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Abstract: Recently, many algorithms are presented for solving the multi-linear systems, and most of
them focus on the case when the coefficient tensor is an M-tensor. In this paper, we propose successive
over-relaxation (SOR) iterative methods to solve the multi-linear systems when the coefficient tensor is an
L-tensor. We present four iterative tensors with two new preconditioners. The corresponding comparison
theorems for spectral radius of iterative tensors are given. Numerical experiments are tested to show the
efficiency of the proposed SOR methods.

Key words: multi-linear systems, tensor splitting, SOR method, preconditioned method, tensor splitting
algorithms

Mathematics Subject Classification: 15448, 15A69, 65F10, 65H10

Introduction

Consider the following multi-liner systems:
Ax™! = b, (1.1)

where A = (a4,iy..4,,) 18 an m-th order n-dimensional tensor, b, x are vectors in R”, and
the n dimensional vector Ax™~! is defined as [24]:

n

(Ax™); = Z Qiig..ipy Tig - - Liyy L =1,2,...,m, (1.2)

12,00 im =1

where z; denotes the i-th component of x.

The multi-liner systems (1.1) appear in many practical fields including data mining and
numerical partial differential equations [1, 5, 10, 11, 12, 15, 16, 18, 26, 27]. There have
been many theoretical analysis and algorithms for solving the systems (1.1). Most of the
existing methods for solving (1.1) focus on the case when A is an M-tensor. Ding, Wei [10]
extended the classical iterative methods and the Newton method for solving system of linear
equations to solve the systems (1.1) with 4 being a strong M-tensor. Han [13] proposed a
homotopy method for finding the unique positive solution of (1.1) with a strong M-tensor
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and a positive right side vector b. Liu, Li and Vong [20] proposed some tensor splitting
algorithms for solving (1.1) with strong M-tensors. He, Ling, Qi and Zhou [14] proposed
a Newton-type method to solve (1.1) with M-tensors. Li, Xie and Xu [16] extended the
classic splitting methods for solving the system of linear equations to solve symmetric tensor
equations. Liu, Li and Vong [21] proposed a preconditioned SOR method for solving (1.1)
with M-tensors. There are also some preconditioned tensor splitting iterative methods for
solving (1.1) with M-tensors, see [4, 6, 30].

A matrix is called an L-matrix if it has positive diagonal entries and non-positive off-
diagonal elements. L-matrices are also an important class of matrices and have been well
studied for solving linear equations [8, 19, 28]. In this paper, we will deal with the systems
(1.1) with A being an L-tensor. A tensor A is called an L-tensor if it has positive diagonal
entries and non-positive off-diagonal elements, which is a natural extension of the L-matrix.
We can see that it is very easy to verify a tensor is an L-tensor or not, and also it is
easy to see that an L-tensor is not necessary an M-tensor. In this paper, we propose new
preconditioned SOR methods to solve the systems (1.1) with A being an L-tensor. In the
whole paper, it is assumed that

A=T-L-F, (1.3)

where Z is the unit tensor, £ = LZ(that is the product of a matrix and a tensor, which is
defined in (2.1)), and —L is the strictly lower triangular part of the majorization matrix of
A. The majorization matrix of A, denoted by M (A), is a n x n matrix with the entries

M(A)i; = aj..5,1,5=1,...,n.
The iterative tensor of the classical SOR method is represented by
Tw) = —wl) (1 —w)I +wF), (1.4)

where w is a real parameter with w # 0. The spectral radius of the iterative tensor is
conclusive for the convergence and stability of the method, and the smaller it is, the faster
the method converges when the spectral radius is smaller than 1. The effective method to
decrease the spectral radius is to precondition the multi-liner systems (1.1), namely,

PAx™"! = Pb,

where P is a nonsingular matrix and is called a preconditioner for solving the multi-liner

systems (1.1). In this paper, we give two new preconditioners: P = I + S and P = I + S
with

0 00 ... 0
—(ag1.1+72) 0 0 0
G — —(az1.i+v) 0 0 0 , (1.5)
—(@p1.1+vwm) 0 0 ... 0O
0 ... 00 —(@1n...n +01)
0O ... 00 —(a2n..n + 02)
|- o ; , (1.6)
0 0 0 _(a(nfl)n.“n + 6n—1)

0O ... 00 0
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where v2,73, ..., v, and 61,09, ...,d,_1 are real parameters. The preconditioners have been
applied in [8] for solving linear equations. We consider the two preconditioned multi-liner
systems as follows:

Ax™ ' =b where A=PA and b= Pb;
Ax™ 1 =b where A=PA and b= Pb.

We propose four iterative tensors based on the preconditioned equations. The corresponding
comparison theorems for the spectral radius of the proposed iterative tensors are shown when
A is an irreducible L-tensor.

The rest of this paper is organized as follows. In Sect.2, we introduce some related
definitions and lemmas. Also, we discuss the relations between M-tensors and irreducible
L-tensors. In Sect.3, four iterative tensors are presented with the two new precondtioners,
and the corresponding theoretical analysis is given. In Sect.4, numerical examples are given
to show the efficiency of the proposed SOR methods. The final section is the concluding
remark.

Preliminaries

In this section, we introduce some definitions, lemmas, and some related properties which
will be used in the sequel.

Let (n) = {1,...,n} for a positive integer n. A tensor A consists of nq X --- X ny,
elements in the complex number field C:

A= (ail,,,im),ail, S C,ij S (nj>,j =1,...,m.

o lm

We sometimes denote a;,4,. i, aS i, Where o =ia...%,. When m = 2, Ais an ny X ng
matrix. If ny = --- =n,, = n, A is called an m-th order n-dimensional tensor. We denote
all m-th order tensors consisting of ny X -+ X n,, entries by C™*"*"m and the set of all
m-th order n-dimensional tensors by CI™"]. Similarly, the above notions can be used to the
real number field R. Let Z = (8;,..4,,) € C[™™ be a unit tensor with its entries given by

1, 1= =1ip,

Let 0,0 and O denote a zero vector, a zero matrix and a zero tensor, respectively. Let A
and B be two tensors (vectors or matrices) with the same size, the order A > B(> B) means
that each element of A is no less than (larger than) corresponding one of B.

Definition 2.1 ([2]). Let A € C™>m2XX"2 gpnd B € C™2* " *™+1 be two tensors of order
m(> 2) and k(> 1), respectively. The product AB is the tensor of order (m —1)(k—1) +1
with entries:

no m
(»AB)jag...am = Z (ajj2~-jm H quzoéi)a
J2veemrim=1 i=2
where j € (n1), ag, ..., 0, € (N3) X -+ X (Ngy1)-

In this paper, we will use one special case of the above definition: If A € R[?"] (ie., Ais
an n-dimensional square matrix) and B € RF") then the tensor C = AB € RI¥" is defined
by

n
Cig..ix = E @y Djnin. ik » (2.1)

Jj2=1
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where 7,19, ...,1x € (n).
Definition 2.2 ([23]). Let A = (a4,..;,,) € RI™". Then the majorization matrix M (A) of
A is the n X n matrix with the entries

M(A)ij = aij..5,1,] € (n).

Definition 2.3 ([25]). Let A = (a;,..;,,) € R and R;(A) = (Tiin. i )iy, i, € RIm—1.n]
with 74, 4, = @iiy..i,, . Then A is called row-subtensor diagonal, or Simply row diagonal,
if all its row-subtensors Ry (A),..., R,(A) are diagonal tensors, namely, if a;;,. ,; can take
nonzero value only when i = -+ = i,,.

Lemma 2.4 ([25]). Let A € RI™". Then A is row diagonal if and only if A= M(A)T.

Now, we give some properties about the majorization matrix of the product of a matrix
and a tensor.

Lemma 2.5. Let C = AB € RF™ with A € R and B € R¥™ | then we have M(C) =
AM (B), that is, M(AB) = AM(B).

Proof. By the definition of the product in (2.1), we have
n
Cji...i = Z @jj,bjyi.. i
jo=1
that is, M(C) = M(AB) = AM(B). O

Lemma 2.6. Let A € R and B is a row diagonal tensor in R¥7" then C = AB
AM(B)T.

Proof. By Lemma 2.5, we have M (C) = AM(B). Next, we only need show C is row diagonal,
that is, ¢ii,. s, = 0 when ia, ..., 4., are not all equal. In fact, as B is row diagonal, b;;, ;=
0 when g, ...,4,, are not all equal, then cj;,.. s, = Z?Fl @jjobjnis..i, = 0. O

Next, we give some definitions of structured tensors.

Definition 2.7 ([9, 29]). Let A € RI™™. A tensor A is called a Z-tensor if its off-diagonal
entries are non-positive. A tensor A is called an M-tensor if there exist a nonnegative tensor
B and a positive real number s > p(B) such that

A=sT -8B,
where p(B) is the spectral radius of tensor B, that is
p(B) = max{|\| : A is an eigenvalue of 5}.
If s > p(B), A is called a strong or nonsingular M-tensor.

Definition 2.8 ([7]). Let A € RI™" We say that A is an L-tensor if it is a Z-tensor with
positive diagonal entries.

Definition 2.9 ([17]). An A € RI™"] is called reducible if there exists a nonempty proper
index subset I C (n) such that

Qi iy = O,Vil S H7v7;2, A 7im ¢ I.

If A is not reducible, we call A is irreducible.
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Remark 2.10. In this paper, we will solve the systems (1.1) with A being an irreducible
L-tensor. As most of the algorithms proposed in the references for solving (1.1) focus on A
being an M-tensor, an interesting question is what are the relations between the irreducible
L-tensors and M-tensors. Now we discuss this problem in the following examples. The two
examples show that an irreducible L-tensor may not be a strong M-tensor, and a strong
M-tensor may not be an irreducible £-tensor.

Example 2.11 ([20]). Let A = (a4,4,:,) € R be defined as follows:
ain = 2,a121 = —3,a112 = =3, 0122 = —1,

ag11 = —1,a221 = —3,a212 = —3,a222 = 2.

It is obvious that A is an irreducible £-tensor.
For arbitrary t > 0, let s =2 + ¢, then A = sZ — B and B = (b;,4,:,) is given by

bi11 = t,b121 = 3,b112 = 3,b122 = 1,

ba11 = 1,ba21 = 3,b212 = 3, b222 =1,

Notice that p(B) = 7+t > s = 2+ ¢. Therefore A is an irreducible £-tensor and not a
strong M-tensor.

Example 2.12. It can be easily verified that the unit tensor Z is a strong M-tensor.
Obviously, 7 is an L-tensor, however it is reducible, which means that Z is not an irreducible
L-tensor.

Remark 2.13. It is known that for any positive vector b, i.e. b > 0, the systems (1.1)
have a unique positive solution when A is a strong M-tensor [10]. However, we do not know
much about the properties of the solution for the systems (1.1) with .4 being an L-tensor.
Now we survey the solution of (1.1) when A is the tensor in Example 2.11 with different
b = (b1,b2)T in three cases. We rewrite (1.1) as

(2.2)

29:% — 6120 — gc% = by,
—x% — 6x129 + 25(5% = bs.

(i) b= (0,0)T. In this case, the systems (2.2) have a unique solution x = (0,0)7.

(ii) b > 0 and b # 0. In this case, the systems (2.2) have two solutions, and for every
solution, the components have different signs. Specifically, when b; > by > 0, the
solutions are

T T
./ 32b1—38bs+3VA 3202 —38b1 +3VA . 3201 —38bs+3VA [ 32b:—38b14+3VA
210 ) 210 ) 210 ) 210 )

where
38 32 1 2
A= (= — =by)? +140(= “by)? > 0.
(3b1 362) + 0(3b1+362) >0

And when 0 < by < bs, the solutions can be similarly given.
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(iii) b < 0 and b # 0. In this case, the systems (2.2) have two solutions, and for every
solution, the components have the same signs. Specifically, when 0 > b; > by, the
solutions are

T T
32b; —38ba+3VA 3202 —38b1 +3VA . . /32b1—38ba+3VA  /32by—38b14+3VA
210 ) 210 ) 210 ) 210 )

where 28 - ) 5
A= (=by — =by)? +140(= Zby)? .
(3b1 3b2) + 0(3b1+3b2) >0

And when b; < by < 0, the solutions can be similarly given.

Consequently, the systems (2.2) have a unique positive solution for every b < 0.

We also need the following definitions and lemmas which will be used in the sequel.

Definition 2.14 ([2]). Let A € CI™nl B e CF7l. If AB = Z, then A is called an order m
left inverse of B, and B is called an order k right inverse of A.

Definition 2.15 ([22]). Let A € R™"l. If M (A) is a nonsingular matrix and A = M (A)Z,
we call M(A)~! the order 2 left-inverse of A.

Definition 2.16 ([22]). Let A € R™". If A has an order k left(right) inverse, A is called
a left(right)-invertible or left(right)-nonsingular tensor, where k > 2.

Definition 2.17 ([20]). Let A, &, F € RI™". Then A = £ — F is called a splitting of A if
£ is a left-invertible tensor. The splitting is called:

(1) regular if M ()~ > O and F > O;

(2) convergent if p(M(E)~1F) < 1;

(3) weak regular if M(£)~* > O and M(E)~1F > O.

By Theorem 1.3 and Theorem 1.4 in [3], we have the following Lemma 2.18.

Lemma 2.18. Let A = (a;,..;, ) € RI™" be an irreducible nonnegative tensor. Then p(A)
is an eigenvalue of A with a positive eigenvector x € R™.

Lemma 2.19 ([3]). Let A = (a4,..;,) € RI™" be an irreducible nonnegative tensor. If
(A x) and (u,y) € Ry x (RM\0) satisfy Ax™ ' = M1 and Ay™= > py!™ Y (or,
respectively, Ay™ ' < puy!™ 1), then X = p(A) and u < X\ (or, respectively, X\ < p).

SOR Method

The tensor splitting with two preconditioners

In the subsection, we give four iterative tensors for SOR methods with two preconditioners,
and then prove the iterative tensors are nonnegative and irreducible under the conditions
that A is an irreducible £-tensor and some other assumptions are defined on A.

Two iteration tensors associated with P. As S, which is defined in (1.5), is a strictly
lower triangular matrix and £ = LZ in (1.3) is a row diagonal tensor with L = M (L) being
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a strictly lower triangular matrix, we know that S£ = SLZ = O by Lemma 2.6. Thus,
A = PA=I+S)(Z-L-F)

= I-L—-F+SI-SL-SF

= I-L—-F+ST-SF

= (I+D1)—(L-ST+L)—(F+F)

_ D-L-T
where D = I+§1,Z = £7§I+Zl,f = .F+?1,51 = 512,21 = fll,?l = 3‘7:4*51 *Zl,
and —Dj, L; are the diagonal, strictly lower triangular parts of M (SF). It is easy to see that
D and L are row diagonal tensors. Denote D = M (D) and L = M(L). Then D = I + D;
and L=L—-S+L;. Fr0<w<1,

wA=w(D - L~ F)
=D —-wl —[(1-w)D +wF]
= (Z—-wl) —[(1—w)T +w(F-Dy)).
Denote & =D —wL, Fi = (1 —w)D+wF and & =T — wLl, Fo = (1 — w)T + w(F — D).

‘We have
WA=E —F1 =& — Fo,

and M(&) = D —wL, M(&) = I —wL. Two different forms of SOR iteration tensor
associated with A4 can be represented by

Ti(w)=M(E)'Fi = (D —-wh) ™1 —w)D + wF], (3.1)
To(w) = M(&) ' Fo = (I —wL)'[(1 = w)T + w(F — D). (3.2)

Two iteration tensors associated with P. For a similar discussion with the precon-
ditioner P = I + S, we have

A = PA=(I+5A=A+5A
IT-L—-F+(D—L,—F)
I+251—(£+El)—(f+f1)
D—L—F,

WhereD I—‘rDhﬁ E—I—,Cl,]: .7:+f1,D1 D\I,L, = 1I Fi1 = —SA+D1—£1, and
—D1, L, are the diagonal, strlctly lower trlangular parts of M (SA) Also D and £ are row
diagonal tensors. Denote D = M (D) and L = M(L). Then D = I+D; and L = L—S+L;.
For 0 < w < 1,

wﬂ:w(ﬁ—ﬁ—f)
=D —wl—[(1-w)D+wF]
= (Z-wl) = [ —w)T+w(F —Dy)].
Denote &3 =D — wL, Fs = (1 —w)D +wF and & =T — wl, Fy =T — wD + wF. Then
WA =E — Fy3 =& — Fu,

and M (&) = D — wL, M(&) = I —wL. Two different forms of SOR iteration tensor
associated with A can be represented by

Ta(w) = M(E3) "' Fs = (D = wL)7'[(1 - w)D + wF], (3.3)
Ta(w) = M(E) ™' Fa = (I —wL) 7' [(1 = W) +w(F — Dy)]. (3.4)
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Theorem 3.1. Let T (w), Ti(w), T2(w), T3(w) and Ti(w) be defined by (1.4), (3.1)-(3.4), re-
spectively. If A is an irreducible L-tensor, then for 0 < w < 1,

(i) T(w) is a nonnegative and irreducible tensor;

(ii) if a1q...qaq1..1 > 0 and v4 € (1 = G1q...90q1...1)/C1q...q» —Cq1..1) N (0, —ag1...1) for q =
2,3,...n, Ti(w) and T3(w) are nonnegative and irreducible tensors;

(111) Zf Anps...sAsn...n > 0 and 68 S ((1 - ans...sasn...n>/ans...sa _asn...n) N (Oa _asn..‘n) fOT
s=1,2,...,n—1, T3(w) and T4(w) are nonnegative and irreducible tensors.

Proof. (i) Since A is an L-tensor, by the splitting of A in (1.3), we know that £ > O and
F > O. Then
T(w) = —wL) (1 —-wZI+wF]
=(I4+wL+ WL+, 0" 'L H[(1 - w)T +wF]
=[(1 - w)Z +w(l —w)L + wF] + nonnegative terms.
Consequently, T'(w) is nonnegative, and if A is irreducible, (1 — w)Z + w(l — w)L + wF is

irreducible. Therefore 7 (w) is a nonnegative and irreducible tensor.
(ii) As D = I + Dy, it is easy to get

D =diag(1,1 — a2 2(a21..1 +72), 1 — a1z 3(as1..1+73), -, 1 — a1n._n(ani..1 +vm)),(3.5)

where
l—aiq...q0q1...1\ __ l1—aiq...q0q1...1
1—a (a +794) > L alq"'q(aql'“l * 01q...q ) =0, if a1q...q >0,
— Ulq...q\Uql...1 q l1—aiq...q0q1...1
1 - alq'“qaql‘ul > O, ZfT < 0

for Yq € ((1 — alq,,,qaql,,,l)/alq,,,q,—aqlml) N (0, —aqlml), q=2,3,...,n. That is, Dis a

. . . e . - . . . ——1
diagonal matrix with positive diagonal elements. So D is invertible and D = > O.
Since L is a strictly lower triangular matrix, i.e.,

f:
0 0 0 0

V2 0
Y3  —as2..2 + a12..2(as1..1 +73)

- O O
o O

Tn —Qn2.2 t+ a12...2(an1.4.1 + rYn) cee —An(n—1)...(n—1) + al(n—l)m(n—l)(anl...l + ’Yn) 0
The element —a;;.. ; + alj glasi 1 +v) > —aij. 5 +aij. J(azl,..l —ai1.1) = —aij.; > 0,
1=3,...,n,7 =2,. — 1, together with v, > 0, ¢ =2,3,...,n, implies that L > O. By

S>Oand.7:>(’) then Sf>(’) F1 > O, furthermore, F = .7:+.7:1 > 0.
Ti(w) = M)A
=(D —wL) A - w)D + wF]
= —-wD ) N1l —w)Z+wD f]
=[[+wD T+w*(D I’ +--~+w”-1<ﬁ‘lf>"-1n< ~w)I+wD 7|

(1-w)I+wD "F+ (1 —w)wD T+ nonnegative terms.
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From the above results, we easily know that 77 (w) is a nonnegative tensor for any 0 < w < 1.
Also as D is a diagonal matrix with positive diagonal elements, (1 — w)Z + wD 'F +(1-

— 11—
w)wD "L is irreducible when A is irreducible. So 7;(w) is a nonnegative and irreducible
tensor. Similarly, we can prove that 73(w) is a nonnegative and irreducible tensor.

(iii) By a similar computation, we have

-5 = dlag(l - anl...l(aln...n + 51)a 1- an2...2(a2n...n + 52), ey
1- an(n—l)...(n—l)(a(n—l)n“.n + 5n—1)v 1)7

L=
0 0 0 0 0
—az1..1 + an1..1(a2n..n + 02) 0 0 0 0
—azi..1+ an1..1(a3n..n +03) —ase.2+ an2.2(azn.n+03) 0 0 0
0 0
—0nl...1 —0an2...2 s _an(n—l)...(n—l) 0

Similarly, it can be proved that 73(w) and 74(w) are nonnegative and irreducible tensors. [

The comparison theorem

In this section, we will discuss the properties for the spectral radius of the four iterative
tensors.

Theorem 3.2. Let T(w) and T1(w) be defined by (1.4) and (3.1), respectively. If A is an
irreducible L-tensor with aiq. q0q1..1 > 0, and v, € (1 — a14...40q1..1)/01q...qs —Gq1..1) N
(0,—ag1..1), ¢ =2,3,...n, then for 0 <w < 1, one of the following statements holds:

(1) p(Ti(w)) < p(T(w)) <1;
2) p(Ti(w)) = p(T(w)) = 1;
(3) p(Ti(w)) = p(T(w)) > 1.

Proof. From Theorem 3.1 (i), we know that 7 (w) is an irreducible and nonnegative tensor.
Thus, by Lemma 2.18, there is a positive vector z € R™, such that

T(w)z™ ' = xalm 1,
where x = p(7 (w)). By the definition of T (w), we get

(1 =T +wF)z™ ' =x(T —wLl)z™ . (3.6)
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Then

[m—1]

=
£
N

;

— yz
A - w)D + wF)z™ ! — xZz™ !
(1—w)D +wF — x(D —wL)]z™*
(1 =w)(Z+D1)+w(F+F1)=x(Z+D1)+xw(l —ST+L)z""?
(1—w—x)D1 + xw(Ly — ST) + wF;]z™ !

(1 —x)D1 + xw(Ly — ST) —wLly + wSF|z" !
(1 =)Dy + (x — DwLly — xwST + (x +w — 1)ST]z™*

S 1)(Dy +wE) + (x — 1)(1 - w)5T]z" !

“H-D;y +wly + (1 —w)ST]z™ 1,

\
€

|
€

|
€

\
€

|
€

oIV Iiv/e]
|
£

S S S S B S B S H

|
€

o~ o~ o~ o~ o~ o~ o~ o~

=
é
G\
8

where the third equation is because D = Z + Dy,L = L — ST + L1,F = F + F1; the
fourth equation is by the equation (3.6); the fifth equation is by F1=8SF+ D1 El, the
sixth equation is by (3.6) and SL = O, that is, wSFz™ ' = (xST — xwSL)z™ ' — (1 —

w)SZzm 1 = (X 4+ w - 1)SIzm 1 and the other equations are by simple computations.
Sincez >0, —D; >0, L1 > O and S > O, [ D1+w£1+(17w)SI] m= 1>0 AsD >0
and is invertible, (D —wL)™! = (I —wD L) 1D = [I+wD 'T+w? (D L) cee
wn ! (ﬁflf)"j]ﬁil > 0. Together with the above two results, we have (D—wL)™![-D; +
wly + (1 —w)SZ)]z™~! > 0. Thus,

(1) If x < 1, then T3 (w)z™ ! — xz™~1 <0, ie., T1(w)z™ ! < xz™~1. By Lemma 2.19,
we have p(Ti (w)) < x = p(T(W)),

(2) If x =1, then T;(w ) —xzm 1 =0, ie., T(w)z™ ! = xz™ 1. By Lemma 2.19,
we have p(7i (w)) = (T(w)),

(3) If x > 1, then 77 (w ) —xz™ >0, ie, Ti(w)z™ ! > xz™ . By Lemma 2.19,

we have p(T1(w)) > x = p(T(w))
The proof is finished. O
Theorem 3.3. Let T (w) and Tz(w) be defined by (1.4) and (3.2), respectively. If A is an

irreducible L-tensor with aiq..q0q1..1 > 0, and v € ((1 — @1q..q8q1..1)/C1q...q) —Gq1..1) N
(0,—ag1..1), ¢ =2,3,...n, then for 0 <w < 1, one of the following statements holds:

Proof. By a similar discussion as the proof of Theorem 3.2, we can get
Ta(w)z™ ' — xzlm U = (y = 1)(I — WD) Hwly 4+ (1 — w)SZ)z" !,

and it also can be shown that (I —wL) '[wL; + (1 — w)SZ]z™~! > 0. Therefore,
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(1) If x < 1, then To(w)z™ ! —xzl™~1 <0, ie., Ta(w)z™ ' < xz[™ 1. By Lemma 2.19,
we have p(Ta(w)) < x = p(T(w));

(2) If x = 1, then To(w)z™ ! — xz[™~1 =0, ie., To(w)z™ ' = xz[™. By Lemma 2.19,
we have p(Tz2(w)) = x = p(T (w));

(3) If x > 1, then To(w)z™ ! —xz[™~1 >0, ie., To(w)z™ ' > xz[™. By Lemma 2.19,
we have p(To(w)) > x = p(T ().

O

Theorem 3.4. Let T (w) and T3(w) be defined by (1.4) and (3.3), respectively. If A is an
irreducible L-tensor with ans. sasn.n > 0, and §s € (1 — ans.. sAsn..n)/Cns...s» —Qsn..n) N
(0,—asn.n), s = 1,2,....,n— 1, then for 0 < w < 1, one of the following statements
holds:

(1) p(T3(w)) < p(T(w)) <1;
2) p(T3(w)) = p(T (W) = 1;
3) p(Ts(w)) = p(T(w)) > 1

Proof. By the definition of T3(w), we can write
75( ) m—1 z[mfl]

1

=(D —wL) Y[(1 —w)D + wFlz™ ' — xzl™ 1

=(D —wL)'[(1 = w)D + wF — x(D — wL)]z™*

=(D —wL) (1 = w)(Z +Dy) + w(F + F1) = X(T+Dy) + xw(L + L1)]z™
=D -wL) (1 —w)T+wF+(1—w—-x)Dy +wF — X(T — wL) + xwli]z™ "
=D —wLl) (1 —w — X)D1 + wF; + xwly]z™ "

=(D —wL)~ 1[w( 171 + L+ F) = (x = 1)Dy +w(x — 1)Ly)z™

=(D —wL) ' [~wSA — (x = )D1 + w(x — 1)L1]z"

:X?l(ﬁ —wL)7Y(1 — w)ST 4+ wSF — XDy + wxLy|z™ L,

where the second equation is because D= DI L= LI the third equation is by D=7T+ Dh
L= £+£1 and F = ]-'—i—]-'l, the fifth equation is by the equation (3 6); the seventh equation
is by SA= Dl El fl, and the eighth equation is because —wS Az = §(wI —wl —
wF)z"m 1t = —S[(T—wl)z™ ! — (1 —w)I +wF)z™ ] = —(; DS[(1-w)ZT+wFlzm ! =
11— w)ST + wg]:}zm’l

By a similar proof as Theorem 3.2, we can prove that (D —wL)™![(1 — w)ST + wSF —
YD1 + wle]zm_l > 0. Hence

(1) If x < 1, then T3(w)z™ ! — xzl™ 1 <0, ie., T3(w)z™ ! < xz™ 1. By Lemma 2.19,
we have p(Ta(w)) < x = p(T(w));

x = 1, then 73(w)z™™ " — xz!"~ " =0, 1.e., T3(w)z™* = xz!""" . By Lemma 2.19,

2) If x =1, then T3(w)z™ ' — xzm =1 =0, ie., T3(w)z™? (m=1] By L 2.19
we have p(Ts(w)) = x = p(T(w));
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(3) If x > 1, then T3(w)z™ ! — xzl™~1 >0, ie., T3(w)z™ ' > xz[™1. By Lemma 2.19,
we have p(T3(w)) 2 x = p(T (w)).

O

Theorem 3.5. Let T (w) and Ta(w) be defined by (1.4) and (3.4), respectively. If A is an
irreducible L-tensor with ans.. ssn..n > 0, and &5 € (1 — ans.. sAsn..n)/Cns...s, —Asn..n) N
(0, —asn..n), s = 1,2,...,n — 1, then for 0 < w < 1, one of the following statements
holds:

Proof. By a similar proof as Theorem 3.4, we can get

Ta(w)z™ ™t — yzlm=U = (X; D (D —wL) (1 — w)ST + wSF + wxLy]z™*,

and (D —wL) (1 — w)ST 4+ wSF — xDy + wyxLy)z™* > 0. Thus,

(1) If x < 1, then Ty(w)z™ ! — xz["~1 <0, ie., Ta(w)z™ ' < xz™ U. By Lemma 2.19,
we have p(Ti(w)) < x = p(T(W)),

(2) If x =1, then Ty(w ) —xzlm U =0, ie., Ta(w)z™ ! = xzl™ . By Lemma 2.19,
we have p(Ta(w)) = (T(w)%

(3) If x > 1, then T3(w ) —xz" 1 >0, ie, Ty(w)z™ ™ > xzl™ 7. By Lemma 2.19,

we have ,0(71( ) > x= P(T(W))

The comparison of the convergence rate of the SOR methods

In this section, we mainly discuss the comparison of the convergence rate of the SOR iterative
methods, specifically, the comparison of the spectral radius of 77 (w) and T2(w), T3(w) and
Ta(w).

Lemma 3.6 ([17]). Let A € R™™ and A = & — Fy = & — Fs be a regular splitting and
a weak reqular splitting respectively, and F1 < Fa, }'2 7£ O. One of the following statements
holds:

(1) p(M(E)~ 1 F) < p(M (&)1 F) < 1.

(2) p(M(gg)ilfQ) > p(M(gl)ilfl) > 1. If Fi1 < Fo, Fy # O and p(M(gl)ilfl) > 1
the first inequality is strict.

Theorem 3.7. Let T1(w) and T2(w) be defined by (3.1) and (3.2), respectively. If A is
an irreducible L-tensor with a1q.. qaq1..1 > 0, and v4 € ((1 — a14...40¢1...1)/014...q» —Qq1...1) N
(0, —ag1..1) forq=2,3,...n, then for 0 < w < 1, one of the following statements holds:
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p(T2(w)) < 1;
p(T2(w)) > 1.

Proof. By the proof of Theorem 3.1, we know that the two splittings wA = & —F; = Ea—Fo
are both weak regular splittings. Next, we need show that /1 < F», and F» # O. We see
that Fo — F; = —D; = —D1Z, where D; = D — I. By (3.5), we have

D, = diag(0, —ai2..2(a21..1 + 72), —a1s..3(as1.1+73)s - - -, —@1n..n(@ni..1 + Yn))-

Under the conditions ai4..4aq1..1 > 0,74 € (0, —aq1...1), we get —a1q.. q(aq1..1 +y4) > 0 for
q=2,3,...n, that is, D; < O and D; # O. Therefore F; < F3, together with F; > O,
then Fy # O. The proof is completed. O

By a similar analysis, we can get the following theorem.

Theorem 3.8. Let T3(w), Ta(w) be defined by (3.3) and (3.4). If A is an irreducible L-
tensor ’U)Zth Ans...sAsn...n > 0; and 65 S ((1 - ans...sasn...n)/ans...37 _asn...n> N (O> _asn...n>7
fors=1,2,...,n—1, then for 0 <w < 1, one of the following statements holds:

p(Ta(w)) <1;
p(Ta(w)) = 1.
4| Numerical Examples

In this section, we do some numerical experiments to illustrate the theory results. By the
iteration tensors 7;(w) and T2(w), which are defined by (3.1) and (3.2), respectively, solving
the systems (1.1) is equivalent to solving

X = [ﬁ(w)xm_l + wM(gi)—lg][ﬁ]’i =1,2.

In this section, we use the following iterative method for solving (1.1): for a given initial
vector xg,

Xk = [Ti(w)xP ) +wM (&) bl k=1,2,...,i=1,2.

For the iteration tensors 73(w) and 74(w), which are defined by (3.3) and (3.4), respectively,
the iterative method for solving (1.1) is: for a given initial vector xq,

xp, = [Ti(w)xp o +wM(E)7B)lmTl k=12, i =34

In the section, all tests of the examples were done in Matlab R2014b and Tensor Toolbox
2.6. The codes were done on a DELL desktop with Inter(R) Core(TM) i5-5200U CPU 2.20
GHz and 4GB RAM running on Windows 7.

Example 4.1 ([4]). Let A € RB3 be as follows,

1 -0.12 -0.13 | -0.04 -0.02 —-0.03 | —-0.03 —-0.02 —-0.04
A= -0.12 -0.03 -0.06 | —0.01 1 —-0.02 | —-0.02 —-0.06 —0.03
-0.13 -0.02 -0.10 | —=0.03 —-0.04 —-0.02 | —0.02 —-0.10 1
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It is obvious that A in Example 4.1 is an irreducible L-tensor with ajosasi; > 0,
aizsaszir > 0, aziiaiss > 0 and agsoasszs > 0. For this example, we choose v; = 0.005,
v; = 0.0005, §; = 0.005 and ¢; = 0.0005 (¢ = 2,3 and j = 1,2). It is easy to see that
parameters <y;, 0; satisfy the initial conditions in Theorems 3.2-3.5, respectively. We set the
parameter w = 0.2, 0.4, 0.6, 0.8, 1.0. The numerical results are shown in the Tab.1. The
results show that

(i) when p(T(w)) < 1, p(Ti(w)) < p(T (w)),i = 1,2,3,4, which certify the result in case
(1) of Theorems 3.2-3.5.

(i) when p(Ts(@)) < 1, p(Ti(w))
Theorem 3.7; when p(Ti(w)) <
case (1) of Theorem 3.8.

< p(T2(w)), which certifies the result in case (1) of
1, p(Ts3(w)) < p(Ta(w)), which certifies the result in

Also, we plot 7 (w), T3(w) and T4(w) when §; = 0.005 in Figure 1, which shows the relations
between them.

Table 1: Numerical results for Example 4.1 with different preconditioners.

7 = 0.005 7 = 0.0005 d; = 0.005 d; = 0.0005

w p(TWw) pTw) p(hw) pTw) pTw) pTsw) pTw) p(Tw) pTw)
02 08815 08725 08728 08721 08724 08783 0878 08777 08781
04 07586 07441 07448 07435 07442 07523 07529 07513 0.7520
06 06306 06149 06159 06142 0615 06214 06223 06199  0.6210
08 04968 04847 04860 04842 04856 04848 04861 04820  0.4843
10 03558 03536 03553 03535 03552 0.3412 03428 03388 0.3407

Table 2: Numerical results for Example 4.2 with different preconditioners.

Y2 = 0.02 72 = 0.002 d; = 0.02 d; = 0.002

w pTWw) pLw) p(Bw) p(hw) phw) pTw) pTw) pTw) pTw)
01 12563 15432 13701 15521 13721 15878 13804 15986 13919
03 18068 25685 20728 25922 20777 29607 22448 30004 22531
05 24085 35121 27257 35463 27316 45763 31967 46534 3.2118
0.7 30620 43736 33287 44142 33336 64122 42303 65335 42620
0.0 37675 51531 38819 51050 38840 84480 53668  8.6204 53977

Example 4.2. In this example, we choose the system tensor A € RI*2 shown in Example
2.11, whose elements are given by,

a1l = 2,a121 = —3,a112 = —3,a122 = —1,

as11 = —1,a291 = —3,a212 = —3,a22 = 2.
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Figure 1: Plot of the different spectral radiuses p(7 (w)), p(T3(w)), p(T2(w)) against w with
6 = 0.005.

We already know the tensor A is an irreducible L-tensor, and not a strong M-tensor.
We choose 73 = 0.02, 75 = 0.002, 6; = 0.02 and 4; = 0.002, which satisfy the conditions in
Theorems 3.2-3.5, and the parameter w = 0.1, 0.3, 0.5, 0.7, 0.9. Then the calculation results
are shown in the Tab.2 and the relations between 7 (w), 71 (w) and T2(w) with 2 = 0.02 are
shown in Figure 2. From the results in Tab.2, we can see that

(i) when p(T(w)) > 1, p(T;(w)) > p(T (w)),i = 1,2,3,4, which certify the results in case
(3) of Theorems 3.2-3.5.

(if) when p(T2(w)) > 1, p(Ti(w))
Theorem 3.7; when p(73(w)) >
case (3) of Theorem 3.8.

> p(T2(w)), which certifies the result in case (3) of
1, p(T3(w)) > p(Ta(w)), which certifies the result in

Conclusions

In this paper, we proposed new SOR methods with four iterative tensors engendered by two
new preconditioners for solving the multi-linear systems (1.1) with A being an irreducible
L-tensor. We also compared the spectral radius of the four iterative tensors. The numerical
experiments show the efficiency of the proposed methods. There are many tensor splitting
methods with preconditioners already proposed to solve (1.1) with A being an M-tensor.
Can the methods be applied to solve (1.1) with A being an irreducible £-tensor, or just an
L-tensor? These are the topics we will consider in the future.
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