2,

where the third equality follows from the fact that zk+1 solves problem (3.1). Since zk ∈ K,
q + Czk +Bkzk+1 ∈ K, and δk > δk+1, we have

fδk(z
k)− fδk+1

(zk+1) ≥ 1

2
(zk − zk+1)T (Bk − C)(zk − zk+1).

The second inequality in (3.4) holds from the positive definiteness of Bk−C immediately.
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Using the above lemma, we establish the main theorem in this section.

Theorem 3.2. Let M be a symmetric K-copositive matrix. Suppose that

0 ̸= z ∈ K, Mz ∈ K, zTMz = 0 =⇒ qT z > 0. (3.5)

Then the sequence {zk} generated by Algorithm 3.1 is bounded and any accumulation point
solves the LSOCCP (1.1).

Proof. We first show the boundedness of {zk}. By Lemma 3.1, the sequence {fδk(zk)} is
nonincreasing. We also know that fδ is bounded below and hence {fδk(zk)} converges. By
the uniform positive definiteness of Bk − C for each k sufficiently large, we have from (3.4)
that {zk − zk+1} converges to zero.

Suppose that the sequence {zk} is unbounded. Without loss of generality, we may assume
that ∥zk∥ → +∞. Consider the normalized sequence {zk/∥zk∥} and suppose that it has an
accumulation point z∗ ∈ K\{0}. Let {zki+1/∥zki+1∥} be a subsequence converging to z∗.
Since zki+1 solves the LSOCCP (3.1), we have

(M + δki
I)zki+1 + C(zki − zki+1) + q ∈ K, (3.6)

zki+1 ∈ K, (3.7)
(zki+1)T ((M + δki

I)zki+1 + C(zki − zki+1) + q) = 0. (3.8)

Dividing (3.6) and (3.7) by ∥zki+1∥ and (3.8) by ∥zki+1∥2 respectively and letting i → +∞,
we have

z∗ ∈ K, Mz∗ ∈ K, (z∗)TMz∗ = 0. (3.9)

Noting that M is K-copositive and hence M + δki
I is strictly K-copositive, we have

0 = (zki+1)T ((M + δkiI)z
ki+1 + C(zki − zki+1) + q)

> (zki+1)T (C(zki − zki+1) + q).

Dividing the last inequality by ∥zki+1∥ and letting i → +∞, we have qT z∗ ≤ 0. This,
together with (3.9), yields a contradiction to (3.5). Consequently, the sequence {zk} must
be bounded.

We next show that any accumulation point of {zk} solves the LSOCCP (1.1). Let z̃ be
an arbitrary accumulation point of {zk}, that is, there exists a subsequence {zki} of {zk}
converging to z̃. From the above analysis, {zk − zk+1} converges to zero and, therefore, the
sequence {zki+1} also converges to z̃. Since {zki+1} satisfies (3.6)–(3.8), passing to the limit
i → +∞ reveals that z̃ is a solution of the LSOCCP (1.1).

This completes the proof.

A corollary is that, when M is symmetric and positive semidefinite, the conclusion of
Theorem 3.2 still holds under the condition (3.5).

4 Solving Subproblems

Consider the subproblems (3.2), which can be unified as

find z ∈ Rl

such that z ∈ Kl, bz + r ∈ Kl, zT (bz + r) = 0, (4.1)
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where b > 0. The LSOCCP (4.1) has a unique solution, say z∗. In particular, when l = 1,
the solution of (4.1) can be easily obtained as z∗ = max(0,−r/b). For general cases, inspired
by Proposition 3.3 in [5], we have

z∗ =


0 if r ∈ Kl,
−b−1r if − b−1r ∈ Kl,

r1−∥r2∥
2b

(
−1

∥r2∥−1r2

)
otherwise.

(4.2)

In fact, the first two cases are easy to get. Now we suppose that r /∈ Kl and −b−1r /∈ Kl.
It follows that z∗ ∈ bd Kl\{0} and (z∗)T (bz∗ + r) = 0. Then we have bz∗ + r ∈ bd Kl.
Denote z∗ and bz∗ + r as

z∗ = β

(
1
w

)
, bz∗ + r = µ

(
1

−w

)
respectively, where β > 0, µ ≥ 0, and w ∈ Rl−1 with ∥w∥ = 1. It follows that(

βb+ r1
βbw + r2

)
=

(
µ

−µw

)
, (4.3)

where r = (r1, r2) ∈ R× Rl−1. Eliminating µ in (4.3), we have

(2βb+ r1)w = −r2.

Since µ = βb+ r1 ≥ 0, β > 0, b > 0, and ∥w∥ = 1, we have

β =
∥r2∥ − r1

2b
, w = − r2

2βb+ r1
,

from which we can get (4.2) immediately.

5 Preliminary Numerical Results

We have tested Algorithm 3.1 for both the symmetric positive definite case and the symmet-
ric positive semidefinite case on a number of examples. More precisely, we mainly considered
the following two experiments:

Testing for dense, ill-conditioned symmetric and positive definite matrices.

Testing for dense, ill-conditioned symmetric and positive semidefinite matrices.

In order to show the efficiency of Algorithm 3.1, we compared it with the method
‘BSOR−HYYF’ proposed in [16] and the methods ‘BSOR−BN−L’ and ‘BSOR−BN−H’ pro-
posed in [18]. The programs were run in MATLAB 7.11.0 on a computer with 2.50 GHz
CPU and 4GB memory. For each tested problem, the vector q was chosen from the interval
[−1, 1] arbitrarily, the initial point was taken to be z0 = (1, 0) ∈ R×Rn−1, and the positive
integer pair (n,m) satisfied n1 = · · · = nm = n

m . For the matrix M , similarly as in [18], we
first generated a matrix M̄ as

M̄ := diag([1 : δ : 1 + (n− 1) ∗ δ].∧0.5) ∗ orth(randn(n, n)),
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where δ := cond
n with the condition number cond = 106, and then we constructed a dense, ill-

conditioned symmetric and positive definite matrix by M := M̄T M̄ , or a dense, symmetric
and positive semidefinite matrix by M := M̄TTM̄ with

T = diag{0, · · · , 0,︸ ︷︷ ︸
5

1, · · · , 1,︸ ︷︷ ︸
n−10

0, · · · , 0︸ ︷︷ ︸
5

}.

In our experiments, we set the stopping criteria ε = 10−4 for n = 104 or m = 1000 and
set ε = 10−6 for other cases. In addition, we terminated the iteration whenever the iteration
number k > itermax = 1000 for all tested methods. For other parameters involved in
BSOR−HYYF, BSOR−BN−L, or BSOR−BN−H, we used the same values as in [16] or [18].
For each case, we tested 10 times by generating data randomly. The numerical results are
reported in Tables 1 and 2, where ‘Iter’ denotes the average number of iterations, ‘Cpu(s)’
denotes the average CPU time in second, ρr stands for the relative residue and ‘∗’ means
‘out of memory’ (that is, the computer could not deal with the corresponding data).

Table 1: Results for dense, ill-conditioned symmetric and positive definite matrices

The results given in Tables 1 and 2 show clearly the efficiency of Algorithm 3.1 in
terms of the CPU time and the relative accuracy. This may be because the subproblems
in Algorithm 3.1 could be solved explicitly, while the subproblems in other methods were
solved approximately. From our numerical experience, it is encouraging that the algorithm
proposed in this paper is comparable for large scale problems with the existing methods, at
least for the cases with dense, positive definite (semidefinite) matrices.

6 Conclusions

We have proposed a regularized parallel matrix-splitting method for solving the LSOCCP
(1.1). Compared with the methods given in [16] and [18], the new method has some ad-
vantages, as mentioned in Section 1, and our numerical experience indicates that the new
method is comparable for large scale problems, especially for the dense, ill-conditioned sym-
metric and positive definite or semidefinite problems. One future work is to extend the
matrix-splitting approach to more general complementarity problems.
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Table 2: Results for dense, ill-conditioned symmetric and positive semidefinite matrices
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