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probability space (Ω,F ,P) with support set Ξ ⊂ Rr, and E[·] denotes the expected value
with respect to probability measure P. For simplicity, we use ξ to denote either the random
vector ξ(ω) or an element of Rr depending on the context.

Stochastic multiobjective optimization is a combination of multiobjective optimization
and stochastic optimization, which is widely used in many fields such as economy, man-
agement and machine learning [14, 8, 11, 4, 5]. With the rapid development of machine
learning, stochastic multiobjective optimization has been intensively investigated by many
researchers in the field of optimization. However, compared with multiobjective optimization
and stochastic optimization, the methodological and theoretical development of stochastic
multiobjective optimization remains in its infancy. Compared to multiobjective optimiza-
tion where we have access to the complete objective functions, in stochastic multiobjective
optimization, only stochastic samples of objective functions are available for optimization.
Compared to stochastic optimization, the fundamental challenge of stochastic multiobjective
optimization is how to make appropriate tradeoff between different objectives. In particu-
lar, we should consider the conflict objective functions and accommodate the uncertainty
in objective function in the algorithm design. Therefore, the analytical and algorithmic
tools from multiobjective optimization and stochastic optimization cannot directly resolve
this kind of problems when the distribution of random variable is unknown or it is difficult
to obtain a closed form of the expected value of random functions. Therefore, some new
methods are needed to deal with stochastic multiobjective optimization problems.

A popular numerical method in stochastic optimization is the Monte Carlo method where
the expected value is approximated by its sample average approximation. Over the past
years, sample average approximation method has also been increasingly investigated for
solving stochastic multiobjective optimization. Let ξ1, . . . , ξN be independently identically
distributed sample of random variable ξ. It leads to the approximation of (1.1) as follows:

min FN (x) =

(
1
N

N∑
j=1

f1(x, ξj), . . . ,
1
N

N∑
j=1

fm(x, ξj)

)
s.t. x ∈ X,

(1.2)

which results in a deterministic multiobjective optimization problem which can be solved
by a standard solution technique for multiobjective optimization problem. At present, the
main method to deal with (stochastic) multiobjective optimization is scalarization method.
It converts (stochastic) multiobjective optimization into (stochastic) optimization problems,
and then processes them according to (stochastic) optimization problems. Bonnel and Col-
longe [2] obtain the consistency of the weakly Pareto sets associated with the sample average
approximation problem by virtue of the scalarization method, and the consistency results
of optimal solutions for sample average approximation problem. Fliege and Xu [3] apply
sample average approximation method to solve stochastic multiobjective optimization, and
propose a smoothing infinity norm scalarization approach to solve the sample average ap-
proximation problem. Further, the convergence results of efficient solution of the sample
average approximation problem are discussed. Kim and Ryu [6] apply the sample average
approximation method to stochastic multiobjective optimization problems. Then, based on
the product formulation scalarization method, they prove the convergence properties under
a set of fairly general regularity conditions. Lin, Zhang and Liang [7] consider a class of
stochastic multiobjective problems with complementarity constraints. Liu and Liang [10]
study the stability analysis of stochastic multiobjective optimization problems with com-
plementarity constraints when the underlying probability measure varies in some metric
probability space. Pang, Meng and Wang [12] study asymptotic convergence of station-
ary points of stochastic multiobjective optimization problems with parametric variational
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inequality constraint via sample average approximation method. More advanced sample
average approximation method for stochastic multiobjective optimization can be found in
[5].

Note that for scalarizing the (stochastic) multiobjective optimization problems, some pa-
rameters are usually needed to be determined, but decide a suitable scalarization function
with parameters needs a great insight into the problem structure, which is a very difficult
task and particularly challenging when the complete objective functions are unavailable. In
this paper, we first construct the gap function for stochastic multiobjective optimization
problems without the scalarization parameters. By virtue of the gap function, we transform
stochastic multiobjective optimization problems into a stochastic optimization reformula-
tion problems. Some properties of the reformulation problems are discussed. Then, we
propose a sample average approximation method for solving the reformulation problems,
and the convergence and the rates of convergence almost surely, in mean and in probabil-
ity for estimators of optimal values and optimal solutions of the approximation problems
are investigated. Furthermore, the rates of convergence of the weakly Pareto optimal for
sample average approximation multiobjective problem are discussed under the error bound
condition.

2 Stochastic Optimization Reformulation

Throughout this paper, we use the following notation. Let Log(x) denote the function
max{1, log x}, x ≥ 0, and let LLog(x) stand for Log(Log(x)). Further, we set for N ∈ N,

aN :=
√
2NLLog(N) and bN :=

aN
N

=

√
2LLog(N)√

N
.

For each i = 1, . . . ,m, we denote X̃i := fi(·, ξ) − E[fi(·, ξ)] and σ(X̃i) := sup
x∈X

(E[X̃2
i (x)])

1
2 .

Now, we introduce the concept of optimality for the stochastic multiobjective optimization
problems (1.1).

Definition 2.1. A feasible solution x∗ ∈ X is said to be Pareto optimal of (1.1), if there is
no x ∈ X such that F (x) ≤ F (x∗) and F (x) ̸= F (x∗) . Likewise, a feasible solution x∗ ∈ X
is said to be weakly Pareto optimal of (1.1), if there is no x ∈ X such that F (x) < F (x∗).

We will denote the set of Pareto (resp. weakly Pareto) optimal of (1.1) by Sol(F, X)
(resp.WSol(F, X)).

In the following we give the definition of gap function for (1.1).

Definition 2.2. A gap function for (1.1) is a function θ : Rn → R such that

(i) θ(x) ≥ 0, for all x ∈ X,

(ii) θ(x) = 0 if and only if x ∈WSol(F,X).

Following [9, 16], we introduce a gap function for (1.1) as follows:

θ(x) := sup
y∈X

min
i∈{1,...,m}

{E[fi(x, ξ)]− E[fi(y, ξ)]} . (2.1)

Therefore, in order to find the weakly Pareto optimal of (1.1), we may solve the following
stochastic optimization problem:

min
x∈X

θ(x). (2.2)
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We make some assumptions that will be used later on.
(A1) There is a vector x0 ∈ X such that E[fi(x0, ξ)] < ∞ for each i = 1, 2, . . . ,m.
(A2) For each i = 1, 2, . . . ,m, there exists a measurable function κi : Ξ → R+ such that

E[κi(ξ)] < ∞ and

|fi(x1, ξ)− fi(x2, ξ)| ≤ κi(ξ)∥x1 − x2∥, ∀x1, x2 ∈ X,

for almost surely ξ ∈ Ξ.
If the optimal solution x∗ of (2.2) exists and satisfies θ (x∗) > 0, then x∗ is not weakly

Pareto optimal from the above conclusions. However, the following lemma shows that the
global solutions of (2.2) are always weakly Pareto optimal for (1.1).

Lemma 2.3. Let E[fi(·, ξ)] : X −→ R be bounded functions for all i = 1, . . . ,m. If x∗ ∈ X
is optimal solution for (2.2), then x∗ is weakly Pareto optimal for (1.1).

Proof. Let f : X −→ R and g : X −→ R be bounded functions. Then, it follows that

sup
x∈X

(f(x) + g(x)) ≤ sup
x∈X

f(x) + sup
x∈X

g(x).

Thus, we have
sup
x∈X

(f(x) + g(x))− sup
x∈X

f(x) ≤ sup
x∈X

g(x). (2.3)

Let x∗ be an optimal solution for (2.2). Then, θ (x) ≥ θ (x∗) for all x ∈ X, which implies

0 ≤ θ(x)− θ (x∗)

= sup
y∈X

min
i∈{1,...,m}

{E[fi(x, ξ)]− E[fi(y, ξ)]} − sup
y∈X

min
i∈{1,...,m}

{E[fi(x∗, ξ)]− E[fi(y, ξ)]}

≤ sup
y∈X

[
min

i∈{1,...,m}
{E[fi(x, ξ)]− E[fi(y, ξ)]} − min

i∈{1,...,m}
{E[fi(x∗, ξ)]− E[fi(y, ξ)]}

]
,

where the inequality comes from (2.3). Now, let i∗ ∈ argmin
i∈{1,...,m}

{E[fi(x∗, ξ)]− E[fi(y, ξ)]} .

Then, we obtain

min
i∈{1,...,m}

{E[fi(x∗, ξ)]− E[fi(y, ξ)]} = E[fi∗(x∗, ξ)]− E[fi∗(y, ξ)],

which implies

0 ≤ θ(x)− θ (x∗)

≤ sup
y∈X

[
min

i∈{1,...,m}
{E[fi(x, ξ)]− E[fi(y, ξ)]} − {E[fi∗(x∗, ξ)]− E[fi∗(y, ξ)]}

]
≤ sup

y∈X
{(E[fi∗(x, ξ)]− E[fi∗(y, ξ)])− (E[fi∗(x∗, ξ)]− E[fi∗(y, ξ)])}

≤ sup
y∈X

max
i∈{1,...,m}

{(E[fi(x, ξ)]− E[fi(y, ξ)])− (E[fi(x∗, ξ)]− E[fi(y, ξ)])}

= max
i∈{1,...,m}

{E[fi(x, ξ)]− E[fi(x∗, ξ)]} .

Therefore, x∗ is weakly Pareto optimal for (1.1).

In the rest of this section, P(V ) denotes the probability of an event V. In the following
we provide an error bound of the gap function for the stochastic multiobjective optimization
problems (1.1).
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Theorem 2.4. Suppose that each function fi(·, ξ) (i = 1, . . . ,m) is convex on X for almost
every ξ ∈ Ξ. Let fi (i = 1, . . . ,m) be uniformly strongly convex on X with modulus µi > 0
over Vi ⊂ Ξ with P(Vi) > 0, µ := min

1≤i≤m
µi, ν := min

1≤i≤m
P(Vi). Then, we have

dist2 (x,WSol(F,X)) ≤ 2

µν
θ(x), ∀x ∈ X. (2.4)

Proof. Using the definitions of convexity and strong convexity, for any x, y ∈ X,α ∈ (0, 1),
we have

E[fi(αx+ (1− α)y, ξ)] =

∫
Vi

fi(αx+ (1− α)y, ξ)P(dξ) +
∫
Ξ\Vi

fi(αx+ (1− α)y, ξ)P(dξ)

≤
∫
Ξ

(αfi(x, ξ)+(1− α)fi(y, ξ))P(dξ)−
α(1− α)µi

2

∫
Vi

∥x− y∥2P(dξ)

= αE[fi(x, ξ)] + (1− α)E[fi(y, ξ)]−
α(1− α)µi

2
P(Vi)∥x− y∥2

≤ αE[fi(x, ξ)] + (1− α)E[fi(y, ξ)]−
α(1− α)µν

2
∥x− y∥2,

which implies that E[fi (·, ξ)] is strongly convex with modulus µν > 0 for all i ∈ {1, . . . ,m}.
Then, it follows from Theorem 3.5 in [16] that the conclusion is true.

Definition 2.5 ([13]). Assume that every function of the sequence {fn(x)} is lower semicon-
tinuous and the function f(x) is lower semicontinuous. We say that {fn(x)} epi-converges
to f if for any x,

(i) for every sequence {xn} converging to x, it holds lim inf
n→∞

fn (xn) ≥ f(x);

(ii) there exists a sequence {xn} converging to x such that lim sup
n→∞

fn (xn) ≤ f(x).

Definition 2.6 ([13]). Let {Cn} be a sequence of closed sets in Rn. The outer limit of {Cn}
is defined as follows:

ls Cn =

{
x | ∃ {xnk

} s.t. {xnk
} ∈ {Cnk

} , x = lim
k→∞

xnk

}
.

3 Convergence of Optimal Values and Optimal Solutions

Since problem (2.2) involves the mathematical expectation in the objective function and
the distribution of the random variables may be unknown in practice or it is numerically
too expensive to calculate the expected values, we apply sample average approximation
techniques to deal with the expected value, and investigate its convergence. Let ξ1, ξ2, . . . , ξN
be independently and identically distributed samples drawn from Ξ. Then, we consider the
sample average approximation problem

min θN (x) = sup
y∈X

min
i∈{1,...,m}

{
1
N

N∑
j=1

fi(x, ξj)− 1
N

N∑
j=1

fi(y, ξj)

}
s.t. x ∈ X,

(3.1)

as an approximation to (2.2).
In what follows, we investigate the convergence of the approximation problem (3.1).

Let fi,N (x) := 1
N

N∑
j=1

fi(x, ξj), Fi(x) := E[fi(x, ξ)], i = 1, . . . ,m.
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Lemma 3.1. Assume that assumptions (A1)-(A2) hold. Then for each i = 1, 2, . . . ,m, the
following results hold:

(a) Fi(x) is finite and Lipschitz continuous on X;

(b) {fi,N (x)} uniformly converges to Fi(x) on X, that is,

lim
N→∞

max
x∈X

|fi,N (x)− Fi(x)| = 0.

Proof. From assumptions (A1) and (A2) that we have for each i = 1, . . . ,m, Fi(x) < +∞
for all x ∈ X. Moreover, (A2) implies that for each i = 1, . . . ,m, Fi is Lipschitz continuous
on X, which proves (a). Since X is a compact set, thus guarantees that (b) then follows
from Theorem 7.48 of [15].

Theorem 3.2. Assume that assumptions (A1)-(A2) hold. Then θN (x) uniformly converges
to θ (x) with probability one.

Proof. By the definitions of θN (x) and θ (x), we have

|θN (x)− θ (x)| =
∣∣∣∣sup
y∈X

min
i∈{1,...,m}

{fi,N (x)− fi,N (y)} − sup
y∈X

min
i∈{1,...,m}

{Fi(x)− Fi(y)}
∣∣∣∣

≤
∣∣∣∣sup
y∈X

max
i∈{1,...,m}

{fi,N (x)− fi,N (y)− Fi(x) + Fi(y)}
∣∣∣∣

≤
∣∣∣∣sup
y∈X

[
max

i∈{1,...,m}
{fi,N (x)− Fi(x)}+ max

i∈{1,...,m}
{Fi(y)− fi,N (y)}

]∣∣∣∣
≤ max

i∈{1,...,m}
|fi,N (x)− Fi(x)|+ sup

y∈X
max

i∈{1,...,m}
|fi,N (y)− Fi(y)| .

Therefore, we have

sup
x∈X

|θN (x)− θ (x)| ≤ sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)|

+ sup
y∈X

max
i∈{1,...,m}

|fi,N (y)− Fi(y)| . (3.2)

From Lemma 3.1, for each i ∈ {1, 2, . . . ,m}, {fi,N (x)} uniformly converges to Fi(x) on X.
Then, for any ϵ > 0, there exists N0 such that for any N > N0, we have

sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| < ϵ
2 .

Thus, by (3.2), we have
sup
x∈X

|θN (x)− θ (x)| < ϵ,

which implies that θN (x) uniformly converges to θ (x) on X with probability one.

In the following we shall provide an upper bound of the distance between the weakly
Pareto optimal of (1.2) and the true one WSol(F,X) in terms of error bound condition.

Theorem 3.3. Let {xN} be a sequence of weakly Pareto optimal to (1.2). Suppose that
assumptions (A1)-(A2) hold and the error bound condition (2.4) holds with gap function
θ(·). Then
(i) any accumulation point x∗ of sequence {xN} is weakly Pareto optimal to (1.1);
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(ii)

dist (xN ,WSol(F,X)) ≤
√

2

µν
(θ (xN )− θN (xN ))

1
2 .

Proof. (i) Denote x∗ as an accumulation point of sequence {xN}. From Theorem 3.2 that
θN (x) uniformly converges to θ (x) on X, then θ (x∗)=0 as θN (xN ) = 0 and xN → x∗,
which implies x∗ is weakly Pareto optimal to (1.1).

(ii) According to the error bound condition (2.4), we have

dist (xN ,WSol(F,X)) ≤
√

2

µν
θ(xN )

1
2

=

√
2

µν
(θ(xN )− θN (xN ))

1
2 ,

where the equality follows from the fact that, θN (xN ) = 0 as xN is weakly Pareto optimal
to (1.2).

Next we discuss the convergence of optimal values and optimal solutions of (3.1).

Theorem 3.4. Assume that assumptions (A1)-(A2) hold, then

lim
N→∞

min
x∈X

θN (x) = min
x∈X

θ (x) ,

and

ls{argminx∈XθN (x)} ⊂ argminx∈Xθ (x) .

Proof. It follows from assumptions (A1) and (A2) that θN (x) epi-converges to θ (x) on X
with probability one, and the remaining assertion then follows from Theorem 7.33 in [13].

4 Almost Sure Rates of Convergence of Optimal Values and Opti-
mal Solutions

In this section, we discuss the rate of convergence in the almost sure sense for estimators of
optimal values and optimal solutions of the approximation problem (3.1). From now on, we
denote by θ∗ and θ∗N the optimal values of problems (2.2) and (3.1), respectively.

Lemma 4.1. Suppose that assumptions (A1)-(A2) hold. Then, for any ϵ > 0 and for each
i = 1, . . . ,m, there exists N∗

i = N∗
i (ϵ) such that

sup
x∈X

|fi,N (x)− Fi(x)| ≤ (1 + ϵ)bNσ(X̃i), ∀N ≥ N∗
i ,

almost surely. Furthermore, let σ = max
i∈{1,...,m}

σ(X̃i), then

sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≤ (1 + ϵ)bNσ, ∀N ≥ N∗, (4.1)

where N∗ = max
i∈{1,...,m}

N∗
i .
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Proof. It follows from Lemma 1 in [1] that for any ϵ > 0 and for each i = 1, . . . ,m, there
exists N∗

i such that

sup
x∈X

|fi,N (x)− Fi(x)| ≤ (1 + ϵ)bNσ(X̃i), ∀N ≥ N∗
i .

Therefore, for any x ∈ X and for each i = 1, . . . ,m, we have |fi,N (x) − Fi(x)| ≤ (1 +

ϵ)bNσ(X̃i), ∀N ≥ N∗
i . This implies that for any x ∈ X,

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≤ (1 + ϵ)bN max
i∈{1,...,m}

σ(X̃i), ∀N ≥ N∗.

Therefore, we have

sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≤ (1 + ϵ)bNσ, ∀N ≥ N∗.

Theorem 4.2. Suppose that assumptions (A1)-(A2) hold. Then, for any ϵ > 0, there exists
N∗ such that

|θ∗N − θ∗| ≤ 2(1 + ϵ)bNσ, ∀N ≥ N∗,

almost surely.

Proof. It follows from Lemma 4.1 and (3.2) that

|θ∗N − θ∗| ≤ sup
x∈X

|θN (x)− θ (x)| ≤ 2 sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≤ 2(1 + ϵ)bNσ,

almost surely.

Remark 4.3. Theorem 4.2 implies that the optimal value θ∗N converges to θ∗ almost surely
at a rate of O(bN ).

Theorem 4.4. Let {xN} be a sequence of solutions to (3.1). Suppose that assumptions
(A1)-(A2) hold. Then, for any ϵ > 0, there exists N∗ such that

|θ(xN )− θ∗| ≤ 4(1 + ϵ)bNσ, ∀N ≥ N∗,

almost surely.

Proof. Note that

|θ(xN )− θ∗| ≤ |θ(xN )− θN (xN )|+ |θN (xN )− θ∗|
≤ 2 sup

x∈X
|θN (x)− θ(x)|. (4.2)

Therefore, it follows from Lemma 4.1 and (3.2) that

|θ(xN )− θ∗| ≤ 4 sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≤ 4(1 + ϵ)bNσ,

almost surely.

Remark 4.5. Theorem 4.4 establishes the sequence of optimal solutions of the approximate
problem (3.1) converges to an optimal solution of (2.2) almost surely at a rate of O(bN ).
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5 Rates of Convergence of Optimal Values and Optimal Solutions
in Mean

In the following we establish the rates of convergence in mean for estimators of optimal values
and optimal solutions of the approximation problem (3.1). It follows from Proposition 2 in
[1] that we have the following result.

Lemma 5.1. Suppose that assumptions (A1)-(A2) hold. Then, for each i = 1, . . . ,m, we
have

lim
N→∞

E

[ sup
x∈X

∥fi,N (x)− Fi(x)∥

bN

]
= 0,

i.e. E
[
sup
x∈X

∥fi,N (x)− Fi(x)∥
]
= o(bN ), and {fi,N} converges to Fi at a rate of o(bN ).

Remark 5.2. Lemma 5.1 implies that for any ϵ > 0, there exists N∗ such that

E
[
sup
x∈X

∥fi,N (x)− Fi(x)∥
]

bN
< ϵ, ∀ i ∈ {1, . . . ,m}, N ≥ N∗. (5.1)

By the Proof of Theorem 4.2 and Lemma 5.1, we immediately obtain the following result
for the convergence of optimal values.

Theorem 5.3. Suppose that assumptions (A1)-(A2) hold. Then

E[|θ∗N − θ∗|] = o(bN ).

Remark 5.4. Theorem 5.3 states that θ∗N is an asymptotically unbiased estimator of θ∗.
It follows from Proposition 5.6 in [15] that E[θ∗N ] ≤ E[θ∗N+1] ≤ θ∗ for any N , which can be
combined with the above result to obtain that for any ϵ > 0, there exists N∗ such that

E[θ∗N ] ≤ E[θ∗N+1] ≤ θ∗ ≤ E[θ∗N ] + ϵbN , ∀N ≥ N∗,

which implies that the optimal value θ∗ is in an interval of known size.

By the Proof of Theorem 4.4 and Lemma 5.1, the following result shows that the sequence
of optimal solutions of the approximate problem (3.1) converges to an optimal solution of
(2.2) at a rate of o(bN ).

Theorem 5.5. Let {xN} be a sequence of solutions to (3.1). Suppose that assumptions
(A1)-(A2) hold. Then

E[|θ(xN )− θ∗|] = o(bN ).

6 Rates of Convergence of Optimal Values and Optimal Solutions
in Probability

In this section, under some mild conditions, we shall infer the rates of convergence in proba-
bility for optimal values and optimal solutions of the approximation problem (3.1) by virtue
of the obtained rates of convergence in mean. From Theorem 5.3 that we have the following
result.
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Proposition 6.1. Suppose that assumptions (A1)-(A2) hold and let δ > 0 be arbitrary.
Then, we have

P

(
|θ∗N − θ∗|

bN
> δ

)
→ 0, as N → ∞.

In the following we discuss the rates of convergence in probability for optimal values and
optimal solutions.

Theorem 6.2. Suppose that assumptions (A1)-(A2) hold and let δ > 0 be arbitrary. Then,
the following results hold:

(i) For any ϵ > 0, there exists N∗ such that

P
(
|θ∗N − θ∗| ≥ δ

)
≤ 2ϵbN

δ
, as N ≥ N∗.

(ii) If E[∥X̃i∥s] < ∞ for s > 2 and for i = 1, . . . ,m, then there exists N∗ such that for all
N ≥ N∗

P
(
|θ∗N − θ∗| ≥ δ

)
≤ exp

{
− Nδ2

48σ2

}
+

c

Ns−1( δ4 )
s

max
1≤i≤m

E[∥X̃i∥s], (6.1)

where c is a positive constant. Moreover, let {xN} be a sequence of solutions to (3.1), then

with probability 1−
{
− Nδ2

48σ2

}
− c

Ns−1( δ
4 )

s max1≤i≤m E[∥X̃i∥s], xN becomes an approximate

optimal solution of (2.2).

Proof. (i) For any δ > 0, we have

P
(
|θ∗N − θ∗| ≥ δ

)
≤ P

(
sup
x∈X

|θN (x)− θ (x)| ≥ δ
)

≤ P
(
sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≥
δ

2

)
≤ 2ϵbN

δ
,

where the third inequality follows from Markov’s inequality and inequality (5.1).
(ii) It follows from Theorem 8 of [1] that for each i = 1, . . . ,m, there exists N∗

i such that
for all N ≥ N∗

i , we have

P
(
sup
x∈X

|fi,N (x)− Fi(x)| ≥ δ
)
≤ exp

{
− Nδ2

12σ2(X̃i)

}
+

c

Ns−1( δ2 )
s
E[∥X̃i∥s].

This implies that for all N ≥ N∗ := max
i∈{1,...,m}

N∗
i , we have

P
(
sup
x∈X

max
i∈{1,...,m}

|fi,N (x)−Fi(x)| ≥ δ
)
≤ exp

{
− Nδ2

12σ2

}
+

c

Ns−1( δ2 )
s

max
1≤i≤m

E[∥X̃i∥s]. (6.2)

We then obtain (6.1) similar to (i). If xN is a solution to (3.1), then it follows from (4.2)
and (6.2) that we have

P
(
|θ(xN )− θ∗| ≥ 4δ

)
≤ P

(
sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≥ δ
)

≤ exp
{
− Nδ2

12σ2

}
+

c

Ns−1( δ2 )
s

max
1≤i≤m

E[∥X̃i∥s],
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which implies that, with probability 1−
{
− Nδ2

48σ2

}
− c

Ns−1( δ
4 )

s max1≤i≤m E[∥X̃i∥s], an optimal

solution of (3.1) becomes a 4δ-approximate optimal solution of (2.2).

Remark 6.3. The results of exponential rates of convergence in probability are obtained
by a large deviation principle under strong exponential moment conditions (or boundedness
condition) in [10, 3]. However, we obtain the exponential rates of convergence without a
strong exponential moment conditions on the random variable are available. Therefore, the
results improve the corresponding results in [10, 3].

7 Rates of Convergence of the Weakly Pareto Optimal for (1.2)

Next, we will discuss the rates of convergence of the weakly Pareto optimal of the approxi-
mate problem (1.2) under the error bound condition.

Theorem 7.1. Let {xN} be a sequence of weakly Pareto optimal to (1.2). Suppose that
assumptions (A1)-(A2) hold and the error bound condition (2.4) holds with gap function
θ(·). Then, for any ϵ > 0, there exists N∗ such that

dist2 (xN ,WSol(F,X)) ≤ 4

µν
(1 + ϵ)bNσ, ∀N ≥ N∗,

almost surely.

Proof. It follows from Theorem 3.3 and Theorem 4.2 that we have

dist2 (xN ,WSol(F,X)) ≤ 2

µν
(θ (xN )− θN (xN ))

≤ 2

µν
sup
x∈X

|θN (x)− θ (x)| ≤ 4

µν
(1 + ϵ)bNσ,

almost surely.

Remark 7.2. Theorem 7.1 implies that the distance to the weakly efficient sets WSol(F,X)
diminish almost surely at the rate of O(

√
bN ).

If assumptions (A1)-(A2) are satisfied together with the error bound condition (2.4),
then it is easy to obtain the rate of convergence of the weakly Pareto optimal to (1.2) in
mean.

Theorem 7.3. Let {xN} be a sequence of weakly Pareto optimal to (1.2). Suppose that
assumptions (A1)-(A2) hold and the error bound condition (2.4) holds with gap function
θ(·). Then

E[dist2 (xN ,WSol(F,X))] → 0, as N → ∞,

and this implies that E[dist2 (xN ,WSol(F,X))] vanishes at the rate of o(bN ).

Proof. It follows from Theorem 7.1 that we have dist2 (xN ,WSol(F,X)) → 0, as
N → ∞, almost surely. Further, due to the compactness of X, we have
dist2 (xN ,WSol(F,X)) ≤ diam2(X). By Lebesgue’s dominated convergence theorem, we
obtain E[dist2 (xN ,WSol(F,X))] → 0, as N → ∞. The remaining statements follows from
Lemma 5.1 and Theorem 7.1.

By the Proof of Theorem 6.2, it is easy to obtain the exponential rates of convergence of
the weakly Pareto optimal to (1.2).
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Theorem 7.4. Let {xN} be a sequence of weakly Pareto optimal to (1.2). Suppose that
assumptions (A1)-(A2) hold and let δ > 0 be arbitrary. Then, the following results hold:

(i) If the error bound condition (2.4) holds with gap function θ(·), then for any ϵ > 0, we
have

P
(
dist2 (xN ,WSol(F,X)) ≥ δ

)
≤ 4ϵbN

δµν
, as N ≥ N∗.

(ii) If the error bound condition (2.4) holds with gap function θ(·), and E[∥X̃i∥s] < ∞ for
s > 2 and i = 1, . . . ,m, then there exists N∗ such that for all N ≥ N∗

P
(
dist2 (xN ,WSol(F,X)) ≥ δ

)
≤ exp

{
− Nδ2µ2ν2

192σ2

}
+

c

Ns−1( δµν8 )s
max

1≤i≤m
E[∥X̃i∥s].

Proof. (i) From the proof of Theorem 7.1, we have

P
(
dist2 (xN ,WSol(F,X)) ≥ δ

)
≤ P

(
θ (xN )− θN (xN ) ≥ µνδ

2

)
≤ P

(
sup
x∈X

max
i∈{1,...,m}

|fi,N (x)− Fi(x)| ≥
µνδ

4

)
≤ 4ϵbN

δµν
.

(ii) Similar to the proof of Theorem 6.2 (ii), it is easy to obtain the result.

8 Conclusions

In this paper, based on gap function, we transform stochastic multiobjective optimization
problems into the stochastic optimization reformulation problems without the scalarization
parameters. Then, we propose a sample average approximation method for solving the
reformulation problems, and the convergence and the rates of convergence of optimal values
and optimal solutions of the approximation problem are discussed. It is interesting to apply
the results obtained in this paper to practical problems (such as transportation network
equilibrium problem). We will investigate this topic in the near future.
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