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Abstract: This paper proposes two tensor product based approaches to tensor completion, which recovers
missing entries of data represented by tensors. The proposed approaches are based on the tensor singular
value decomposition and the related tensor tubal rank, which are able to capture hidden information from
tensors thanks to the balanced consideration of multi-dimensional low-rank features. Accordingly, new opti-
mization formulations for tensor completion are proposed as well as two new algorithms for their solutions.
Some computational results for color images, multi-spectral images, videos, and magnetic resonance imaging
data recovery show that our approaches perform better than some existing state-of-the-art tensor-based
completion methods.
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Introduction

The tensor is a multidimensional array, which can better express the complex essential struc-
tures of higher-order data arising from many applications, such as color image processing
[4, 5, 6, 19], multi-spectral image (MSI) processing [1], signal processing [28], machine learn-
ing [28], and magnetic resonance imaging (MRI) data recovery [2, 30], video recovery [29],
internet data completion [39], face recognition [10], to name just a few. Many of real-world
problems need to be formulated as a tensor completion problem, i.e., completing the under-
lying tensor from an incomplete observation tensor, since it is almost impossible to collect
complete information due to various reasons. The key of the tensor completion is to explore
the prior information, e.g., the low-rank property of the underlying tensor. Mathematically,
the low-rank tensor completion (LRTC) model can be generally expressed as follows

min rank, (X))

(1.1)
st Pa(X) = Pa(H),

where rank,(X) denotes a special type of the tensor rank based on the rank assumption of

the underlying tensor X' € R™1*"2X X0~ 3 — (h,; ;. ;) is an observed incomplete tensor

in R xm2xoxnN Q) g the index set corresponding to the observed entries of H, and &g, is
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the linear operator extracting known elements in the set ) and filling the elements that are
not in ) with zero values, i.e.,

hiliz...iN; if (’i17i2, - 7i]\{) S Q;

. (1.2)
0, otherwise.

(Za(X) iy in = {

It is well-known that the matrix completion problem is actually a special class of the
tensor completion problem, i.e., the tensor completion problem can be viewed as an extension
of the matrix completion problem. However, unlike matrix rank, the definition of the tensor
rank is not unique. Many research efforts have been devoted to defining the tensor rank,
and most of them are defined based on the corresponding tensor decomposition, such as the
CANDECOMP/PARAFAC (CP) rank based on the CP decomposition [17, 23, 22, 31, 34],
the Tucker rank based on the Tucker decomposition [8, 17, 21, 33], and the tensor tubal
rank based on the tensor singular value decomposition (t-SVD) [18].

For a tensor X € R™t*n2XXnN _the CP rank is defined as the minimum number of
rank-one tensors required to express a tensor [17], i.e.,

T
ranke, (X) ::min{r|X: E a%oafou-oafv},
i=1

where ‘o’ denotes the vector outer product. Notice that it is hard to establish a solvable
relaxation form for the CP rank. The Tucker rank of X' € R™M*n2X X"~ jg defined as a
vector, i.e.,

rank(X) := (rank(X (), rank(X(g)), . .., rank(X(n)),

where X(;) is the mode-i unfolding matrix of X'. To efficiently minimize (1.1) with Tucker
rank function rank;.(X), based on the nuclear norm concept of matrices introduced in [7],
Liu et al. [21] proposed a convex relaxation model for (1.1), which can be mathematically
expressed by

N
m ZaiHX(i)H* (1.3)

=1

st Po(X) = Po(H),

where a; > 0 (i = 1,2,---, N) satisfy Zfil a; = 1 and || X(;)||« represents the nuclear
norm of the mode-i unfolding matrix X(;). In the literature, model (1.3) has been applied
to many applications, e.g., see [1, 9, 13, 23, 24, 27, 29, 33, 32, 37] for details. However,
it is not difficult to see that model (1.3) still belongs to the matrix completion, which
possibly destroys the correlation among different dimensions. In fact, Yuan and Zhang [35]
proved that the matricization method for the tensor completion problems can only obtain a
suboptimal solution.

In this paper, we propose two new tensor completion models, which are based on the
tensor T-product introduced by Kilmer et al [18]. The first model is an adaptive weighted
nuclear norm minimization model, and the second one is an adaptive p-shrinkage model.
More precisely, the proposed models are both based on the t-SVD and the related tensor
tubal rank. As noted in [16], unfolding a tensor into a matrix along one mode usually
destroys the structure information along other modes. Consequently, model (1.3) cannot
maximally preserve the intrinsic structure of the tensor. Comparatively, the tubal rank
models based on t-SVD are more powerful to preserve the intrinsic structure of a tensor
than model (1.3), e.g., see [12, 37]. However, their models are not enough ideal to address
different correlations along different modes, especially the third mode. In our two t-SVD
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based models, we employ a permutation strategy on the tensor so that each mode can be
considered by a series of matrix SVDs in the Fourier domain, thereby efficiently balancing
the low-rank properties (correlations) along each mode. Moreover, we impose Toeplitz
matrices on the tensor for the purpose of characterizing spatio-temporal structure, which
make our models more flexible for real-world tensor data sets. Due to the complicated
structure of the underlying models, we first introduce appropriate auxiliary variables to
reformulate models as a separable optimization problem. Then, following the sequential
update spirit of the well-known Alternating Direction Method of Multipliers (ADMM), we
propose two implementable ADMM-type algorithms. Some computational results for color
images, multi-spectral images, videos, and magnetic resonance imaging data recovery show
that our approaches perform better than some existing state-of-the-art tensor completion
approaches in terms of achieving higher recovery accuracy, especially for the cases with low
sample ratios.

The structure of this paper is as follows. In Section 2, we summarize some notations and
recall some basic definitions including (weighted) nuclear norm of the tensor, p-shrinkage
mapping and proximal operators. In Section 3, we first present two T-product based tensor
completion models. Further, based on the augmented Lagrangian function, we propose
two implementable algorithms for the underlying tensor completion models. In Section 4,
we conduct the performance of our approaches on images and videos recovery from highly
under-sampled data. Finally, some concluding remarks are stated in Section 5.

Notation and Preliminaries

In this section, we summarize some notations and definitions on t-SVD, p-shrinkage thresh-
olding operator and weighted nuclear norm that will be used throughout this paper.

The space of all N-th order real tensors is denoted by R™ *"2> " XnN yhere the order of
a tensor is also called way or mode. Given an N-th order A € R™1*"™2X X"~ "we denote the
(41,42, ...,in)-th component of A by a;,;,. ir. So the N-th order tensor A is also denoted by
A = (ai,4,..iy ). Throughout this paper, tensors of order N > 3 are denoted by calligraphical
letters, e.g., A, B,.... Generally, we use capital letters (e.g., A, B,...), boldfaced lowercase
letters (e.g., a,b,...), and lowercase letters (e.g., a,b,...) to denote matrices, vectors, and
scalars, respectively. For any two N-th order tensors A = (a,4,..ix) and B = (biyiy. in),
the inner product between A and B is given by

(A, B) = Z Qiyig..in Vigig.in

11,82,.. 0N

Consequently, the Frobenius norm of a tensor 4 associated with the above inner product is
given by ||A|lr = v/(A, A). Given an N-th order tensor A, the mode-n matricization (or
unfolding) of A is denoted by A(,), and the (i1,42,...,%in)-th entry of tensor A is mapped
to the (i,,7)-th entry of matrix A,) in the lexicographical order, where

j=1+ > (-1 with =[] nm

1<I<N,I#n 1<t<i—1,t#n

The k-mode (matrix) product of a tensor X' € R™MXn2>X X" with a matrix U € R7X"* is
denoted by X xj U , which is of size ny X --- X ng_1 X J X ng41 X --- X ny. Elementwise,
we have

ng
(X X U)i1~~~ik—1jik+1mi1\7 = § :xil~~i1c—1ik,ik+1~~~iNujik'

ir=1



598 C. PAN, C. LING AND H. HE
Throughout this paper, [m] := {1,2,...,m} for given positive integer number m.

T-Product

We use X, or X(,:, k) to denote the k-th frontal slice of a third-order tensor X' € Rt *n2x"s,
We represent the tensor X' in terms of X after performing Fast Fourier Transform (FFT)
on each tube, i.e., X = fit(X,[],3) and X = ifft(X,[],3) in MATLAB, we denote .Z (X) and
F~1(X) for simplicity. The identity tensor Z € R™*™1X"s i5 a tensor whose first frontal
slice is an identity matrix and all other frontal slices are zero matrices. An f-diagonal tensor
is a tensor whose frontal slices are all diagonal matrices. We denote X as the conjugate
transpose of tensor X', whose each frontal slices are conjugate transpose and then reversing
the order of the transposed frontal slices 2 through ns.

For a given third order tensor X € R™*"2*"sthe block circulant matrix beirc(X) €
RmMmnaxn2ns and the block vectorization matrix bvec(X) € R™1"8*"2 are defined as

X, Xn, .. X3 X, X,
X X1 ... Xi X3 X
beire(X) = : : . S sbvee(X) = | .|,
X’I’L3—1 Xn3—2 o Xl Xng X
Xn3 Xn3—1 e X2 Xl s

respectively.

Definition 2.1. (T-product [18]] Given A € R™*¥*ns and B € RF*n2Xns | the t-product
A x B is a third order tensor with size n; X ns X ng given by

A x B = bvfold (bcirc(A) - bvec(B)) ,
where “bvfold” is the inverse operator of “bvec”.
A tensor Q € R™*™*"s ig orthogonal if it satisfies Q * QF = Qf x Q = T.

Theorem 2.2 (Tensor singular-value decomposition (t-SVD) [18]). A third order tensor
X € RmXnm2Xn3 can be decomposed as X = U x S« VH | where U € R™MX™MXns gpd Y €
R72Xn2Xn3 qre othogonal tensors and S € R™"*"2%"3 4s gn f-diagonal tensor.

It is noteworthy that the t-SVD can also be written as an “economy size” decomposition
as similar to matrix SVD, ie., X = U(:,1 : 7)) *S(1 2 r,1 )« V(1 0 7)) with
r:=min{ny, na}.

Definition 2.3 ([26]). For any given X € R"™*"2X"s  jtg tensor nuclear norm (TNN) is

defined by
PYREEE SIT NI of S &
== e = — ai(X;),
’17,3 ) J n3 J

j=1i=1
and its weighted tensor nuclear norm (WTNN) [25] is defined by

1 ns T B
[X]ew = - O wioi(X),
j=1i=1

where 0;(X;) is the i-th largest singular value of X; € C"*"™ for j € [ng], and W =
(wsj),4 € [r],j € [n3] is a weight matrix, whose (i, j)th component, as suggested in [11], is
given by

wij = 06/(0i(X;) +€),i € [r], ] € [na], (2.1)
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with § € R* being a constant and € being a small value to avoid division by 0. In algorithmic
implementation, we can iteratively update W. Particularly, TNN can be considered as a
special case of WINN with w;; = 1 for any (¢, j).

Shrinkage thresholding operator

Definition 2.4 (p-shrinkage thresholding operator [3]). For a given vector € R, A > 0,
and p < 1, the p-shrinkage thresholding operator is defined by

pshrink(z, 4, p) := sign(x) © max{|z| — A*"P|z[P~* 0}, (2.2)

)

where ‘sign(-)’ and ‘| - |’ are the sign function and absolute value function in component-
wise, respectively, and ‘®’ represents the component-wise product between two vectors. In
particular, when setting p = 1, the p-shrinkage operator (2.2) immediately reduces to the
well-known soft-thresholding.

It follows from [24, 25] that, for any given Y € R™*"2%"s and a weight matrix W, the
related proximal operator associated to the weighted nuclear norm function ||X||..w about
Y is defined by

. 1
prosys() = argmin {100 + 501 - VI |

XERn1 Xna X3
which is given by the following formula

proxyyy (V) = U * F~(wTshrink(S,\, W)) * V| (2.3)

where Y = U xS * VH is the t-SVD of ) and wTshrink(S, A\, W) € R"*"*"3 ig defined by

wTshrink(S, A\, W);;; = max{o;(S;) — Mw;;,0}, i € [r], j € [n3]. (2.4)

Moreover, it follows from [3] that the p-shrinkage mapping defined in Definition 2.4 can also
be interpreted as the proximal operator of a penalty function ®,(-) : R® — R, i.e.,
1
pshrink(a, A, p) = arg min @, (x) + ﬁHx —al?,

z€R™

where @, (z) := Y| ¢p(x;) with ¢,(z;) being even, concave, nondecreasing and continu-
ous on [0, 0c0], differentiable on (0, c0), nondifferentiable at 0 with the subdifferential being

00p,(0) = [—1,1]. We refer the reader to [3, Theorem 1] (also [27]) for more details. Notice

that the p-shrinkage operator is available to tensor variables, i.e., ®,(X) = -1 PRyt ®,(X;).

Specifically, for the optimization problem ’
. 1 2
min @,(X) + ¥ - VI,
we have the globally optimal solution
X* =U * F }(pTshrink(S, \,p)) * VH
where Y = U * S * V is the t-SVD of ) and pTshrink(S, \,p) € R"*"*"3 is defined by

pTshrink(S, A, p)i;; = pshrink(oi(gj),k,p),i € [r],j € [ns)]. (2.5)
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Models and Algorithms

In this section, we present two t-SVD-based tensor completion models and the corresponding
algorithms. The first model is an adaptive weighted nuclear norm minimization model, and
the second one is an adaptive p-shrinkage model. Before presenting the models, let us intro-
duce the following notations. For a third-order tensor X' € R™*"2*"s we denote Xy} as
permute(X, [2,3,1]), X(2y as permute(X, [1, 3, 2]), X3} as permute(X, [1, 2, 3]), respectively.

Adaptive weighted nuclear norm minimization model

In this subsection, we use the weighted nuclear norm to approximate the rank of target
tensor X, and the role of each dimension is considered in a weighted way. Accordingly, we
call the model adaptive weighted nuclear norm minimization model, which can be expressed
as follows

3 3
. ) ) X . |12
XeRgliEQan ;az”X{Z}H*:Wi + ;m”é\f X; L;|| % (3.1)
s.t. Po(X) = Po(H),

where a = (a1, az, a3) and p = (p2, p2, p3) are nonnegative regularization parameters satis-
fying 23:1 a; = 1, H is the incomplete data tensor with missing information, W; is defined
by (2.1) with X = Xp;3. Here, L; (i € [3]) are Toeplitz matrices for spatio-temporal reg-
ularizations, i.e., L; = Toeplitz(0,1, —1), whose central diagonals are ones, the first upper
diagonal components are —1, and the others are zeros. From model (3.1), it can be clearly
seen that the first part of the objective function is non-smooth, but its proximal operator
has a closed-form solution due to its special structure. Moreover, the variable X’ is in a
highly coupled state. In order to design effective algorithms, we equivalently transform (3.1)
into a separable model of the following form

3 3

Juin, > aill(@) yllew, + > pill Zi xi LillF + 0x(X) 3.9
It i=1 i=1 3.2
Zi iy = Xy, 1 € [3],

where G; and Z; are some introduced intermediate variables, (G1){1} € R™*"8%™ (Gy) 1oy €
Rmxmsxnz and (Gg)gzy € R™M*"2Xms W is defined by (2.1) with & = (Gi)gy, Zi) =
unfold(Z;) for i € [3], K = {X € Rm*X"2x"s | P4(X —H) = 0}, and 0k (-) is the indicator
function of K defined by

0, ifxek;

oo, otherwise.

Ik (X) :{
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Since model (3.2) is an equality-constrained optimization problem, we write the augmented
Lagrangian function as follows

gﬁ,n(g,Z,X,T,'P)
3

=3 (w10 L, + €75 = G+ 1 = Gl ) + ()
=1

3 o

+ 3 (sl 2% Lilly + (P X - 2 + L - 247

i=1

=y (ai 1) tis ||, + (Togiy, Xy — (Gi)gay) + %HX@‘) - (gi){i}||§>

i=1

U 2
+Z (plZiZiso | + (P X = Ziso) + 2| Xy = ZioI7) + (), (3:3)
i=1
where G = (G1,G2,G3), 2 = (21, 22,23), T = (T1,7T2,T3) with 7; being the Lagrangian
multiplier associated to G; = X, P = (P1, P2, P3) with P; being the Lagrangian multiplier

associated to Z; = X, and {8} = {(BF, 85, 85)} and {n*} = {(n¥,n5,1m5)} are two non-
decreasing sequences, i.e., {8F}2° ) and {nF}°, are non-decreasing for i € [3]. Here, the
last equation is due to the fact that

(A, B) = (Apiy, Bray) = (Agy, Bay) and [|Allr = A@ e = [14i,i)lle, @€ 3]

By using %3, (G, Z, X, T, P), we present an ADMM iterative scheme for (3.2). Specially,
for the latest variables G¥, X% ZF T% PF we generate the next iterate in a sequential order,
ie., Gl — Zk+l 5 yhtl TR+ PEHL for updating the (k + 1)-th iteration.

e Update the variable G = (G1, G2, G3). For every i € [3], obtain (Ql)kJrl via the following
optimization problem:

G = a(rgg)min%k,nk (G, 2%, Xk Tk PF)
i){i}

1 1
o+ 3 — @+ (T}

=Ux*xZ (wTShrlnk(

= arg min (Gi)
rg i {BlkH i)

ﬁk,W)) * Vi (3.4)

where X{kz.} + 5%(7;)’{“1} =Ux*S VP and ‘wTshrink(:,-,-)’ is given by (2.4), and the
weight matrix W; is updated by (2.1) for ¢ € [3]. Furthermore, G; can be obtained
G; = ipermute((G;)(;}) by the MATLAB script function ‘ipermute’.

e Update the variable Z = (21, Z5, Z3). For every i € [3], we compute ZF™ via
ZFH! = argmin ZLge 0 (GFT, Z, X%, T, PF)
Z;
. 2 0y k L ok 2
= arg min {PiLiZi,(i)”F + EZHX@') = 2@+ 77,{gPi,(i)||F}

— fold (2pi L] L+ 1) ™ (f X + Pl (3.5)
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e Update the variable X'. After obtaining G**! and Z**!, we obtain X**! via

xhtL = arg min.fgkmk (ng, Zk'H, X7Tk773k)
X
3 ﬂk
—argumin Y (75, - 6570 + T - 6P ) + ()
L — 2

3 k
;
+>° (mw -z + L —zf“n%)
i=1

=ar miniﬂ—fn?(*gkJrl + i7'4}‘3H2
= gX v 2 i Blk i ||l
S gk, Lok
+Ox(X) + > 5 llX -2+ nkn |2 (3.6)

i=1

From (3.6), we obtain a closed-form solution for X**! as follows

. h’L ils if .a ', l Q7
(Xk-‘rl)ijl _ A]l 1 (Z J ) € (37)
' X*k.1 /T, otherwise.
~ 3 1 3 1 3
where AV = Zﬁf(gfﬂ - @7?) + ZU?(Zik - gpf) and 73, = Z(ﬂf + 7).
i—1 4 i=1 i i=1

e Update the variables T = (71,72, 73) and P = (Py, P2, P3) via
T =TE+ B (XM = g7 and PP = PRl (XM - 28, (3.8)

for i € [3], respectively.

Formally, we can summarize the iterative schemes for (3.2) in Algorithm 1.

Algorithm 1 ADMM for Tensor Completion Model (3.2)

Input: Observed tensor H, parameters: o = (a1, a2, a3), p = (p1, p2, p3), B° = (B8, 53, 53),
770 = (77?’778)77??)7 0, € K1, ke > L.

Step 0: Initialization: choose initial guess (G%, Z°, X0, 79 PY). Set k := 0.

Step 1: Update G¥*1 by (3.4),

Step 2: Update Z**! by (3.5),

Step 3: Update X**! by (3.7),

Step 4: Update 751 and P**+1 by (3.8),

Step 5: Update BF+1 = k1 8% and n**1 = kon¥,

Step 6: Unless a termination criterion is fulfilled, set k := k + 1 and go to Step 1.
Output: Completed tensor X*.

Adaptive t-SVD-based p-shrinkage tensor completion model

In this subsection, we further consider another scheme, which approximates low-rankness
adaptively. Recently, the so-called p-shrinkage thresholding algorithm [2, 3, 20, 27] outper-
forms the classical iterative soft thresholding algorithm induced by nuclear norm for low rank
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and sparse recovery problems. Hence, we propose the following tensor completion problem

model:
3

mln Zal (Xeiy) +sz||)(>< Li||% (3.9)

=1 =1

st. Pa(X) = Po(H).

Compared with model (3.1), the only difference is that the || Xp;[l«,w is replaced by
®,(Xfiy), where p < 1 and @, (X;y) is defined in Section 2, and Q is the index set for the
known entries. By introducing intermediate variables G = (G1, G2, G3) and Z = (21, 25, Z3),
we can rewrite model (3.9) as follows

3

min Zaz (Gi)gay) + X pill Zi i L3 + 6w (X)
i=1 (310)
s.t. (gl){z} = X{z},l € [3]
Zly() X(),ZE[?)]

Taking a close look at model (3.10), it is also a linearly equality-constrained optimization
problem. By introducing the Lagrangian multipliers 7 = (71,73, 73) and P = (P1,Ps, P3)
with penalty parameters 8 = (81, 82, 83) and p = (p1, p2, p3) to linear constraints in (3.10),
we can get its augmented Lagrangian function as follows

55,77 (g7 Z,X,T, P)
= Z <ai¢’p((gi){i}) + {(Ti) @iy Xy — (Gi) gy ) + %HX@} — (gi){i}Hi)

i=1

(3.11)
3
Ni 2
+ 3 (PllLiZio IF + (o Xy = Zey) + 21Xy = Zio ) + ().
i=1
Based on 23, (G, Z,X,T,P) defined by (3.11), we present an ADMM iterative scheme
for (3.10) as follows.

e Update variable G = (G1, Ga,G3). For every i € [3], we compute (Ql)l€le via

G = a(rgg)minfm,nk (G, 2%, &h, T", PF)
i){i}

1 2
= G; Xl G + = (T }
a(rgg)ril}n{ﬁk p((Gi)gy) + H (o~ G + 5 Vi [

=UxF! (pTshrink(S, %,p)) « VH | (3.12)

where X{ y + 3E (7})’%} =Ux* S+ VT and ‘pTshrink(-,-,-)’ is given by (2.5). Fur-
thermore, G; can be obtained G; = ipermute(G;);; by the MATLAB script function
‘ipermute’.

e Update the variable Z = (Z;, 25, Z3). For every i € [3], we compute ZF! via
Zf“ = argmin,fﬁk k(g’”l Z, Xk TR Pk)
771 1 k 2
= argmm pillLiZ;, z)HF HX Zi) T EPL(i)HF (3.13)

—fold((?szTL )" 1(m- X + i,(i)))'
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e Update variable X. We obtain X**1 via following optimization problem:
Xk = Lk pk (Q;H,Z’“H, X,T’“,Pk)

) pE k1, L2
_ TJX =G+ T+ (X
arg;nln; 5 I i aF [+ 0 () (3.14)

+ 23: i”é’( -z ipﬂ
— 2 7 nl]g 7

2
[

From (3.14), we have the closed-form solution for X**1 as follows

hij ) if .7 .7l € Qa
(Xk+1)ijl _ Alil 1 (Z J ) (315)
XF;1/Tk, otherwise,
~ 3 1 3 1 3
where X% =3 BHGET = 2T + D (2 = P and mie= ) (85 + ).
=1 T =1 ? =1

e Update the variables T = (71,72, 73) and P = (Py, P2, P3) via
T = T4 BE (AR = Gi ) and PIF = PF i (XM - 28, (3.16)

for ¢ € [3], respectively.

Formally, we can summarize the iterative schemes for (3.10) in Algorithm 2.

Algorithm 2 ADMM for Tensor Completion Model (3.10)

Input: Observed tensor H, parameters: o = (a1, a2, a3), p = (p1, p2, p3), B° = (B8Y, 53, 5Y),
1= (8,13, 18), p < L, K, k2 > 1.

Step 0: Initialization: choose initial guess (G°, Z°, X% T° P%)). Set k := 0.

Step 1: Update GF™! by (3.12),

Step 2: Update Zf“ by (3.13),

Step 3: Update X**! by (3.15),

Step 4: Update T,*™' and PF*! by (3.16),

Step 5: Update /Bfﬂ = k1 BF and nf“ = Kok,

Step 6: Unless a termination criterion is fulfilled, set k := k + 1 and go to Step 1.

Output: Recovered tensor X'*.

Experiments

In this section, we implement some experiments to verify the effectiveness of our proposed
approaches. We test four kinds of third-order tensor datasets: (1) color images, (2) MSI
data, (3) video data, and (4) MRI data. The experiments are implemented by MATLAB
R2018b (64bit) on a PC with Intel(R) Core(TM) i7-7500 CPU@2.70GHz, 2.9GHz and 8GB
memory. Throughout this section, for simplicity, we denote Algorithms 1 and 2 by ‘aTNNst-
W’ and ‘aTNNst-p’, respectively. Moreover, to highlight the efficiency of the two proposed
approaches, we select five state-of-the-art methods as follows:

e HaLRTC [21]: High accuracy low rank tensor completion, which used a traditional
tensor nuclear norm defined on Tucker decomposition and ADMM framework.
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e IpST [27]: Using the p-shrinkage thresholding operetor to replace the traditonal general
tensor nuclear norm in HaLRTC and solved by ADMM framework.

e WSTNN [38]: Tensor N-tubal rank and its convex relaxation for low-rank tensor re-
covery.

o F-TNN [15]: Framelet representation of tensor nuclear norm for third-order tensor
completion.

e TNN-3DTV [14]: Anisotropic total variation regularized low-rank tensor completion
based on tensor nuclear norm.

We adopt the relative change of the two successive recovered tensors, i.e.,

||Xk+1 _ Xk”F

RelCha =
|| Xtrue HF

<1074, (4.1)

as the stopping criterion for all methods, where X}, is the original tensor. The following
metrics are chosen to evaluate the recovery performance of the different algorithms.

e Peak Signal-to-Noise Ratio (PSNR) is defined as:

(XmaX)Q(#QC)

true

PSNR = 10log ~-2ue /27
||X* - Xtrue”%

where #° denotes the number of elements in the complementary set of 2, AT
represents the max element of Xypye-

e Structural Similarity (SSIM) is defined as:

(2pxpx- +a1)(20xx- + az)

SSTM — ,
(W% + k- +a1)(o% + 0% +a2)

where X and X* denote the greyscale images for the original image and its recovered
image, a; and as are constants, ux and px- denote the average values, while ox and
ox~ denote the standard deviation of X and X™, respectively, and ox x+ denote the
covariance matrix between X and X*.

e Feature Similarity Index Measure (FSIM), which is proposed for full reference image
quality assessment, and based on the fact that human visual system (HVS) understands
an image mainly according to its low-level features. We refer the reader to [36] for more
details.

We set (a1, a9,a3) = (1/3,1/3,1/3) for MRI recovery, and (aq,as,a3) = (1/2,1/2,5 -
10~%) for the other datasets. Moreover, we take p = 1/2, (p1, p2,p3) = (5-1073,5-1073,0)
for aTNNst-p, and set § = 103, ¢ = 107!¢ and (p1,p2,p3) = (1/2,1/2,0) for aTNNst-
W. In addition, for both aTNNst-p and aTNNst-W, we set 5% = (a1, s, a3)/1000, n° =
(107%,107%,10~%), and by using a dynamical strategy to update 8 and 1 with k1 = ko = 1.1,
All parameters of other compared algorithms are taken the same as in original literature
[14, 15, 21, 27, 38).
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Color images recovery

In this subsection, we apply the proposed approaches to image restoration. Here, we
choose six frequently used color images (‘baboon’, ‘sailboat’, ‘lena’, ‘barbara’, ‘giant’,
‘butterfly’), which are listed in Figure 1, and can be represented by the third-order tensor
with size 256 x 256 x 3.

We consider two scenarios to degrade the original images. The first one is some image
data being dropped in a uniformly distributed way. We investigate four cases, i.e., the ‘lena’,
‘sailboat’, ‘barbara’ and ‘butterfly’ having 3%, 5%, 10%, 20% observed information,
respectively, which are shown in the first column of Figure 2 from the top to the bottom.
The recovery results by using different approaches: HaLRTC, IpST, WTSNN, F-TNN, TNN-
3DTV, aTNNst-p and aTNNst-W are shown from second column to the right, respectively.
It can be clearly seen from Figure 2 that our approaches can perform image restoration
better than the other five compared methods. Particularly, when the sample ratio sr is 3%,
all the five compared approaches fail, but our approaches can still recover the approximate
image contour. To further highlight the efficiency of the proposed approaches, we investigate
another six sample ratios, i.e., 3%, 5%, 10%, 20%, 30%, 40%, for the six images in Figure 1.
Here we only report the PSNR value comparison in Figure 3, where the results clearly show
that our approaches can recover better images in terms of achieving higher PSNR values
than the other solvers.

Figure 1: Six color clean images for test.

We also consider the structurally missing cases, that is, observed images have entire
rows or blocks missing/or corrupted by some irregular noise as shown in the first column in
Figure 4. The first row, ‘lena-1’ image, loses its pixels with respect to these English letters;
the second row, ‘lena-2’ image, which is dropped 90% pixels in a random way and then
corrupted by English letters; the ‘giant’ image, i.e., the third row, which has 90% percent
random pixel loss and is dropped one slice for every two slices with respect to mode-1; the
last row, ‘baboon’ image, is dropped 90% pixels in a random way and then corrupted by
ten block slices. The recovered image shown in Figure 4 further demonstrates that our
approaches performs much better than the other five approaches. The PSNR, SSIM and
FSIM values of all approaches in the case of four structural missing samples are reported in
Figure 5. Obviously, as shown by Figure 5, in all cases, the proposed approaches can achieve
higher PSNR, SSIM and FSIM values than the others.

MSI recovery

In this subsection, we apply the approaches proposed in this paper on MSI data from the
CAVE database. They can be regarded as third-tensor with 256 x 256 x 31, where the
spatial resolution is 256 x 256 and the spectral resolution is 31. Here we just take sr as
5%, 10% and 20% for comparison. Table 1 lists PSNR, SSIM and FSIM values of two our

http://www.cs.columbia.edu/CAVE/databases/multispectral.
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Figure 2: Results on color images (‘lena’ with sr= 3%, ‘sailboat’ with sr= 5%, ‘barbara’
with sr= 10% and ‘butterfly’ with sr= 20%) recovered by different approaches. From the
second column to right: HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV, aTNNst-p and
aTNNst-W, respectively.
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Figure 3: PSNR results of all compared approaches in the case of random missing.
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Figure 4: Visualizations of the corrupted color image and performances recovered by different
approaches. From the second column to right: HaLRTC, IpST, WTSNN, F-TNN, TNN-
3DTV, aTNNst-p and aTNNst-W, respectively.

0 0
lena-1 lena-2 giant baboon lena-1 lena-2 giant baboon lena-1 lena-2 giant baboon

Figure 5: Numerical results of PSNR, SSIM and FSIM associated to Figure 4.
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approaches and all the LRTC approaches after making four different MSI data recovery. As
shown in Table 1, our approaches are significantly better than other filling approaches in
terms of the numerical results of the three indexes. To further highlight the visual benefits
of aTNNst-p and aTNNst-W, in Figure 6, we show three band (10th, 11th, 12th) in three
tested data recovered by different methods with sr = 5%. In Figure 6, the observed data,
recovery results by different approaches (HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV,
aTNNst-p and aTNNst-W) and the clean data are shown from left to right, respectively.
From Figure 6, we see that the proposed approaches are also superior to the compared ones
with more clearer details and structural information, especially for the ‘beads’.

Table 1: Numerical results for MSI data recovery.

sr = 0.05 sr = 0.10 sr = 0.20
MSI Data Method PSNR  SSIM  FSIM PSNR SSIM _ TSIM PSNR SSIM _ TSIM
HaLRTC 1441 0102 0.476 14.65  0.137  0.565 1516 0214 0.659
IpST 18.65  0.362  0.649 2255 0.622  0.790 2721 0.838  0.808
beads WTSNN 2419 0.763  0.859 2028 0.920  0.943 35.57  0.979  0.983
256 x 256 x 31 F-TNN 20.92 0.590 0.504 25.22 0.651 0.711 31.01 0.812 0.849
TNN-3DTV 2044 0501  0.674 2253 0.654  0.784 2548 0.810  0.877
aTNNst-p  27.03  0.866 0.912 3323 0.958  0.966 3054 0.990 0.991
aTNNst-W  28.40 0.864 0.912  33.72 0.957 0.967  40.44 0.990 0.992
HaLRTC 11.66 0.052 0.517 11.90 0.080 0.539 12.40 0.131 0.565
IpST 27.65 0.773 0.882 33.53 0.910 0.945 37.97 0.961 0.975
pompoms WTSNN 31.65 0.924 0.955 36.93 0.986 0.979 44.02 0.992 0.994
256 x 256 x 31 F-TNN 26.47 0.532 0.611 33. 0.751 0.804 39.27 0.886 0.915
TNN-3DTV 26.21 0.806 0.878 30.12 0.882 0.922 34.93 0.943 0.962
aTNNst-p 35.84 0.951 0.968 42.13 0.987 0.990 48.21 0.996 0.997
aTNNst-W 36.78 0.955 0.975 42.21 0.986 0.991 49.22 0.997 0.998
HaLRTC 13.35 0182  0.616 1358 0222 0.629 1410 0295 0.648
IpST 9741 0.818  0.869 3112 0.902  0.921 35.38  0.956  0.963
feather WTSNN 3132 0.008  0.933 36.16  0.962  0.970 42.87  0.089  0.983
256 x 256 x 31 F-TNN 3043 0.493  0.551 3512 0.743  0.807 1028 0.789  0.829
TNN-3DTV 2547  0.808  0.837 28.01  0.879  0.891 31.85  0.043  0.948
aTNNst-p 3424 0930 0948 1020  0.980 0.983  47.00 0.994 0.995
aTNNst-W  34.90 0.931 0.949  40.50 0.978 0.983  47.66 0.990  0.992

Figure 6: Visualizations of recovery results of three selected MSI datas with 5% observed
elements. From left to right: Corrupted data, HaLRTC, IpST, WTSNN, F-TNN, TNN-
3DTV, aTNNst-p, aTNNst-W, and Clean data, respectively.
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Video recovery

Furthermore, we test four grayscale videos (named ‘akiyo’, ‘suzie’, ‘hall’, ‘seafish’, re-
spectively) recovery, the first three of which have a size of 144 x 176 x 100 and the last of
which has a size of 256 x 256 x 30. Table 2 lists the results of PSNR, SSIM, FSIM values
for all LRTC methods with sr € {5%, 10%,20%} in four tested datas. It can be easily seen
that the proposed approaches have obvious numerical superiority in all evaluation indexes.
In Figure 7, the recovery results of two frames are listed for the first three data at different
sample ratios (5%, 10%, 20%, respectively).

Table 2: Numerical results for video data recovery.

Video Data Method sr = 0.05 sr = 0.10 sr = 0.20
PSNR SSIM  FSIM PSNR SSIM  FSIM PSNR SSIM  FSIM
HaLRTC 6.61 0.012 0.458 6.84 0.019 0.445 7.35 0.032 0.424
IpST 24.85 0.767 0.861 27.99 0.870 0.920 32.50 0.949 0.966
akiyo WTSNN 30.55 0.938 0.906 34.00 0.969 0.958 38.23 0.987 0.991
144 < 176 x 100 F-TNN 30.44 0.920 0.814 33.60 0.879 0.903 37.23 0.983 0.955
TNN-3DTV  24.24 0.764 0.831 26.10 0.829 0.884 29.05 0.902 0.937
aTNNst-p 32.98 0.958 0.911 37.17 0.984 0.965 41.70 0.993 0.995
aTNNst-W 33.28 0.963 0.929 37.29 0.983 0.966 42.09 0.993 0.995
HaLRTC 7.16 0.009 0.454 7.39 0.013 0.425 7.90 0.019 0.389
IpST 22.79 0.657 0.787 27.57 0.791 0.866 31.74 0.891 0.928
suzie WTSNN 27.37 0.792 0.859 29.61 0.848 0.900 32.45 0.904 0.938
144 < 176 x 100 F-TNN 26.26 0.748 0.519 28.56 0.818 0.639 31.37 0.887 0.770
TNN-3DTV  26.68 0.779 0.848 28.76 0.834 0.886 31.40 0.892 0.926
aTNNst-p 29.49 0.835 0.898 31.95 0.882 0.928 34.30 0.921 0.952
aTNNst-W 29.52 0.805 0.882 31.90 0.879 0.924 34.23 0.913 0.950
HaLRTC 4.84 0.007 0.390 5.07 0.013 0.394 5.58 0.024 0.402
IpST 5.18 0.019 0.430 25.56 0.852 0.882 30.48 0.936 0.945
hall WTSNN 27.37 0.792 0.859 31.97 0.956 0.967 34.99 0.973 0.979
144 x 176 x 100 F-TNN 29.68 0.931 0.823 32.63 0.959 0.884 35.42 0.975 0.925
TNN-3DTV  21.39 0.687 0.760 22.81 0.767 0.816 25.58 0.867 0.890
aTNNst-p 30.98 0.942 0.891 34.12 0.965 0.970 37.11 0.978 0.983
aTNNst-W 30.73 0.942 0.861 34.10 0.962 0.976 37.10 0.976 0.982
HaLRTC 7.63 0.032 0.405 7.87 0.049 0.481 8.38 0.087 0.577
IpST 17.00 0.314 0.658 19.63 0.543 0.763 23.25 0.774 0.868
seafish WTSNN 22.57 0.772 0.866 26.11 0.888 0.929 29.69 0.944 0.961
185 x 290 x 30 F-TNN 22.03 0.748 0.772 25.69 0.849 0.881 29.27 0.915 0.936
TNN-3DTV  18.17 0.373 0.610 19.41 0.507 0.702 21.51 0.686 0.814
aTNNst-p 24.77 0.861 0.870 27.84 0.924 0.949 31.71 0.963 0.973
aTNNst-W 23.18 0.806 0.818 27.51 0.918 0.947 31.34 0.960 0.971

MRI recovery

Finally, we apply the proposed approaches on MRI image recovery, whose size is 181 x 217 x
181. Numerical results of different approaches for recovering the MRI image with 5%, 10%
and 20% sampling ratios are shown in Table 3, which shows that the proposed approaches
all have obvious numerical advantages. From Figure 8, in which three different slices are
shown, and the observed image, the recovery images by different approaches and the clean
image are shown from left to right, respectively, it can be clearly observed that no matter
which slice is taken, the proposed approaches retain more abundant structure and texture
information visually than the compared approaches.

http://trace.eas.asu.edu/yuv/.
http://brainweb.bic.mni.mcgill.ca/brainweb/selection_normal html.
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Figure 7: The recovery results of three selected videos ‘akiyo’ (first two rows), ‘suize’ (mid
two rows), and ‘hall’ (last two rows) by all approaches. From left to right: Corrupted video
frames, HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV, aTNNst-p, aTNNst-W, and Clear
video frames, respectively.

- —
-

Figure 8: Visualizations of recovery results of MRI data with 10% observed informa-
tion. From left to right: Corrupted data, HaLRTC, IpST, WTSNN, F-TNN, TNN-3DTV,
aTNNst-p, aTNNst-W, and Clean data, respectively.

Table 3: Numerical results for MRI data recovery.
sr = 0.05 sr = 0.10 sr = 0.20

Data Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM_ FSIM
HaLRTC 1540 0.241  0.608 19.03 0390  0.699 2430  0.653 0.826
IpST 2047 0462 0.729 92516 0.711  0.824 32.05  0.921  0.931
MRI WTSNN 25.60 0714  0.827 2002 0.835  0.887 3346  0.931  0.941
181 x 217 x 181 F-TNN 2332 0664  0.434 26.56  0.793  0.550 3073 0.901  0.650
TNN-3DTV 2436 0.676 0.794 26.60  0.783  0.845 3017 0.893  0.908
aTNNst-p  20.04  0.827 0.879 33.07  0.916 0.929 36.80  0.960 0.961

aTNNst-W 30.44 0.846 0.892 33.58 0915 0.930 37.18 0.957  0.960
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Conclusion

In this paper, we considered the tensor completion problem. By exploiting the multi-
dimensional low-rankness of the involved tensors, we proposed two T-product based op-
timization models, which can capture the hidden structure information in the considered
tensors. Due to the coupled property of these models, we proposed two easily imple-
mentable alternating updating algorithms, whose subproblems could be solved efficiently
or have closed-form solutions. To illustrate the effectiveness of two proposed approaches,
we applied them to color images, MSI data, videos, and MRI data recovery. A series of nu-
merical results demonstrated that our approaches effectively exploit the correlations along
all modes, while preserving the intrinsic structure of the underlying tensor. Since our ap-
proaches have to deal with some permuted tensors and the embedded matrix SVD procedure,
our algorithms require more SVDs so that our methods often require more computing time
than these algorithms compared in our experiments. Therefore, how to design faster and
more effective approaches will be our future concerns.
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