
2021



664 R.-T. SHEN, X.-Z. XIE AND W.-Z. GU

and a positive right side vector b. Liu, Li and Vong [20] proposed some tensor splitting
algorithms for solving (1.1) with strong M-tensors. He, Ling, Qi and Zhou [14] proposed
a Newton-type method to solve (1.1) with M-tensors. Li, Xie and Xu [16] extended the
classic splitting methods for solving the system of linear equations to solve symmetric tensor
equations. Liu, Li and Vong [21] proposed a preconditioned SOR method for solving (1.1)
with M-tensors. There are also some preconditioned tensor splitting iterative methods for
solving (1.1) with M-tensors, see [4, 6, 30].

A matrix is called an L-matrix if it has positive diagonal entries and non-positive off-
diagonal elements. L-matrices are also an important class of matrices and have been well
studied for solving linear equations [8, 19, 28]. In this paper, we will deal with the systems
(1.1) with A being an L-tensor. A tensor A is called an L-tensor if it has positive diagonal
entries and non-positive off-diagonal elements, which is a natural extension of the L-matrix.
We can see that it is very easy to verify a tensor is an L-tensor or not, and also it is
easy to see that an L-tensor is not necessary an M-tensor. In this paper, we propose new
preconditioned SOR methods to solve the systems (1.1) with A being an L-tensor. In the
whole paper, it is assumed that

A = I − L − F , (1.3)

where I is the unit tensor, L = LI(that is the product of a matrix and a tensor, which is
defined in (2.1)), and −L is the strictly lower triangular part of the majorization matrix of
A. The majorization matrix of A, denoted by M(A), is a n× n matrix with the entries

M(A)ij = aij...j , i, j = 1, . . . , n.

The iterative tensor of the classical SOR method is represented by

T (ω) = (I − ωL)−1((1− ω)I + ωF), (1.4)

where ω is a real parameter with ω ̸= 0. The spectral radius of the iterative tensor is
conclusive for the convergence and stability of the method, and the smaller it is, the faster
the method converges when the spectral radius is smaller than 1. The effective method to
decrease the spectral radius is to precondition the multi-liner systems (1.1), namely,

PAxm−1 = Pb,

where P is a nonsingular matrix and is called a preconditioner for solving the multi-liner
systems (1.1). In this paper, we give two new preconditioners: P = I + S and P̃ = I + S̃
with

S =


0 0 0 . . . 0

−(a21...1 + γ2) 0 0 . . . 0
−(a31...1 + γ3) 0 0 . . . 0

...
...

...
. . .

...
−(an1...1 + γn) 0 0 . . . 0

 , (1.5)

S̃ =


0 . . . 0 0 −(a1n...n + δ1)
0 . . . 0 0 −(a2n...n + δ2)
...

. . .
...

...
...

0 . . . 0 0 −(a(n−1)n...n + δn−1)
0 . . . 0 0 0

 , (1.6)
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where γ2, γ3, . . . , γn and δ1, δ2, . . . , δn−1 are real parameters. The preconditioners have been
applied in [8] for solving linear equations. We consider the two preconditioned multi-liner
systems as follows:

Axm−1 = b where A = PA and b = Pb;

Ãxm−1 = b̃ where Ã = P̃A and b̃ = P̃b.

We propose four iterative tensors based on the preconditioned equations. The corresponding
comparison theorems for the spectral radius of the proposed iterative tensors are shown when
A is an irreducible L-tensor.

The rest of this paper is organized as follows. In Sect.2, we introduce some related
definitions and lemmas. Also, we discuss the relations between M-tensors and irreducible
L-tensors. In Sect.3, four iterative tensors are presented with the two new precondtioners,
and the corresponding theoretical analysis is given. In Sect.4, numerical examples are given
to show the efficiency of the proposed SOR methods. The final section is the concluding
remark.

2 Preliminaries

In this section, we introduce some definitions, lemmas, and some related properties which
will be used in the sequel.

Let ⟨n⟩ = {1, . . . , n} for a positive integer n. A tensor A consists of n1 × · · · × nm

elements in the complex number field C:

A = (ai1...im), ai1...im ∈ C, ij ∈ ⟨nj⟩, j = 1, . . . ,m.

We sometimes denote ai1i2...im as ai1α, where α = i2 . . . im. When m = 2, A is an n1 × n2

matrix. If n1 = · · · = nm = n, A is called an m-th order n-dimensional tensor. We denote
all m-th order tensors consisting of n1 × · · · × nm entries by Cn1×···×nm and the set of all
m-th order n-dimensional tensors by C[m,n]. Similarly, the above notions can be used to the
real number field R. Let I = (δi1...im) ∈ C[m,n] be a unit tensor with its entries given by

δi1...im =

{
1, i1 = · · · = im,
0, else.

Let 0, O and O denote a zero vector, a zero matrix and a zero tensor, respectively. Let A
and B be two tensors (vectors or matrices) with the same size, the order A ≥ B(> B) means
that each element of A is no less than (larger than) corresponding one of B.

Definition 2.1 ([2]). Let A ∈ Cn1×n2×···×n2 and B ∈ Cn2×···×nk+1 be two tensors of order
m(≥ 2) and k(≥ 1), respectively. The product AB is the tensor of order (m− 1)(k − 1) + 1
with entries:

(AB)jα2...αm
=

n2∑
j2,...,jm=1

(ajj2...jm

m∏
i=2

bjiαi
),

where j ∈ ⟨n1⟩, α2, . . . , αm ∈ ⟨n3⟩ × · · · × ⟨nk+1⟩.

In this paper, we will use one special case of the above definition: If A ∈ R[2,n](i.e., A is
an n-dimensional square matrix) and B ∈ R[k,n], then the tensor C = AB ∈ R[k,n] is defined
by

cji2...ik =

n∑
j2=1

ajj2bj2i2...ik , (2.1)
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where j, i2, . . . , ik ∈ ⟨n⟩.

Definition 2.2 ([23]). Let A = (ai1...im) ∈ R[m,n]. Then the majorization matrix M(A) of
A is the n× n matrix with the entries

M(A)ij = aij...j , i, j ∈ ⟨n⟩.

Definition 2.3 ([25]). Let A = (ai1...im) ∈ R[m,n] and Ri(A) = (rii2...im)ni2,...,im ∈ R[m−1,n]

with rii2...im = aii2...im . Then A is called row-subtensor diagonal, or simply row diagonal,
if all its row-subtensors R1(A), . . . , Rn(A) are diagonal tensors, namely, if aii2...im can take
nonzero value only when i2 = · · · = im.

Lemma 2.4 ([25]). Let A ∈ R[m,n]. Then A is row diagonal if and only if A = M(A)I.

Now, we give some properties about the majorization matrix of the product of a matrix
and a tensor.

Lemma 2.5. Let C = AB ∈ R[k,n] with A ∈ R[2,n] and B ∈ R[k,n], then we have M(C) =
AM(B), that is, M(AB) = AM(B).

Proof. By the definition of the product in (2.1), we have

cji...i =

n∑
j2=1

ajj2bj2i...i,

that is, M(C) = M(AB) = AM(B).

Lemma 2.6. Let A ∈ R[2,n] and B is a row diagonal tensor in R[k,n], then C = AB =
AM(B)I.

Proof. By Lemma 2.5, we have M(C) = AM(B). Next, we only need show C is row diagonal,
that is, cii2...im = 0 when i2, . . . , im are not all equal. In fact, as B is row diagonal, bii2...im =
0 when i2, . . . , im are not all equal, then cji2...im =

∑n
j2=1 ajj2bj2i2...im = 0.

Next, we give some definitions of structured tensors.

Definition 2.7 ([9, 29]). Let A ∈ R[m,n]. A tensor A is called a Z-tensor if its off-diagonal
entries are non-positive. A tensor A is called an M-tensor if there exist a nonnegative tensor
B and a positive real number s ≥ ρ(B) such that

A = sI − B,

where ρ(B) is the spectral radius of tensor B, that is

ρ(B) = max{|λ| : λ is an eigenvalue of B}.

If s > ρ(B), A is called a strong or nonsingular M-tensor.

Definition 2.8 ([7]). Let A ∈ R[m,n]. We say that A is an L-tensor if it is a Z-tensor with
positive diagonal entries.

Definition 2.9 ([17]). An A ∈ R[m,n] is called reducible if there exists a nonempty proper
index subset I ⊆ ⟨n⟩ such that

ai1i2...im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I.

If A is not reducible, we call A is irreducible.
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Remark 2.10. In this paper, we will solve the systems (1.1) with A being an irreducible
L-tensor. As most of the algorithms proposed in the references for solving (1.1) focus on A
being an M-tensor, an interesting question is what are the relations between the irreducible
L-tensors and M-tensors. Now we discuss this problem in the following examples. The two
examples show that an irreducible L-tensor may not be a strong M-tensor, and a strong
M-tensor may not be an irreducible L-tensor.

Example 2.11 ([20]). Let A = (ai1i2i3) ∈ R[3,2] be defined as follows:

a111 = 2, a121 = −3, a112 = −3, a122 = −1,

a211 = −1, a221 = −3, a212 = −3, a222 = 2.

It is obvious that A is an irreducible L-tensor.
For arbitrary t ≥ 0, let s = 2 + t, then A = sI − B and B = (bi1i2i3) is given by

b111 = t, b121 = 3, b112 = 3, b122 = 1,

b211 = 1, b221 = 3, b212 = 3, b222 = t,

Notice that ρ(B) = 7 + t > s = 2 + t. Therefore A is an irreducible L-tensor and not a
strong M-tensor.

Example 2.12. It can be easily verified that the unit tensor I is a strong M-tensor.
Obviously, I is an L-tensor, however it is reducible, which means that I is not an irreducible
L-tensor.

Remark 2.13. It is known that for any positive vector b, i.e. b > 0, the systems (1.1)
have a unique positive solution when A is a strong M-tensor [10]. However, we do not know
much about the properties of the solution for the systems (1.1) with A being an L-tensor.
Now we survey the solution of (1.1) when A is the tensor in Example 2.11 with different
b = (b1, b2)

T in three cases. We rewrite (1.1) as{
2x2

1 − 6x1x2 − x2
2 = b1,

−x2
1 − 6x1x2 + 2x2

2 = b2.
(2.2)

(i) b = (0, 0)T . In this case, the systems (2.2) have a unique solution x = (0, 0)T .

(ii) b ≥ 0 and b ̸= 0. In this case, the systems (2.2) have two solutions, and for every
solution, the components have different signs. Specifically, when b1 ≥ b2 > 0, the
solutions are(

−
√

32b1−38b2+3
√
∆

210 ,

√
32b2−38b1+3

√
∆

210

)T

;

(√
32b1−38b2+3

√
∆

210 ,−
√

32b2−38b1+3
√
∆

210

)T

,

where

∆ = (
38

3
b1 −

32

3
b2)

2 + 140(
1

3
b1 +

2

3
b2)

2 > 0.

And when 0 ≤ b1 ≤ b2, the solutions can be similarly given.
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(iii) b ≤ 0 and b ̸= 0. In this case, the systems (2.2) have two solutions, and for every
solution, the components have the same signs. Specifically, when 0 > b1 ≥ b2, the
solutions are(√

32b1−38b2+3
√
∆

210 ,

√
32b2−38b1+3

√
∆

210

)T

;

(
−
√

32b1−38b2+3
√
∆

210 ,−
√

32b2−38b1+3
√
∆

210

)T

,

where

∆ = (
38

3
b1 −

32

3
b2)

2 + 140(
1

3
b1 +

2

3
b2)

2 > 0.

And when b1 ≤ b2 < 0, the solutions can be similarly given.

Consequently, the systems (2.2) have a unique positive solution for every b < 0.

We also need the following definitions and lemmas which will be used in the sequel.

Definition 2.14 ([2]). Let A ∈ C[m,n], B ∈ C[k,n]. If AB = I, then A is called an order m
left inverse of B, and B is called an order k right inverse of A.

Definition 2.15 ([22]). Let A ∈ R[m,n]. If M(A) is a nonsingular matrix and A = M(A)I,
we call M(A)−1 the order 2 left-inverse of A.

Definition 2.16 ([22]). Let A ∈ R[m,n]. If A has an order k left(right) inverse, A is called
a left(right)-invertible or left(right)-nonsingular tensor, where k ≥ 2.

Definition 2.17 ([20]). Let A, E ,F ∈ R[m,n]. Then A = E − F is called a splitting of A if
E is a left-invertible tensor. The splitting is called:

(1) regular if M(E)−1 ≥ O and F ≥ O;

(2) convergent if ρ(M(E)−1F) < 1;

(3) weak regular if M(E)−1 ≥ O and M(E)−1F ≥ O.

By Theorem 1.3 and Theorem 1.4 in [3], we have the following Lemma 2.18.

Lemma 2.18. Let A = (ai1...im) ∈ R[m,n] be an irreducible nonnegative tensor. Then ρ(A)
is an eigenvalue of A with a positive eigenvector x ∈ Rn.

Lemma 2.19 ([3]). Let A = (ai1...im) ∈ R[m,n] be an irreducible nonnegative tensor. If
(λ,x) and (µ,y) ∈ R+ × (Rn\0) satisfy Axm−1 = λx[m−1] and Aym−1 ≥ µy[m−1] (or,
respectively, Aym−1 ≤ µy[m−1]), then λ = ρ(A) and µ ≤ λ (or, respectively, λ ≤ µ).

3 SOR Method

3.1 The tensor splitting with two preconditioners

In the subsection, we give four iterative tensors for SOR methods with two preconditioners,
and then prove the iterative tensors are nonnegative and irreducible under the conditions
that A is an irreducible L-tensor and some other assumptions are defined on A.

Two iteration tensors associated with P . As S, which is defined in (1.5), is a strictly
lower triangular matrix and L = LI in (1.3) is a row diagonal tensor with L = M(L) being
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a strictly lower triangular matrix, we know that SL = SLI = O by Lemma 2.6. Thus,

A = PA = (I + S)(I − L − F)
= I − L − F + SI − SL − SF
= I − L − F + SI − SF
= (I +D1)− (L − SI + L1)− (F + F1)
= D − L− F ,

where D = I+D1,L = L−SI+L1,F = F+F1,D1 = D1I,L1 = L1I,F1 = SF+D1−L1,
and −D1, L1 are the diagonal, strictly lower triangular parts of M(SF). It is easy to see that
D and L are row diagonal tensors. Denote D = M(D) and L = M(L). Then D = I +D1

and L = L− S + L1. For 0 < ω ≤ 1,

ωA = ω(D − L− F)

= D − ωL − [(1− ω)D + ωF ]

= (I − ωL)− [(1− ω)I + ω(F −D1)].

Denote E1 = D − ωL,F1 = (1 − ω)D + ωF and E2 = I − ωL,F2 = (1 − ω)I + ω(F − D1).
We have

ωA = E1 −F1 = E2 −F2,

and M(E1) = D − ωL, M(E2) = I − ωL. Two different forms of SOR iteration tensor
associated with A can be represented by

T1(ω) = M(E1)−1F1 = (D − ωL)−1[(1− ω)D + ωF ], (3.1)

T2(ω) = M(E2)−1F2 = (I − ωL)−1[(1− ω)I + ω(F −D1)]. (3.2)

Two iteration tensors associated with P̃ . For a similar discussion with the precon-
ditioner P̃ = I + S̃, we have

Ã = P̃A = (I + S̃)A = A+ S̃A
= I − L − F + (D̃1 − L̃1 − F̃1)

= I + D̃1 − (L+ L̃1)− (F + F̃1)

= D̃ − L̃ − F̃ ,

where D̃ = I+D̃1, L̃ = L+L̃1, F̃ = F+F̃1, D̃1 = D̃1I, L̃1 = L̃1I, F̃1 = −S̃A+D̃1−L̃1, and
−D̃1, L̃1 are the diagonal, strictly lower triangular parts of M(S̃A). Also D̃ and L̃ are row

diagonal tensors. Denote D̃ = M(D̃) and L̃ = M(L̃). Then D̃ = I+D̃1 and L̃ = L− S̃+ L̃1.
For 0 < ω ≤ 1,

ωÃ = ω(D̃ − L̃ − F̃)

= D̃ − ωL̃ − [(1− ω)D̃ + ωF̃ ]

= (I − ωL̃)− [(1− ω)I + ω(F̃ − D̃1)].

Denote E3 = D̃ − ωL̃,F3 = (1− ω)D̃ + ωF̃ and E4 = I − ωL̃,F4 = I − ωD̃ + ωF̃ . Then

ωÃ = E3 −F3 = E4 −F4,

and M(E3) = D̃ − ωL̃, M(E4) = I − ωL̃. Two different forms of SOR iteration tensor

associated with Ã can be represented by

T3(ω) = M(E3)−1F3 = (D̃ − ωL̃)−1[(1− ω)D̃ + ωF̃ ], (3.3)

T4(ω) = M(E4)−1F4 = (I − ωL̃)−1[(1− ω)I + ω(F̃ − D̃1)]. (3.4)
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Theorem 3.1. Let T (ω), T1(ω), T2(ω), T3(ω) and T4(ω) be defined by (1.4), (3.1)-(3.4), re-
spectively. If A is an irreducible L-tensor, then for 0 < ω < 1,

(i) T (ω) is a nonnegative and irreducible tensor;

(ii) if a1q...qaq1...1 > 0 and γq ∈ ((1 − a1q...qaq1...1)/a1q...q,−aq1...1) ∩ (0,−aq1...1) for q =
2, 3, . . . n, T1(ω) and T2(ω) are nonnegative and irreducible tensors;

(iii) if ans...sasn...n > 0 and δs ∈ ((1 − ans...sasn...n)/ans...s,−asn...n) ∩ (0,−asn...n) for
s = 1, 2, . . . , n− 1, T3(ω) and T4(ω) are nonnegative and irreducible tensors.

Proof. (i) Since A is an L-tensor, by the splitting of A in (1.3), we know that L ≥ O and
F ≥ O. Then

T (ω) = (I − ωL)−1[(1− ω)I + ωF ]

= (I + ωL+ ω2L2 + . . . ωn−1Ln−1)[(1− ω)I + ωF ]

= [(1− ω)I + ω(1− ω)L+ ωF ] + nonnegative terms.

Consequently, T (ω) is nonnegative, and if A is irreducible, (1 − ω)I + ω(1 − ω)L + ωF is
irreducible. Therefore T (ω) is a nonnegative and irreducible tensor.

(ii) As D = I +D1, it is easy to get

D = diag(1, 1− a12...2(a21...1 + γ2), 1− a13...3(a31...1 + γ3), . . . , 1− a1n...n(an1...1 + γn)),(3.5)

where

1− a1q...q(aq1...1 + γq) >

{
1− a1q...q(aq1...1 +

1−a1q...qaq1...1

a1q...q
) = 0, if

1−a1q...qaq1...1

a1q...q
> 0,

1− a1q...qaq1...1 > 0, if
1−a1q...qaq1...1

a1q...q
≤ 0,

for γq ∈ ((1 − a1q...qaq1...1)/a1q...q,−aq1...1) ∩ (0,−aq1...1), q = 2, 3, . . . , n. That is, D is a

diagonal matrix with positive diagonal elements. So D is invertible and D
−1 ≥ O.

Since L is a strictly lower triangular matrix, i.e.,

L =
0 0 0 . . . 0
γ2 0 0 . . . 0
γ3 −a32...2 + a12...2(a31...1 + γ3) 0 . . . 0
...

...
...

. . .
...

γn −an2...2 + a12...2(an1...1 + γn) . . . −an(n−1)...(n−1) + a1(n−1)...(n−1)(an1...1 + γn) 0

 .

The element −aij...j + a1j...j(ai1...1 + γi) ≥ −aij...j + a1j...j(ai1...1 − ai1...1) = −aij...j ≥ 0,
i = 3, . . . , n, j = 2, . . . , i − 1, together with γq ≥ 0, q = 2, 3, . . . , n, implies that L ≥ O. By
S ≥ O and F ≥ O, then SF ≥ O, F1 ≥ O, furthermore, F = F + F1 ≥ O.

T1(ω) = M(E1)−1F1

= (D − ωL)−1[(1− ω)D + ωF ]

= (I − ωD
−1

L)−1[(1− ω)I + ωD
−1F ]

= [I + ωD
−1

L+ ω2(D
−1

L)2 + · · ·+ ωn−1(D
−1

L)n−1][(1− ω)I + ωD
−1F ]

= (1− ω)I + ωD
−1F + (1− ω)ωD

−1L+ nonnegative terms.
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From the above results, we easily know that T1(ω) is a nonnegative tensor for any 0 < ω < 1.

Also as D is a diagonal matrix with positive diagonal elements, (1 − ω)I + ωD
−1F + (1 −

ω)ωD
−1L is irreducible when A is irreducible. So T1(ω) is a nonnegative and irreducible

tensor. Similarly, we can prove that T2(ω) is a nonnegative and irreducible tensor.

(iii) By a similar computation, we have

D̃ = diag(1− an1...1(a1n...n + δ1), 1− an2...2(a2n...n + δ2), . . . ,

1− an(n−1)...(n−1)(a(n−1)n...n + δn−1), 1),

L̃ =
0 0 0 0 0

−a21...1 + an1...1(a2n...n + δ2) 0 0 0 0
−a31...1 + an1...1(a3n...n + δ3) −a32...2 + an2...2(a3n...n + δ3) 0 0 0

...
...

... 0 0
−an1...1 −an2...2 . . . −an(n−1)...(n−1) 0

 .

Similarly, it can be proved that T3(ω) and T4(ω) are nonnegative and irreducible tensors.

3.2 The comparison theorem

In this section, we will discuss the properties for the spectral radius of the four iterative
tensors.

Theorem 3.2. Let T (ω) and T1(ω) be defined by (1.4) and (3.1), respectively. If A is an
irreducible L-tensor with a1q...qaq1...1 > 0, and γq ∈ ((1 − a1q...qaq1...1)/a1q...q,−aq1...1) ∩
(0,−aq1...1), q = 2, 3, . . . n, then for 0 < ω < 1, one of the following statements holds:

(1) ρ(T1(ω)) ≤ ρ(T (ω)) < 1;

(2) ρ(T1(ω)) = ρ(T (ω)) = 1;

(3) ρ(T1(ω)) ≥ ρ(T (ω)) > 1.

Proof. From Theorem 3.1 (i), we know that T (ω) is an irreducible and nonnegative tensor.
Thus, by Lemma 2.18, there is a positive vector z ∈ Rn, such that

T (ω)zm−1 = χz[m−1],

where χ = ρ(T (ω)). By the definition of T (ω), we get

((1− ω)I + ωF)zm−1 = χ(I − ωL)zm−1. (3.6)
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Then

T1(ω)zm−1 − χz[m−1]

=(D − ωL)−1[(1− ω)D + ωF ]zm−1 − χIzm−1

=(D − ωL)−1[(1− ω)D + ωF − χ(D − ωL)]zm−1

=(D − ωL)−1[(1− ω)(I +D1) + ω(F + F1)− χ(I +D1) + χω(L − SI + L1)]z
m−1

=(D − ωL)−1[(1− ω − χ)D1 + χω(L1 − SI) + ωF1]z
m−1

=(D − ωL)−1[(1− χ)D1 + χω(L1 − SI)− ωL1 + ωSF ]zm−1

=(D − ωL)−1[(1− χ)D1 + (χ− 1)ωL1 − χωSI + (χ+ ω − 1)SI]zm−1

=(D − ωL)−1[(χ− 1)(−D1 + ωL1) + (χ− 1)(1− ω)SI]zm−1

=(χ− 1)(D − ωL)−1[−D1 + ωL1 + (1− ω)SI]zm−1,

where the third equation is because D = I + D1,L = L − SI + L1,F = F + F1; the
fourth equation is by the equation (3.6); the fifth equation is by F1 = SF + D1 − L1; the
sixth equation is by (3.6) and SL = O, that is, ωSFzm−1 = (χSI − χωSL)zm−1 − (1 −
ω)SIzm−1 = (χ + ω − 1)SIzm−1, and the other equations are by simple computations.
Since z > 0, −D1 ≥ O, L1 ≥ O and S ≥ O, [−D1 + ωL1 + (1− ω)SI]zm−1 ≥ 0. As D ≥ O

and is invertible, (D − ωL)−1 = (I − ωD
−1

L)−1D
−1

= [I + ωD
−1

L + ω2(D
−1

L)2 + · · · +
ωn−1(D

−1
L)n−1]D

−1 ≥ O. Together with the above two results, we have (D−ωL)−1[−D1+
ωL1 + (1− ω)SI]zm−1 ≥ 0. Thus,

(1) If χ < 1, then T1(ω)zm−1 −χz[m−1] ≤ 0, i.e., T1(ω)zm−1 ≤ χz[m−1]. By Lemma 2.19,
we have ρ(T1(ω)) ≤ χ = ρ(T (ω));

(2) If χ = 1, then T1(ω)zm−1 −χz[m−1] = 0, i.e., T1(ω)zm−1 = χz[m−1]. By Lemma 2.19,
we have ρ(T1(ω)) = χ = ρ(T (ω));

(3) If χ > 1, then T1(ω)zm−1 −χz[m−1] ≥ 0, i.e., T1(ω)zm−1 ≥ χz[m−1]. By Lemma 2.19,
we have ρ(T1(ω)) ≥ χ = ρ(T (ω)).

The proof is finished.

Theorem 3.3. Let T (ω) and T2(ω) be defined by (1.4) and (3.2), respectively. If A is an
irreducible L-tensor with a1q...qaq1...1 > 0, and γq ∈ ((1 − a1q...qaq1...1)/a1q...q,−aq1...1) ∩
(0,−aq1...1), q = 2, 3, . . . n, then for 0 < ω < 1, one of the following statements holds:

(1) ρ(T2(ω)) ≤ ρ(T (ω)) < 1;

(2) ρ(T2(ω)) = ρ(T (ω)) = 1;

(3) ρ(T2(ω)) ≥ ρ(T (ω)) > 1.

Proof. By a similar discussion as the proof of Theorem 3.2, we can get

T2(ω)zm−1 − χz[m−1] = (χ− 1)(I − ωL)−1[ωL1 + (1− ω)SI]zm−1,

and it also can be shown that (I − ωL)−1[ωL1 + (1− ω)SI]zm−1 ≥ 0. Therefore,
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(1) If χ < 1, then T2(ω)zm−1 −χz[m−1] ≤ 0, i.e., T2(ω)zm−1 ≤ χz[m−1]. By Lemma 2.19,
we have ρ(T2(ω)) ≤ χ = ρ(T (ω));

(2) If χ = 1, then T2(ω)zm−1 −χz[m−1] = 0, i.e., T2(ω)zm−1 = χz[m−1]. By Lemma 2.19,
we have ρ(T2(ω)) = χ = ρ(T (ω));

(3) If χ > 1, then T2(ω)zm−1 −χz[m−1] ≥ 0, i.e., T2(ω)zm−1 ≥ χz[m−1]. By Lemma 2.19,
we have ρ(T2(ω)) ≥ χ = ρ(T (ω)).

Theorem 3.4. Let T (ω) and T3(ω) be defined by (1.4) and (3.3), respectively. If A is an
irreducible L-tensor with ans...sasn...n > 0, and δs ∈ ((1 − ans...sasn...n)/ans...s,−asn...n) ∩
(0,−asn...n), s = 1, 2, . . . , n − 1, then for 0 < ω < 1, one of the following statements
holds:

(1) ρ(T3(ω)) ≤ ρ(T (ω)) < 1;

(2) ρ(T3(ω)) = ρ(T (ω)) = 1;

(3) ρ(T3(ω)) ≥ ρ(T (ω)) > 1.

Proof. By the definition of T3(ω), we can write

T3(ω)zm−1 − χz[m−1]

=(D̃ − ωL̃)−1[(1− ω)D̃ + ωF̃ ]zm−1 − χz[m−1]

=(D̃ − ωL̃)−1[(1− ω)D̃ + ωF̃ − χ(D̃ − ωL̃)]zm−1

=(D̃ − ωL̃)−1[(1− ω)(I + D̃1) + ω(F + F̃1)− χ(I + D̃1) + χω(L+ L̃1)]z
m−1

=(D̃ − ωL̃)−1[(1− ω)I + ωF + (1− ω − χ)D̃1 + ωF̃1 − χ(I − ωL) + χωL̃1]z
m−1

=(D̃ − ωL̃)−1[(1− ω − χ)D̃1 + ωF̃1 + χωL̃1]z
m−1

=(D̃ − ωL̃)−1[ω(−D̃1 + L̃1 + F̃1)− (χ− 1)D̃1 + ω(χ− 1)L̃1]z
m−1

=(D̃ − ωL̃)−1[−ωS̃A− (χ− 1)D̃1 + ω(χ− 1)L̃1]z
m−1

=
χ− 1

χ
(D̃ − ωL̃)−1[(1− ω)S̃I + ωS̃F − χD̃1 + ωχL̃1]z

m−1,

where the second equation is because D̃ = D̃I, L̃ = L̃I; the third equation is by D̃ = I+D̃1,
L̃ = L+L̃1 and F̃ = F+F̃1; the fifth equation is by the equation (3.6); the seventh equation

is by S̃A = D̃1 − L̃1 − F̃1; and the eighth equation is because −ωS̃Azm−1 = S̃(ωI − ωL −
ωF)zm−1 = −S̃[(I −ωL)zm−1− ((1−ω)I+ωF)zm−1] = −( 1χ −1)S̃[(1−ω)I+ωF ]zm−1 =
χ−1
χ [(1− ω)S̃I + ωS̃F ]zm−1.

By a similar proof as Theorem 3.2, we can prove that (D̃ − ωL̃)−1[(1− ω)S̃I + ωS̃F −
χD̃1 + ωχL̃1]z

m−1 ≥ 0. Hence

(1) If χ < 1, then T3(ω)zm−1 −χz[m−1] ≤ 0, i.e., T3(ω)zm−1 ≤ χz[m−1]. By Lemma 2.19,
we have ρ(T3(ω)) ≤ χ = ρ(T (ω));

(2) If χ = 1, then T3(ω)zm−1 −χz[m−1] = 0, i.e., T3(ω)zm−1 = χz[m−1]. By Lemma 2.19,
we have ρ(T3(ω)) = χ = ρ(T (ω));
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(3) If χ > 1, then T3(ω)zm−1 −χz[m−1] ≥ 0, i.e., T3(ω)zm−1 ≥ χz[m−1]. By Lemma 2.19,
we have ρ(T3(ω)) ≥ χ = ρ(T (ω)).

Theorem 3.5. Let T (ω) and T4(ω) be defined by (1.4) and (3.4), respectively. If A is an
irreducible L-tensor with ans...sasn...n > 0, and δs ∈ ((1 − ans...sasn...n)/ans...s,−asn...n) ∩
(0,−asn...n), s = 1, 2, . . . , n − 1, then for 0 < ω < 1, one of the following statements
holds:

(1) ρ(T4(ω)) ≤ ρ(T (ω)) < 1;

(2) ρ(T4(ω)) = ρ(T (ω)) = 1;

(3) ρ(T4(ω)) ≥ ρ(T (ω)) > 1.

Proof. By a similar proof as Theorem 3.4, we can get

T4(ω)zm−1 − χz[m−1] =
(χ− 1)

χ
(D̃ − ωL̃)−1[(1− ω)S̃I + ωS̃F + ωχL̃1]z

m−1,

and (D̃ − ωL̃)−1[(1− ω)S̃I + ωS̃F − χD̃1 + ωχL̃1]z
m−1 ≥ 0. Thus,

(1) If χ < 1, then T4(ω)zm−1 −χz[m−1] ≤ 0, i.e., T4(ω)zm−1 ≤ χz[m−1]. By Lemma 2.19,
we have ρ(T4(ω)) ≤ χ = ρ(T (ω));

(2) If χ = 1, then T4(ω)zm−1 −χz[m−1] = 0, i.e., T4(ω)zm−1 = χz[m−1]. By Lemma 2.19,
we have ρ(T4(ω)) = χ = ρ(T (ω));

(3) If χ > 1, then T4(ω)zm−1 −χz[m−1] ≥ 0, i.e., T4(ω)zm−1 ≥ χz[m−1]. By Lemma 2.19,
we have ρ(T4(ω)) ≥ χ = ρ(T (ω)).

3.3 The comparison of the convergence rate of the SOR methods

In this section, we mainly discuss the comparison of the convergence rate of the SOR iterative
methods, specifically, the comparison of the spectral radius of T1(ω) and T2(ω), T3(ω) and
T4(ω).

Lemma 3.6 ([17]). Let A ∈ R[m,n] and A = E1 − F1 = E2 − F2 be a regular splitting and
a weak regular splitting respectively, and F1 ≤ F2,F2 ̸= O. One of the following statements
holds:

(1) ρ(M(E2)−1F2) ≤ ρ(M(E1)−1F1) < 1.

(2) ρ(M(E2)−1F2) ≥ ρ(M(E1)−1F1) ≥ 1. If F1 < F2,F1 ̸= O and ρ(M(E1)−1F1) > 1,
the first inequality is strict.

Theorem 3.7. Let T1(ω) and T2(ω) be defined by (3.1) and (3.2), respectively. If A is
an irreducible L-tensor with a1q...qaq1...1 > 0, and γq ∈ ((1− a1q...qaq1...1)/a1q...q,−aq1...1) ∩
(0,−aq1...1) for q = 2, 3, . . . n, then for 0 < ω < 1, one of the following statements holds:
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(1) ρ(T1(ω)) ≤ ρ(T2(ω)) < 1;

(2) ρ(T1(ω)) ≥ ρ(T2(ω)) ≥ 1.

Proof. By the proof of Theorem 3.1, we know that the two splittings ωA = E1−F1 = E2−F2

are both weak regular splittings. Next, we need show that F1 ≤ F2, and F2 ̸= O. We see
that F2 −F1 = −D1 = −D1I, where D1 = D − I. By (3.5), we have

D1 = diag(0,−a12...2(a21...1 + γ2),−a13...3(a31...1 + γ3), . . . ,−a1n...n(an1...1 + γn)).

Under the conditions a1q...qaq1...1 > 0, γq ∈ (0,−aq1...1), we get −a1q...q(aq1...1 + γq) > 0 for
q = 2, 3, . . . n, that is, D1 ≤ O and D1 ̸= O. Therefore F1 ≤ F2, together with F1 ≥ O,
then F2 ̸= O. The proof is completed.

By a similar analysis, we can get the following theorem.

Theorem 3.8. Let T3(ω), T4(ω) be defined by (3.3) and (3.4). If A is an irreducible L-
tensor with ans...sasn...n > 0, and δs ∈ ((1 − ans...sasn...n)/ans...s,−asn...n) ∩ (0,−asn...n),
for s = 1, 2, . . . , n− 1, then for 0 < ω < 1, one of the following statements holds:

(1) ρ(T3(ω)) ≤ ρ(T4(ω)) < 1;

(2) ρ(T3(ω)) ≥ ρ(T4(ω)) ≥ 1.

4 Numerical Examples

In this section, we do some numerical experiments to illustrate the theory results. By the
iteration tensors T1(ω) and T2(ω), which are defined by (3.1) and (3.2), respectively, solving
the systems (1.1) is equivalent to solving

x = [Ti(ω)xm−1 + ωM(Ei)−1b][
1

m−1 ], i = 1, 2.

In this section, we use the following iterative method for solving (1.1): for a given initial
vector x0,

xk = [Ti(ω)xm−1
k−1 + ωM(Ei)−1b][

1
m−1 ], k = 1, 2, . . . , i = 1, 2.

For the iteration tensors T3(ω) and T4(ω), which are defined by (3.3) and (3.4), respectively,
the iterative method for solving (1.1) is: for a given initial vector x0,

xk = [Ti(ω)xm−1
k−1 + ωM(Ei)−1b̃][

1
m−1 ], k = 1, 2, . . . , i = 3, 4.

In the section, all tests of the examples were done in Matlab R2014b and Tensor Toolbox
2.6. The codes were done on a DELL desktop with Inter(R) Core(TM) i5-5200U CPU 2.20
GHz and 4GB RAM running on Windows 7.

Example 4.1 ([4]). Let A ∈ R[3,3] be as follows,

A =

 1 −0.12 −0.13 −0.04 −0.02 −0.03 −0.03 −0.02 −0.04
−0.12 −0.03 −0.06 −0.01 1 −0.02 −0.02 −0.06 −0.03
−0.13 −0.02 −0.10 −0.03 −0.04 −0.02 −0.02 −0.10 1

 .
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It is obvious that A in Example 4.1 is an irreducible L-tensor with a122a211 > 0,
a133a311 > 0, a311a133 > 0 and a322a233 > 0. For this example, we choose γi = 0.005,
γi = 0.0005, δj = 0.005 and δj = 0.0005 (i = 2, 3 and j = 1, 2). It is easy to see that
parameters γi, δj satisfy the initial conditions in Theorems 3.2-3.5, respectively. We set the
parameter ω = 0.2, 0.4, 0.6, 0.8, 1.0. The numerical results are shown in the Tab.1. The
results show that

(i) when ρ(T (ω)) < 1, ρ(Ti(ω)) ≤ ρ(T (ω)), i = 1, 2, 3, 4, which certify the result in case
(1) of Theorems 3.2-3.5.

(ii) when ρ(T2(ω)) < 1, ρ(T1(ω)) ≤ ρ(T2(ω)), which certifies the result in case (1) of
Theorem 3.7; when ρ(T4(ω)) < 1, ρ(T3(ω)) ≤ ρ(T4(ω)), which certifies the result in
case (1) of Theorem 3.8.

Also, we plot T (ω), T3(ω) and T4(ω) when δj = 0.005 in Figure 1, which shows the relations
between them.

Table 1: Numerical results for Example 4.1 with different preconditioners.

Table 2: Numerical results for Example 4.2 with different preconditioners.

Example 4.2. In this example, we choose the system tensor A ∈ R[3,2] shown in Example
2.11, whose elements are given by,

a111 = 2, a121 = −3, a112 = −3, a122 = −1,

a211 = −1, a221 = −3, a212 = −3, a222 = 2.



SOR METHODS FOR MULITI-LINEAR SYSTEMS WITH L-TENSORS 677

Figure 1: Plot of the different spectral radiuses ρ(T (ω)), ρ(T3(ω)), ρ(T4(ω)) against ω with
δ = 0.005.

We already know the tensor A is an irreducible L-tensor, and not a strong M-tensor.
We choose γ2 = 0.02, γ2 = 0.002, δ1 = 0.02 and δ1 = 0.002, which satisfy the conditions in
Theorems 3.2-3.5, and the parameter ω = 0.1, 0.3, 0.5, 0.7, 0.9. Then the calculation results
are shown in the Tab.2 and the relations between T (ω), T1(ω) and T2(ω) with γ2 = 0.02 are
shown in Figure 2. From the results in Tab.2, we can see that

(i) when ρ(T (ω)) > 1, ρ(Ti(ω)) ≥ ρ(T (ω)), i = 1, 2, 3, 4, which certify the results in case
(3) of Theorems 3.2-3.5.

(ii) when ρ(T2(ω)) > 1, ρ(T1(ω)) ≥ ρ(T2(ω)), which certifies the result in case (3) of
Theorem 3.7; when ρ(T4(ω)) > 1, ρ(T3(ω)) ≥ ρ(T4(ω)), which certifies the result in
case (3) of Theorem 3.8.

5 Conclusions

In this paper, we proposed new SOR methods with four iterative tensors engendered by two
new preconditioners for solving the multi-linear systems (1.1) with A being an irreducible
L-tensor. We also compared the spectral radius of the four iterative tensors. The numerical
experiments show the efficiency of the proposed methods. There are many tensor splitting
methods with preconditioners already proposed to solve (1.1) with A being an M-tensor.
Can the methods be applied to solve (1.1) with A being an irreducible L-tensor, or just an
L-tensor? These are the topics we will consider in the future.
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