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the linear operator extracting known elements in the set Ω and filling the elements that are
not in Ω with zero values, i.e.,

(PΩ(X ))i1i2...iN =

{
hi1i2...iN , if (i1, i2, . . . , iN ) ∈ Ω;

0, otherwise.
(1.2)

It is well-known that the matrix completion problem is actually a special class of the
tensor completion problem, i.e., the tensor completion problem can be viewed as an extension
of the matrix completion problem. However, unlike matrix rank, the definition of the tensor
rank is not unique. Many research efforts have been devoted to defining the tensor rank,
and most of them are defined based on the corresponding tensor decomposition, such as the
CANDECOMP/PARAFAC (CP) rank based on the CP decomposition [17, 23, 22, 31, 34],
the Tucker rank based on the Tucker decomposition [8, 17, 21, 33], and the tensor tubal
rank based on the tensor singular value decomposition (t-SVD) [18].

For a tensor X ∈ Rn1×n2×···×nN , the CP rank is defined as the minimum number of
rank-one tensors required to express a tensor [17], i.e.,

rankcp(X ) := min

{
r | X =

r∑
i=1

a1i ◦ a2i ◦ · · · ◦ aNi

}
,

where ‘◦’ denotes the vector outer product. Notice that it is hard to establish a solvable
relaxation form for the CP rank. The Tucker rank of X ∈ Rn1×n2×···×nN is defined as a
vector, i.e.,

ranktc(X ) :=
(
rank(X(1)), rank(X(2)), . . . , rank(X(N)

)
,

where X(i) is the mode-i unfolding matrix of X . To efficiently minimize (1.1) with Tucker
rank function ranktc(X ), based on the nuclear norm concept of matrices introduced in [7],
Liu et al. [21] proposed a convex relaxation model for (1.1), which can be mathematically
expressed by

min
X

N∑
i=1

αi∥X(i)∥∗

s.t. PΩ(X ) = PΩ(H),

(1.3)

where αi ≥ 0 (i = 1, 2, · · · , N) satisfy
∑N

i=1 αi = 1 and ∥X(i)∥∗ represents the nuclear
norm of the mode-i unfolding matrix X(i). In the literature, model (1.3) has been applied
to many applications, e.g., see [1, 9, 13, 23, 24, 27, 29, 33, 32, 37] for details. However,
it is not difficult to see that model (1.3) still belongs to the matrix completion, which
possibly destroys the correlation among different dimensions. In fact, Yuan and Zhang [35]
proved that the matricization method for the tensor completion problems can only obtain a
suboptimal solution.

In this paper, we propose two new tensor completion models, which are based on the
tensor T-product introduced by Kilmer et al [18]. The first model is an adaptive weighted
nuclear norm minimization model, and the second one is an adaptive p-shrinkage model.
More precisely, the proposed models are both based on the t-SVD and the related tensor
tubal rank. As noted in [16], unfolding a tensor into a matrix along one mode usually
destroys the structure information along other modes. Consequently, model (1.3) cannot
maximally preserve the intrinsic structure of the tensor. Comparatively, the tubal rank
models based on t-SVD are more powerful to preserve the intrinsic structure of a tensor
than model (1.3), e.g., see [12, 37]. However, their models are not enough ideal to address
different correlations along different modes, especially the third mode. In our two t-SVD
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based models, we employ a permutation strategy on the tensor so that each mode can be
considered by a series of matrix SVDs in the Fourier domain, thereby efficiently balancing
the low-rank properties (correlations) along each mode. Moreover, we impose Toeplitz
matrices on the tensor for the purpose of characterizing spatio-temporal structure, which
make our models more flexible for real-world tensor data sets. Due to the complicated
structure of the underlying models, we first introduce appropriate auxiliary variables to
reformulate models as a separable optimization problem. Then, following the sequential
update spirit of the well-known Alternating Direction Method of Multipliers (ADMM), we
propose two implementable ADMM-type algorithms. Some computational results for color
images, multi-spectral images, videos, and magnetic resonance imaging data recovery show
that our approaches perform better than some existing state-of-the-art tensor completion
approaches in terms of achieving higher recovery accuracy, especially for the cases with low
sample ratios.

The structure of this paper is as follows. In Section 2, we summarize some notations and
recall some basic definitions including (weighted) nuclear norm of the tensor, p-shrinkage
mapping and proximal operators. In Section 3, we first present two T-product based tensor
completion models. Further, based on the augmented Lagrangian function, we propose
two implementable algorithms for the underlying tensor completion models. In Section 4,
we conduct the performance of our approaches on images and videos recovery from highly
under-sampled data. Finally, some concluding remarks are stated in Section 5.

2 Notation and Preliminaries

In this section, we summarize some notations and definitions on t-SVD, p-shrinkage thresh-
olding operator and weighted nuclear norm that will be used throughout this paper.

The space of all N -th order real tensors is denoted by Rn1×n2×···×nN , where the order of
a tensor is also called way or mode. Given an N -th order A ∈ Rn1×n2×···×nN , we denote the
(i1, i2, . . . , iN )-th component of A by ai1i2...iN . So the N -th order tensor A is also denoted by
A = (ai1i2...iN ). Throughout this paper, tensors of order N ≥ 3 are denoted by calligraphical
letters, e.g., A,B, . . .. Generally, we use capital letters (e.g., A,B, . . .), boldfaced lowercase
letters (e.g., a,b, . . .), and lowercase letters (e.g., a, b, . . .) to denote matrices, vectors, and
scalars, respectively. For any two N -th order tensors A = (ai1i2...iN ) and B = (bi1i2...iN ),
the inner product between A and B is given by

⟨A,B⟩ :=
∑

i1,i2,...,iN

ai1i2...iN bi1i2...iN .

Consequently, the Frobenius norm of a tensor A associated with the above inner product is
given by ∥A∥F =

√
⟨A,A⟩. Given an N -th order tensor A, the mode-n matricization (or

unfolding) of A is denoted by A(n), and the (i1, i2, . . . , iN )-th entry of tensor A is mapped
to the (in, j)-th entry of matrix A(n) in the lexicographical order, where

j = 1 +
∑

1≤l≤N,l ̸=n

(il − 1)Jl with Jl =
∏

1≤t≤l−1,t ̸=n

nt.

The k-mode (matrix) product of a tensor X ∈ Rn1×n2×···×nN with a matrix U ∈ RJ×nk is
denoted by X ×k U , which is of size n1 × · · · × nk−1 × J × nk+1 × · · · × nN . Elementwise,
we have

(X ×k U)i1...ik−1jik+1...iN =

nk∑
ik=1

xi1...ik−1ikik+1...iNujik .



598 C. PAN, C. LING AND H. HE

Throughout this paper, [m] := {1, 2, . . . ,m} for given positive integer number m.

2.1 T-Product

We useXk orX(:, :, k) to denote the k-th frontal slice of a third-order tensor X ∈ Rn1×n2×n3 .
We represent the tensor X̄ in terms of X after performing Fast Fourier Transform (FFT)
on each tube, i.e., X̄ = fft(X , [], 3) and X = ifft(X̄ , [], 3) in Matlab, we denote F (X ) and
F−1(X̄ ) for simplicity. The identity tensor I ∈ Rn1×n1×n3 is a tensor whose first frontal
slice is an identity matrix and all other frontal slices are zero matrices. An f-diagonal tensor
is a tensor whose frontal slices are all diagonal matrices. We denote XH as the conjugate
transpose of tensor X , whose each frontal slices are conjugate transpose and then reversing
the order of the transposed frontal slices 2 through n3.

For a given third order tensor X ∈ Rn1×n2×n3 , the block circulant matrix bcirc(X ) ∈
Rn1n3×n2n3 and the block vectorization matrix bvec(X ) ∈ Rn1n3×n2 are defined as

bcirc(X ) =


X1 Xn3

. . . X3 X2

X2 X1 . . . X4 X3

...
...

. . .
...

...
Xn3−1 Xn3−2 · · · X1 Xn3

Xn3 Xn3−1 · · · X2 X1

 , bvec(X ) =


X1

X2

...
Xn3

 ,

respectively.

Definition 2.1. (T-product [18]] Given A ∈ Rn1×k×n3 and B ∈ Rk×n2×n3 , the t-product
A ∗ B is a third order tensor with size n1 × n2 × n3 given by

A ∗ B = bvfold (bcirc(A) · bvec(B)) ,

where “bvfold” is the inverse operator of “bvec”.

A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies Q ∗ QH = QH ∗ Q = I.

Theorem 2.2 (Tensor singular-value decomposition (t-SVD) [18]). A third order tensor
X ∈ Rn1×n2×n3 can be decomposed as X = U ∗ S ∗ VH , where U ∈ Rn1×n1×n3 and V ∈
Rn2×n2×n3 are othogonal tensors and S ∈ Rn1×n2×n3 is an f-diagonal tensor.

It is noteworthy that the t-SVD can also be written as an “economy size” decomposition
as similar to matrix SVD, i.e., X = U(:, 1 : r, :) ∗ S(1 : r, 1 : r, :) ∗ V(:, 1 : r, :)H with
r := min{n1, n2}.

Definition 2.3 ([26]). For any given X ∈ Rn1×n2×n3 , its tensor nuclear norm (TNN) is
defined by

∥X∥∗ =
1

n3

n3∑
j=1

∥X̄j∥∗ =
1

n3

n3∑
j=1

r∑
i=1

σi(X̄j),

and its weighted tensor nuclear norm (WTNN) [25] is defined by

∥X∥∗,W =
1

n3

n3∑
j=1

r∑
i=1

wijσi(X̄j),

where σi(X̄j) is the i-th largest singular value of X̄j ∈ Cn1×n2 for j ∈ [n3], and W =
(wij), i ∈ [r], j ∈ [n3] is a weight matrix, whose (i, j)th component, as suggested in [11], is
given by

wij = δ/(σi(X̄j) + ϵ), i ∈ [r], j ∈ [n3], (2.1)
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with δ ∈ R+ being a constant and ϵ being a small value to avoid division by 0. In algorithmic
implementation, we can iteratively update W . Particularly, TNN can be considered as a
special case of WTNN with wij = 1 for any (i, j).

2.2 Shrinkage thresholding operator

Definition 2.4 (p-shrinkage thresholding operator [3]). For a given vector x ∈ Rn, λ > 0,
and p ≤ 1, the p-shrinkage thresholding operator is defined by

pshrink(x, µ, p) := sign(x)⊙max{|x| − λ2−p|x|p−1, 0}, (2.2)

where ‘sign(·)’ and ‘| · |’ are the sign function and absolute value function in component-
wise, respectively, and ‘⊙’ represents the component-wise product between two vectors. In
particular, when setting p = 1, the p-shrinkage operator (2.2) immediately reduces to the
well-known soft-thresholding.

It follows from [24, 25] that, for any given Y ∈ Rn1×n2×n3 and a weight matrix W , the
related proximal operator associated to the weighted nuclear norm function ∥X∥∗,W about
Y is defined by

proxWλ(Y) := argmin
X∈Rn1×n2×n3

{
∥X∥∗,W +

1

2λ
∥X − Y∥2F

}
,

which is given by the following formula

proxWλ(Y) = U ∗ F−1(wTshrink(S, λ,W )) ∗ VH , (2.3)

where Y = U ∗ S ∗ VH is the t-SVD of Y and wTshrink(S, λ,W ) ∈ Rr×r×n3 is defined by

wTshrink(S, λ,W )iij = max{σi(S̄j)− λwij , 0}, i ∈ [r], j ∈ [n3]. (2.4)

Moreover, it follows from [3] that the p-shrinkage mapping defined in Definition 2.4 can also
be interpreted as the proximal operator of a penalty function Φp(·) : Rn → R, i.e.,

pshrink(a, λ, p) = argmin
x∈Rn

Φp(x) +
1

2λ
∥x− a∥2,

where Φp(x) :=
∑n

i=1 ϕp(xi) with ϕp(xi) being even, concave, nondecreasing and continu-
ous on [0,∞], differentiable on (0,∞), nondifferentiable at 0 with the subdifferential being
∂ϕp(0) = [−1, 1]. We refer the reader to [3, Theorem 1] (also [27]) for more details. Notice
that the p-shrinkage operator is available to tensor variables, i.e., Φp(X ) = 1

n3

∑n3

j=1 Φp(X̄j).
Specifically, for the optimization problem

min
X

Φp(X ) +
1

2λ
∥X − Y∥2F ,

we have the globally optimal solution

X ∗ = U ∗ F−1(pTshrink(S, λ, p)) ∗ VH ,

where Y = U ∗ S ∗ VH is the t-SVD of Y and pTshrink(S, λ, p) ∈ Rr×r×n3 is defined by

pTshrink(S, λ, p)iij = pshrink(σi(S̄j), λ, p), i ∈ [r], j ∈ [n3]. (2.5)
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3 Models and Algorithms

In this section, we present two t-SVD-based tensor completion models and the corresponding
algorithms. The first model is an adaptive weighted nuclear norm minimization model, and
the second one is an adaptive p-shrinkage model. Before presenting the models, let us intro-
duce the following notations. For a third-order tensor X ∈ Rn1×n2×n3 , we denote X{1} as
permute(X , [2, 3, 1]), X{2} as permute(X , [1, 3, 2]), X{3} as permute(X , [1, 2, 3]), respectively.

3.1 Adaptive weighted nuclear norm minimization model

In this subsection, we use the weighted nuclear norm to approximate the rank of target
tensor X , and the role of each dimension is considered in a weighted way. Accordingly, we
call the model adaptive weighted nuclear norm minimization model, which can be expressed
as follows

min
X∈Rn1×n2×n3

3∑
i=1

αi∥X{i}∥∗,Wi
+

3∑
i=1

ρi∥X ×i Li∥2F

s.t. PΩ(X ) = PΩ(H),

(3.1)

where α = (α1, α2, α3) and ρ = (ρ2, ρ2, ρ3) are nonnegative regularization parameters satis-

fying
∑3

i=1 αi ≈ 1, H is the incomplete data tensor with missing information, Wi is defined
by (2.1) with X = X{i}. Here, Li (i ∈ [3]) are Toeplitz matrices for spatio-temporal reg-
ularizations, i.e., Li = Toeplitz(0, 1,−1), whose central diagonals are ones, the first upper
diagonal components are −1, and the others are zeros. From model (3.1), it can be clearly
seen that the first part of the objective function is non-smooth, but its proximal operator
has a closed-form solution due to its special structure. Moreover, the variable X is in a
highly coupled state. In order to design effective algorithms, we equivalently transform (3.1)
into a separable model of the following form

min
G,Z,X

3∑
i=1

αi∥(Gi){i}∥∗,Wi
+

3∑
i=1

ρi∥Zi ×i Li∥2F + δK(X )

s.t. (Gi){i} = X{i}, i ∈ [3],
Zi,(i) = X(i), i ∈ [3],

(3.2)

where Gi and Zi are some introduced intermediate variables, (G1){1} ∈ Rn2×n3×n1 , (G2){2} ∈
Rn1×n3×n2 and (G3){3} ∈ Rn1×n2×n3 , Wi is defined by (2.1) with X = (Gi){i}, Zi,(i) =
unfold(Zi) for i ∈ [3], K = {X ∈ Rn1×n2×n3 | PΩ(X −H) = 0}, and δK(·) is the indicator
function of K defined by

δK(X ) =

{
0, if X ∈ K;

∞, otherwise.
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Since model (3.2) is an equality-constrained optimization problem, we write the augmented
Lagrangian function as follows

Lβ,η (G,Z,X , T ,P)

:=

3∑
i=1

(
αi

∥∥(Gi){i}
∥∥
∗,Wi

+ ⟨Ti,X − Gi⟩+
βi

2
∥X − Gi∥2F

)
+ δK(X )

+

3∑
i=1

(
ρi∥Zi ×i Li∥2F + ⟨Pi,X − Zi⟩+

ηi
2
∥X − Zi∥2F

)
=

3∑
i=1

(
αi

∥∥(Gi){i}
∥∥
∗,Wi

+
〈
(Ti){i},X{i} − (Gi){i}

〉
+

βi

2

∥∥X(i) − (Gi){i}
∥∥2
F

)

+

3∑
i=1

(
ρi
∥∥LiZi,(i)

∥∥2
F
+
〈
Pi,(i), X(i) − Zi,(i)

〉
+

ηi
2

∥∥X(i) − Zi,(i)

∥∥2
F

)
+ δK(X ), (3.3)

where G = (G1,G2,G3), Z = (Z1,Z2,Z3), T = (T1, T2, T3) with Ti being the Lagrangian
multiplier associated to Gi = X , P = (P1,P2,P3) with Pi being the Lagrangian multiplier
associated to Zi = X , and {βk} = {(βk

1 , β
k
2 , β

k
3 )} and {ηk} = {(ηk1 , ηk2 , ηk3 )} are two non-

decreasing sequences, i.e., {βk
i }∞k=0 and {ηki }∞k=0 are non-decreasing for i ∈ [3]. Here, the

last equation is due to the fact that

⟨A,B⟩ = ⟨A{i},B{i}⟩ = ⟨A(i),B(i)⟩ and ∥A∥F = ∥A{i}∥F = ∥Ai,(i)∥F , i ∈ [3].

By using Lβ,η (G,Z,X , T ,P), we present an ADMM iterative scheme for (3.2). Specially,
for the latest variables Gk,X k,Zk, T k,Pk, we generate the next iterate in a sequential order,
i.e., Gk+1 → Zk+1 → X k+1 → T k+1 → Pk+1 for updating the (k + 1)-th iteration.

• Update the variable G = (G1,G2,G3). For every i ∈ [3], obtain (Gi)
k+1
{i} via the following

optimization problem:

(Gi)
k+1
{i} = argmin

(Gi){i}

Lβk,ηk

(
G,Zk,X k, T k,Pk

)
= argmin

(Gi){i}

{
αi

βk
i

∥∥(Gi){i}
∥∥
∗,Wi

+
1

2

∥∥X k
{i} − (Gi){i} +

1

βk
i

(Ti)k{i}
∥∥2
F

}
= U ∗ F−1

(
wTShrink

(
S, αi

βk
i

,Wi

))
∗ VH , (3.4)

where X k
{i} +

1
βk
i

(Ti)k{i} = U ∗ S ∗ VH and ‘wTshrink(·, ·, ·)’ is given by (2.4), and the

weight matrix Wi is updated by (2.1) for i ∈ [3]. Furthermore, Gi can be obtained
Gi = ipermute((Gi){i}) by the Matlab script function ‘ipermute’.

• Update the variable Z = (Z1,Z2,Z3). For every i ∈ [3], we compute Zk+1
i via

Zk+1
i = argmin

Zi

Lβk,ηk

(
Gk+1,Z,X k, T k,Pk

)
= argmin

Zi

{
ρi∥LiZi,(i)∥2F +

ηki
2
∥Xk

(i) −Zi,(i) +
1

ηki
P k
i,(i)∥

2
F

}
= fold

((
2ρiL

⊤
i Li + ηki I

)−1(
ηki X

k
(i) + P k

i,(i)

))
. (3.5)
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• Update the variable X . After obtaining Gk+1 and Zk+1, we obtain X k+1 via

X k+1 = argmin
X

Lβk,ηk

(
Gk+1,Zk+1,X , T k,Pk

)
= argmin

X

3∑
i=1

(
⟨T k

i ,X − Gk+1
i ⟩+ βk

i

2
∥X − Gk+1

i ∥2F
)
+ δK(X )

+

3∑
i=1

(
⟨Pk

i ,X − Zk+1
i ⟩+ ηki

2
∥X − Zk+1

i ∥2F
)

= argmin
X

3∑
i=1

βk
i

2

∥∥X − Gk+1
i +

1

βk
i

T k
i

∥∥2
F

+ δK(X ) +

3∑
i=1

ηki
2

∥∥X − Zk+1
i +

1

ηki
Pk
i

∥∥2
F
. (3.6)

From (3.6), we obtain a closed-form solution for X k+1 as follows

(X k+1)ijl =

{
hijl, if (i, j, l) ∈ Ω;

X̂ k
ijl/τk, otherwise.

(3.7)

where X̂ k =

3∑
i=1

βk
i (Gk+1

i − 1

βk
i

T k
i ) +

3∑
i=1

ηki (Zk
i − 1

ηki
Pk
i ) and τk =

3∑
i=1

(βk
i + ηki ).

• Update the variables T = (T1, T2, T3) and P = (P1,P2,P3) via

T k+1
i = T k

i + βk
i

(
X k+1 − Gk+1

i

)
and Pk+1

i = Pk
i + ηki

(
X k+1 −Zk+1

i

)
, (3.8)

for i ∈ [3], respectively.

Formally, we can summarize the iterative schemes for (3.2) in Algorithm 1.

Algorithm 1 ADMM for Tensor Completion Model (3.2)

Input: Observed tensor H, parameters: α = (α1, α2, α3), ρ = (ρ1, ρ2, ρ3), β
0 = (β0

1 , β
0
2 , β

0
3),

η0 = (η01 , η
0
2 , η

0
3), δ, ϵ, κ1, κ2 > 1.

Step 0: Initialization: choose initial guess (G0,Z0,X 0, T 0,P0). Set k := 0.
Step 1: Update Gk+1 by (3.4),
Step 2: Update Zk+1 by (3.5),
Step 3: Update X k+1 by (3.7),
Step 4: Update T k+1 and Pk+1 by (3.8),
Step 5: Update βk+1 = κ1β

k and ηk+1 = κ2η
k,

Step 6: Unless a termination criterion is fulfilled, set k := k + 1 and go to Step 1.

Output: Completed tensor X ∗.

3.2 Adaptive t-SVD-based p-shrinkage tensor completion model

In this subsection, we further consider another scheme, which approximates low-rankness
adaptively. Recently, the so-called p-shrinkage thresholding algorithm [2, 3, 20, 27] outper-
forms the classical iterative soft thresholding algorithm induced by nuclear norm for low rank
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and sparse recovery problems. Hence, we propose the following tensor completion problem
model:

min
X

3∑
i=1

αiΦp(X{i}) +

3∑
i=1

ρi∥X ×i Li∥2F

s.t. PΩ(X ) = PΩ(H).

(3.9)

Compared with model (3.1), the only difference is that the ∥X{i}∥∗,W is replaced by
Φp(X{i}), where p ≤ 1 and Φp(X{i}) is defined in Section 2, and Ω is the index set for the
known entries. By introducing intermediate variables G = (G1,G2,G3) and Z = (Z1,Z2,Z3),
we can rewrite model (3.9) as follows

min
X

3∑
i=1

αiΦp((Gi){i}) +

3∑
i=1

ρi∥Zi ×i Li∥2F + δK(X )

s.t. (Gi){i} = X{i}, i ∈ [3],
Zi,(i) = X(i), i ∈ [3],

(3.10)

Taking a close look at model (3.10), it is also a linearly equality-constrained optimization
problem. By introducing the Lagrangian multipliers T = (T1, T2, T3) and P = (P1,P2,P3)
with penalty parameters β = (β1, β2, β3) and ρ = (ρ1, ρ2, ρ3) to linear constraints in (3.10),
we can get its augmented Lagrangian function as follows

Lβ,η (G,Z,X , T ,P)

:=

3∑
i=1

(
αiΦp((Gi){i}) +

〈
(Ti){i},X{i} − (Gi){i}

〉
+

βi

2

∥∥X{i} − (Gi){i}
∥∥2
F

)
+

3∑
i=1

(
ρi∥LiZi,(i)∥2F +

〈
Pi,(i), X(i) − Zi,(i)

〉
+

ηi
2

∥∥X(i) − Zi,(i)

∥∥2
F

)
+ δK(X ).

(3.11)

Based on Lβ,η (G,Z,X , T ,P) defined by (3.11), we present an ADMM iterative scheme
for (3.10) as follows.

• Update variable G = (G1,G2,G3). For every i ∈ [3], we compute (Gi)
k+1
{i} via

(Gi)
k+1
{i} = argmin

(Gi){i}

Lβk,ηk

(
G,Zk,X k, T k,Pk

)
= argmin

(Gi){i}

{
αi

βk
i

Φp((Gi){i}) +
1

2

∥∥X k
{i} − (Gi){i} +

1

βk
i

(Ti)k{i}
∥∥2
F

}
= U ∗ F−1

(
pTshrink

(
S, αi

βk
i

, p
))

∗ VH , (3.12)

where X k
{i} + 1

βk
i

(Ti)k{i} = U ∗ S ∗ VH and ‘pTshrink(·, ·, ·)’ is given by (2.5). Fur-

thermore, Gi can be obtained Gi = ipermute(Gi){i} by the Matlab script function
‘ipermute’.

• Update the variable Z = (Z1,Z2,Z3). For every i ∈ [3], we compute Zk+1
i via

Zk+1
i = argmin

Zi

Lβk,ηk

(
Gk+1,Z,X k, T k,Pk

)
= argmin

Zi

{
ρi∥LiZi,(i)∥2F +

ηki
2

∥∥Xk
(i) −Zi,(i) +

1

ηki
P k
i,(i)

∥∥2
F

}
= fold

((
2ρiL

⊤
i Li + ηki I

)−1(
ηki X

k
(i) + P k

i,(i)

))
.

(3.13)
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• Update variable X . We obtain X k+1 via following optimization problem:

X k+1 = Lβk,ηk

(
Gk+1,Zk+1,X , T k,Pk

)
= argmin

X

3∑
i=1

βk
i

2

∥∥X − Gk+1
i +

1

βk
i

T k
i

∥∥2
F
+ δK(X )

+

3∑
i=1

ηki
2

∥∥X − Zk+1
i +

1

ηki
Pk
i

∥∥2
F
.

(3.14)

From (3.14), we have the closed-form solution for X k+1 as follows

(X k+1)ijl =

{
hijl, if (i, j, l) ∈ Ω,

X̂ k
ijl/τk, otherwise,

(3.15)

where X̂ k =

3∑
i=1

βk
i (Gk+1

i − 1

βk
i

T k
i ) +

3∑
i=1

ηki (Zk
i − 1

ηki
Pk
i ) and τk =

3∑
i=1

(βk
i + ηki ).

• Update the variables T = (T1, T2, T3) and P = (P1,P2,P3) via

T k+1
i = T k

i + βk
i

(
X k+1 − Gk+1

i

)
and Pk+1

i = Pk
i + ηki

(
X k+1 −Zk+1

i

)
, (3.16)

for i ∈ [3], respectively.

Formally, we can summarize the iterative schemes for (3.10) in Algorithm 2.

Algorithm 2 ADMM for Tensor Completion Model (3.10)

Input: Observed tensor H, parameters: α = (α1, α2, α3), ρ = (ρ1, ρ2, ρ3), β
0 = (β0

1 , β
0
2 , β

0
3),

η0 = (η01 , η
0
2 , η

0
3), p ≤ 1, κ1, κ2 > 1.

Step 0: Initialization: choose initial guess (G0,Z0,X 0, T 0,P0)). Set k := 0.
Step 1: Update Gk+1

i by (3.12),
Step 2: Update Zk+1

i by (3.13),
Step 3: Update X k+1 by (3.15),
Step 4: Update T k+1

i and Pk+1
i by (3.16),

Step 5: Update βk+1
i = κ1β

k
i and ηk+1

i = κ2η
k
i ,

Step 6: Unless a termination criterion is fulfilled, set k := k + 1 and go to Step 1.

Output: Recovered tensor X ∗.

4 Experiments

In this section, we implement some experiments to verify the effectiveness of our proposed
approaches. We test four kinds of third-order tensor datasets: (1) color images, (2) MSI
data, (3) video data, and (4) MRI data. The experiments are implemented by Matlab
R2018b (64bit) on a PC with Intel(R) Core(TM) i7-7500 CPU@2.70GHz, 2.9GHz and 8GB
memory. Throughout this section, for simplicity, we denote Algorithms 1 and 2 by ‘aTNNst-
W’ and ‘aTNNst-p’, respectively. Moreover, to highlight the efficiency of the two proposed
approaches, we select five state-of-the-art methods as follows:

• HaLRTC [21]: High accuracy low rank tensor completion, which used a traditional
tensor nuclear norm defined on Tucker decomposition and ADMM framework.
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• IpST [27]: Using the p-shrinkage thresholding operetor to replace the traditonal general
tensor nuclear norm in HaLRTC and solved by ADMM framework.

• WSTNN [38]: Tensor N-tubal rank and its convex relaxation for low-rank tensor re-
covery.

• F-TNN [15]: Framelet representation of tensor nuclear norm for third-order tensor
completion.

• TNN-3DTV [14]: Anisotropic total variation regularized low-rank tensor completion
based on tensor nuclear norm.

We adopt the relative change of the two successive recovered tensors, i.e.,

RelCha =
∥X k+1 −X k∥F

∥Xtrue∥F
≤ 10−4, (4.1)

as the stopping criterion for all methods, where Xtrue is the original tensor. The following
metrics are chosen to evaluate the recovery performance of the different algorithms.

• Peak Signal-to-Noise Ratio (PSNR) is defined as:

PSNR = 10 log
(Xmax

true )
2(#Ωc)

∥X ∗ −Xtrue∥2F
,

where #Ωc denotes the number of elements in the complementary set of Ω, Xmax
true

represents the max element of Xtrue.

• Structural Similarity (SSIM) is defined as:

SSIM =
(2µXµX∗ + a1)(2σXX∗ + a2)

(µ2
X + µ2

X∗ + a1)(σ2
X + σ2

X∗ + a2)
,

where X and X∗ denote the greyscale images for the original image and its recovered
image, a1 and a2 are constants, µX and µX∗ denote the average values, while σX and
σX∗ denote the standard deviation of X and X∗, respectively, and σXX∗ denote the
covariance matrix between X and X∗.

• Feature Similarity Index Measure (FSIM), which is proposed for full reference image
quality assessment, and based on the fact that human visual system (HVS) understands
an image mainly according to its low-level features. We refer the reader to [36] for more
details.

We set (α1, α2, α3) = (1/3, 1/3, 1/3) for MRI recovery, and (α1, α2, α3) = (1/2, 1/2, 5 ·
10−4) for the other datasets. Moreover, we take p = 1/2, (ρ1, ρ2, ρ3) = (5 · 10−3, 5 · 10−3, 0)
for aTNNst-p, and set δ = 103, ϵ = 10−16 and (ρ1, ρ2, ρ3) = (1/2, 1/2, 0) for aTNNst-
W. In addition, for both aTNNst-p and aTNNst-W, we set β0 = (α1, α2, α3)/1000, η0 =
(10−4, 10−4, 10−4), and by using a dynamical strategy to update β and η with κ1 = κ2 = 1.1,
All parameters of other compared algorithms are taken the same as in original literature
[14, 15, 21, 27, 38].
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4.1 Color images recovery

In this subsection, we apply the proposed approaches to image restoration. Here, we
choose six frequently used color images (‘baboon’, ‘sailboat’, ‘lena’, ‘barbara’, ‘giant’,
‘butterfly’), which are listed in Figure 1, and can be represented by the third-order tensor
with size 256× 256× 3.

We consider two scenarios to degrade the original images. The first one is some image
data being dropped in a uniformly distributed way. We investigate four cases, i.e., the ‘lena’,
‘sailboat’, ‘barbara’ and ‘butterfly’ having 3%, 5%, 10%, 20% observed information,
respectively, which are shown in the first column of Figure 2 from the top to the bottom.
The recovery results by using different approaches: HaLRTC, IpST, WTSNN, F-TNN, TNN-
3DTV, aTNNst-p and aTNNst-W are shown from second column to the right, respectively.
It can be clearly seen from Figure 2 that our approaches can perform image restoration
better than the other five compared methods. Particularly, when the sample ratio sr is 3%,
all the five compared approaches fail, but our approaches can still recover the approximate
image contour. To further highlight the efficiency of the proposed approaches, we investigate
another six sample ratios, i.e., 3%, 5%, 10%, 20%, 30%, 40%, for the six images in Figure 1.
Here we only report the PSNR value comparison in Figure 3, where the results clearly show
that our approaches can recover better images in terms of achieving higher PSNR values
than the other solvers.

Figure 1: Six color clean images for test.

We also consider the structurally missing cases, that is, observed images have entire
rows or blocks missing/or corrupted by some irregular noise as shown in the first column in
Figure 4. The first row, ‘lena-1’ image, loses its pixels with respect to these English letters;
the second row, ‘lena-2’ image, which is dropped 90% pixels in a random way and then
corrupted by English letters; the ‘giant’ image, i.e., the third row, which has 90% percent
random pixel loss and is dropped one slice for every two slices with respect to mode-1; the
last row, ‘baboon’ image, is dropped 90% pixels in a random way and then corrupted by
ten block slices. The recovered image shown in Figure 4 further demonstrates that our
approaches performs much better than the other five approaches. The PSNR, SSIM and
FSIM values of all approaches in the case of four structural missing samples are reported in
Figure 5. Obviously, as shown by Figure 5, in all cases, the proposed approaches can achieve
higher PSNR, SSIM and FSIM values than the others.

4.2 MSI recovery

In this subsection, we apply the approaches proposed in this paper on MSI data from the
CAVE database. They can be regarded as third-tensor with 256 × 256 × 31, where the
spatial resolution is 256 × 256 and the spectral resolution is 31. Here we just take sr as
5%, 10% and 20% for comparison. Table 1 lists PSNR, SSIM and FSIM values of two our

http://www.cs.columbia.edu/CAVE/databases/multispectral.
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Figure 2: Results on color images (‘lena’ with sr= 3%, ‘sailboat’ with sr= 5%, ‘barbara’
with sr= 10% and ‘butterfly’ with sr= 20%) recovered by different approaches. From the
second column to right: HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV, aTNNst-p and
aTNNst-W, respectively.

Figure 3: PSNR results of all compared approaches in the case of random missing.
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Figure 4: Visualizations of the corrupted color image and performances recovered by different
approaches. From the second column to right: HaLRTC, IpST, WTSNN, F-TNN, TNN-
3DTV, aTNNst-p and aTNNst-W, respectively.

Figure 5: Numerical results of PSNR, SSIM and FSIM associated to Figure 4.
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approaches and all the LRTC approaches after making four different MSI data recovery. As
shown in Table 1, our approaches are significantly better than other filling approaches in
terms of the numerical results of the three indexes. To further highlight the visual benefits
of aTNNst-p and aTNNst-W, in Figure 6, we show three band (10th, 11th, 12th) in three
tested data recovered by different methods with sr = 5%. In Figure 6, the observed data,
recovery results by different approaches (HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV,
aTNNst-p and aTNNst-W) and the clean data are shown from left to right, respectively.
From Figure 6, we see that the proposed approaches are also superior to the compared ones
with more clearer details and structural information, especially for the ‘beads’.

Table 1: Numerical results for MSI data recovery.

Figure 6: Visualizations of recovery results of three selected MSI datas with 5% observed
elements. From left to right: Corrupted data, HaLRTC, IpST, WTSNN, F-TNN, TNN-
3DTV, aTNNst-p, aTNNst-W, and Clean data, respectively.
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4.3 Video recovery

Furthermore, we test four grayscale videos (named ‘akiyo’, ‘suzie’, ‘hall’, ‘seafish’, re-
spectively) recovery, the first three of which have a size of 144 × 176 × 100 and the last of
which has a size of 256 × 256 × 30. Table 2 lists the results of PSNR, SSIM, FSIM values
for all LRTC methods with sr ∈ {5%, 10%, 20%} in four tested datas. It can be easily seen
that the proposed approaches have obvious numerical superiority in all evaluation indexes.
In Figure 7, the recovery results of two frames are listed for the first three data at different
sample ratios (5%, 10%, 20%, respectively).

Table 2: Numerical results for video data recovery.

4.4 MRI recovery

Finally, we apply the proposed approaches on MRI image recovery, whose size is 181×217×
181. Numerical results of different approaches for recovering the MRI image with 5%, 10%
and 20% sampling ratios are shown in Table 3, which shows that the proposed approaches
all have obvious numerical advantages. From Figure 8, in which three different slices are
shown, and the observed image, the recovery images by different approaches and the clean
image are shown from left to right, respectively, it can be clearly observed that no matter
which slice is taken, the proposed approaches retain more abundant structure and texture
information visually than the compared approaches.

http://trace.eas.asu.edu/yuv/.
http://brainweb.bic.mni.mcgill.ca/brainweb/selection normal.html.
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Figure 7: The recovery results of three selected videos ‘akiyo’ (first two rows), ‘suize’ (mid
two rows), and ‘hall’ (last two rows) by all approaches. From left to right: Corrupted video
frames, HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV, aTNNst-p, aTNNst-W, and Clear
video frames, respectively.

Figure 8: Visualizations of recovery results of MRI data with 10% observed informa-
tion. From left to right: Corrupted data, HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV,
aTNNst-p, aTNNst-W, and Clean data, respectively.

Table 3: Numerical results for MRI data recovery.
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5 Conclusion

In this paper, we considered the tensor completion problem. By exploiting the multi-
dimensional low-rankness of the involved tensors, we proposed two T-product based op-
timization models, which can capture the hidden structure information in the considered
tensors. Due to the coupled property of these models, we proposed two easily imple-
mentable alternating updating algorithms, whose subproblems could be solved efficiently
or have closed-form solutions. To illustrate the effectiveness of two proposed approaches,
we applied them to color images, MSI data, videos, and MRI data recovery. A series of nu-
merical results demonstrated that our approaches effectively exploit the correlations along
all modes, while preserving the intrinsic structure of the underlying tensor. Since our ap-
proaches have to deal with some permuted tensors and the embedded matrix SVD procedure,
our algorithms require more SVDs so that our methods often require more computing time
than these algorithms compared in our experiments. Therefore, how to design faster and
more effective approaches will be our future concerns.
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