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where αk ∈ R, αk ̸= 0,uk = (1, uk, u
2
k, · · · , u

n−1
k )⊤ ∈ Rn are Vandermonde vectors for

k = 1, 2, · · · , r, r is the CANDECOMP/PARAFAC (CP) rank of the tensor A, and ui ̸= uj

for i ̸= j, then we say A has a Vandermonde decompositon.

According to Qi [20], the mth order n-dimensional Hankel tensor A has the Vander-
monde decomposition (1.1), and we will use the CANDECOMP/PARAFAC (CP) rank [11]
throughout the paper.

In this paper, we consider an mth order n-dimensional Hankel tensor A ∈ Hm,n with
rank(A) = r, and its elements are

ai1i2···im = hi1+i2+···+im−m, for all i1, i2, · · · , im ∈ [n]. (1.2)

Our goal is to obtain the exact Vandermonde decomposition of the Hankel tensor A by (1.2),
that is

A = α1


1
x1

x2
1
...

xn−1
1

 ◦


1
x1

x2
1
...

xn−1
1

 ◦ · · · ◦


1
x1

x2
1
...

xn−1
1


︸ ︷︷ ︸

m

+α2


1
x2

x2
2
...

xn−1
2

 ◦


1
x2

x2
2
...

xn−1
2

 ◦ · · · ◦


1
x2

x2
2
...

xn−1
2


︸ ︷︷ ︸

m

+ · · ·

+ αr


1
xr

x2
r
...

xn−1
r

 ◦


1
xr

x2
r
...

xn−1
r

 ◦ · · · ◦


1
xr

x2
r
...

xn−1
r


︸ ︷︷ ︸

m

,

(1.3)

where αi ∈ R, αi ̸= 0, xi ̸= 0, and xi ̸= xj for i ̸= j, i, j = 1, 2, · · · , r.
The Hankel tensor decomposition problem often arises in seismic image [29], seismic

signal [21, 16], blind system identification [8], subspace system identification [27], over-
the-horizon radar [2, 3], signal processing [12] and some other applications. The tensor
decomposition problem and variants thereof have been discussed a number of times in the
literature. Most of this work built upon existing work for the special case m = 2, also known
as Hankel matrix decomposition problem, see [28] for a comprehensive overview. When
m > 2, Bo et al. [2] constructed the third order Hankel tensor, which is established by echo
data of the distance unit containing the ship target. For example, the echo data was written
by s = [s1, s2, · · · , sN ], and its first P elements constructed the first I1 × I2 dimensional
Hankel matrix of the Hankel tensor, and the second I1×I2 dimensional Hankel matrix of the
Hankel tensor was constructed by [s2, s3, · · · , sP+1], by analogy, the other Hankel matrices
of the Hankel tensor were constructed until the last element of the one-dimensional array
s. These Hankel matrices were arranged in order from front to back to obtain a third-order
Hankel tensor H ∈ RI1×I2×I3 . Then the sea clutter subspace and target subspace of that
tensor were solved by higher order SVD (HOSVD). Finally, in order to suppress sea clutter,
Hankel tensor was mapped to the target subspace by orthogonal projection method. For
most post-stack seismic datasets, due to the complexity of the underground structure or the
influence of noise, the data itself may not be able to satisfy the absolute low rank, thus the
recovery accuracy of the data will be affected. In order to solve this problem, Qian et al. [21]
designed a Hankel construction method, and the original data tensor was constructed by it
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to obtain the Hankel tensor, so as to improve the low rank of the data volume. Then a target
function of Hankelization was constructed and it was solved by the alternating minimization
method. Recovery accuracy was much higher than similar algorithms.

Recently the structured tensor, such as nonnegative tensor and Toeplitz tensor, attracted
much attentions, especially, the Hankel tensor got great development as it had wide proper-
ties [24] and applications, such as signal processing [7], data mining [1], computer vision [19]
and machine learning [22]. For example, Song and Qi [24] discussed some relationships of
positive semi-definite tensors and some other structured tensors. Xu [26] introduced Hankel
tensors, Vandermonde tensors and their positivities. In many practical problems, the ten-
sors need to be decomposed, such as canonical polyadic (CP) decomposition [25, 10, 11] and
Tucker decomposition [18]. Boizard et al. [5] proposed two ways to extend Hankel structure
to fourth order tensors. For these two types of tensors, a method to build a reordered mode
was proposed, which highlighted the column redundancy and derived a fast algorithm to
compute their HOSVD. Nie et al. [17] studied the relations among various ranks of Hankel
tensors and gave an algorithm that can compute the Vandermonde ranks and decomposi-
tions for all Hankel tensors. The exact decomposition of tensors is a difficult problem. The
previous work mainly concentrated on the numerical solutions of the decomposition of ten-
sors. A Multilinear generalization of the singular value decomposition (SVD) was discussed
and it was called the higher order SVD by Lieven et al. [14]. Although truncation of the
HOSVD of a given tensor may lead to a good rank-(R1, R2, · · · , RN ) approximation ([15]
contains an error bound), it turned out that this tensor was in general not the best possible
(least-squares) approximation under the given n-mode rank constraints. Tichavsky et al.
[25] proposed a numerical method for CP decomposition of small size tensors and he was
primarily on decomposition of tensors that correspond to small matrix multiplications. For
higher-order tensors, Li et al. [13] proposed a novel, adaptive tensor memorization algorithm
(ADATM). This method behaves better as the tensor order grows, making its performance
more scalable for higher-order data problems. Smith et al. [23] produced an algorithm to
accelerate the Tucker decomposition based on a compressed data structure for sparse ten-
sors and show that many computational redundancies during tensor-matrix multiplications
(TTMc) can be identified and pruned without the memory overheads of memorization. For
tensor decomposition, some numerical algorithms [6] were described in details, and their
numerical complexity was calculated. It was also pointed out that the tensor decomposition
was eventually an approximation rather than an exact decomposition. Goulart et al. [9] in-
troduced a CP decomposition model which has structured matrix factors, such as Toeplitz,
Hankel or circulant matrices, and studied its associated estimation problem. Structured
CP decompositions, i.e. with Toeplitz, circulant, or Hankel matrix factors, were also stud-
ied in [4]. However, the previous works mainly concentrated on the approximation tensor
decomposition and the study of exact decomposition of Hankel tensor is very rare.

In this paper, we study the problem (1.3) of exact Vandermonde decomposition for the
Hankel tensor. Firstly, this problem can be rewritten as the matrix equation, and then a
new method is designed to solve the problem. Finally, some examples are given to show
that the new method is feasible and effective.

This paper is organized as follows. In Section 2, we propose a new method for solving
the problem (1.3). In Section 3, some examples are given to illustrate that the new method
is feasible and effective.
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2 A Simple Method for Computing the Vandermonde Decomposi-
tion (1.3) of a Hankel Tensor

By combining the formulas (1.2) and (1.3), we can obtain the system of nonlinear equations

α1 + α2 + · · ·+ αr = h0,

α1x1 + α2x2 + · · ·+ αrxr = h1,

α1x
2
1 + α2x

2
2 + · · ·+ αrx

2
r = h2,

α1x
3
1 + α2x

3
2 + · · ·+ αrx

3
r = h3,

...

α1x
m(n−1)
1 + α2x

m(n−1)
2 + · · ·+ αrx

m(n−1)
r = hm(n−1).

(2.1)

Let

where X ∈ R[m(n−1)+1]×r, α ∈ Rr,h ∈ Rm(n−1)+1, then (2.1) can be equivalently written
as Xα = h, that is

1 1 1 1 1 · · · 1
x1 x2 x3 x4 x5 · · · xr

x2
1 x2

2 x2
3 x2

4 x2
5 · · · x2

r

x3
1 x3

2 x3
3 x3

4 x3
5 · · · x3

r

x4
1 x4

2 x4
3 x4

4 x4
5 · · · x4

r
...

...
...

...
...

. . .
...

xr−1
1 xr−1

2 xr−1
3 xr−1

4 xr−1
5 · · · xr−1

r

xr
1 xr

2 xr
3 xr

4 xr
5 · · · xr

r
...

...
...

...
...

. . .
...

x
m(n−1)
1 x

m(n−1)
2 x

m(n−1)
3 x

m(n−1)
4 x

m(n−1)
5 · · · x

m(n−1)
r




α1

α2

α3

...
αr



=



h0

h1

h2

h3

h4

h5

...
hm(n−1)


, (2.2)
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and the augmented matrix of the equations (2.2) is X = [X
...h] ∈ R[m(n−1)+1]×(r+1), that is

X =



1 1 1 1 1 · · · 1 h0

x1 x2 x3 x4 x5 · · · xr h1

x2
1 x2

2 x2
3 x2

4 x2
5 · · · x2

r h2

x3
1 x3

2 x3
3 x3

4 x3
5 · · · x3

r h3

x4
1 x4

2 x4
3 x4

4 x4
5 · · · x4

r h4

...
...

...
...

...
. . .

...
...

xr−1
1 xr−1

2 xr−1
3 xr−1

4 xr−1
5 · · · xr−1

r hr−1

xr
1 xr

2 xr
3 xr

4 xr
5 · · · xr

r hr

...
...

...
...

...
. . .

...
...

x
m(n−1)
1 x

m(n−1)
2 x

m(n−1)
3 x

m(n−1)
4 x

m(n−1)
5 · · · x

m(n−1)
r hm(n−1)


. (2.3)

Then, we make the elementary row operations for the augmented matrix X. Let

L1 =



1
−x1 1

−x1 1
−x1 1

. . .
. . .

−x1 1
−x1 1

−x1 1
. . .

. . .

−x1 1


[m(n−1)+1]×[m(n−1)+1]

,

(2.4)

then, we gain

L1X =

1 1 1 · · · 1 h0

0 x2 − x1 x3 − x1 · · · xr − x1 h1(x1)
0 x2(x2 − x1) x3(x3 − x1) · · · xr(xr − x1) h2(x1)
0 x2

2(x2 − x1) x2
3(x3 − x1) · · · x2

r(xr − x1) h3(x1)
...

...
...

. . .
...

...
0 xr−2

2 (x2 − x1) xr−2
3 (x3 − x1) · · · xr−2

r (xr − x1) hr−1(x1)
0 xr−1

2 (x2 − x1) xr−1
3 (x3 − x1) · · · xr−1

r (xr − x1) hr(x1)
...

...
...

. . .
...

...

0 x
(m(n−1)−1)
2 (x2 − x1) x

(m(n−1)−1)
3 (x3 − x1) · · · x

(m(n−1)−1)
r (xr − x1) h(m(n−1))(x1)


,

where hk(x1) = hk − hk−1x1, for k = 1, 2, · · · ,m(n− 1).
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Let

L2 =



1
0 1

−x2 1
−x2 1

. . .
. . .

−x2 1
−x2 1

−x2 1
. . .

. . .

−x2 1


[m(n−1)+1]×[m(n−1)+1]

, (2.5)

then

L2L1X =

(2.6)

Similarly, let

Lr =



1
0 1

. . .
. . .

0 1
0 1

0 1
−xr 1

−xr 1
. . .

. . .

−xr 1


[m(n−1)+1]×[m(n−1)+1]

, (2.7)
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then

Lr · · ·L2L1X =

1 1 1 1 · · · 1 h0

0 x2 − x1 x3 − x1 x4 − x1 · · · xr − x1 h1(x1)

0 0
2∏

j=1

(x3 − xj)
2∏

j=1

(x4 − xj) · · ·
2∏

j=1

(xr − xj) h2(x1, x2)

0 0 0
3∏

j=1

(x4 − xj) · · ·
3∏

j=1

(xr − xj) h3(x1, x2, x3)

...
...

...
...

. . .
...

...

0 0 0 0 · · ·
r−1∏
j=1

(xr − xj) hr−1(x1, x2, · · · , xr−1)

0 0 0 0 · · · 0 hr(x1, x2, · · · , xr)
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 hm(n−1)(x1, x2, · · · , xr)



,

(2.8)

where,

hk(x1, x2, · · · , xk) = (−1)0hk + (−1)1hk−1(

k∑
i1=1

xi1) + (−1)2hk−2(
∑

1≤i1<i2≤k

xi1xi2) + · · ·

+ (−1)khk−k(
∑

1≤i1<i2<···<ik≤k

xi1xi2 · · ·xik), for k = 1, 2, · · · , r − 1;

hk(x1, x2, · · · , xr) = (−1)0hk + (−1)1hk−1(

r∑
i1=1

xi1) + (−1)2hk−2(
∑

1≤i1<i2≤r

xi1xi2) + · · ·

+ (−1)rhk−r(
∑

1≤i1<i2<···<ir≤r

xi1xi2 · · ·xir ), for k = r, r + 1, · · · ,m(n− 1).

(2.9)

Therefore, the system (2.2) has a solution if and only if



hr(x1, x2, · · · , xr) = 0,

hr+1(x1, x2, · · · , xr) = 0,

hr+2(x1, x2, · · · , xr) = 0,

hr+3(x1, x2, · · · , xr) = 0,

hr+4(x1, x2, · · · , xr) = 0,
...

hm(n−1)(x1, x2, · · · , xr) = 0.

(2.10)
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By (2.9), the system (2.10) can be equivalently written as

(−1)1hr−1 (−1)2hr−2 · · · (−1)r−1h1 (−1)rh0

(−1)1hr (−1)2hr−1 · · · (−1)r−1h2 (−1)rh1

(−1)1hr+1 (−1)2hr · · · (−1)r−1h3 (−1)rh2

(−1)1hr+2 (−1)2hr+1 · · · (−1)r−1h4 (−1)rh3

(−1)1hr+3 (−1)2hr+2 · · · (−1)r−1h5 (−1)rh4

...
...

. . .
...

...
(−1)1hm(n−1)−1 (−1)2hm(n−1)−2 · · · (−1)r−1hm(n−1)−r+1 (−1)rhm(n−1)−r





t1
t2
t3
t4
t5
...
tr



=



−hr

−hr+1

−hr+2

−hr+3

−hr+4

...
−hm(n−1)


, (2.11)

where,

t1 =
r∑

i1=1

xi1 = x1 + x2 + · · ·+ xr,

t2 =
∑

1≤i1<i2≤r

xi1xi2 = x1x2 + · · ·+ x1xr + x2x3 + · · ·+ x2xr + · · ·+ xr−1xr,

...

tr =
∑

1≤i1<i2<···<ir≤r

xi1xi2 · · ·xir = x1x2 · · ·xr.

(2.12)

Next we will solve the system (2.11).

Theorem 2.1. If m(n− 1) + 1 ≥ 2r, set t = [t1, t2, t3, t4, t5, · · · , tr]⊺. Then the nonhomo-
geneous linear equations (2.11) has a solution

t =



(−1)1hr−1 (−1)2hr−2 · · · (−1)r−1h1 (−1)rh0

(−1)1hr (−1)2hr−1 · · · (−1)r−1h2 (−1)rh1

(−1)1hr+1 (−1)2hr · · · (−1)r−1h3 (−1)rh2

(−1)1hr+2 (−1)2hr+1 · · · (−1)r−1h4 (−1)rh3

(−1)1hr+3 (−1)2h3
r+2 · · · (−1)r−1h5 (−1)rh4

...
...

. . .
...

...
(−1)1h2r−2 (−1)2h2r−3 · · · (−1)r−1hr (−1)rhr−1



−1

r×r



−hr

−hr+1

−hr+2

−hr+3

−hr+4

...
−h2r−1


. (2.13)

Proof. If m(n− 1) + 1 ≥ 2r, i.e. the number of rows of the coefficient matrix of the system
(2.11) is m(n− 1)− r+1 ≥ r, we can get the augmented matrix from the nonhomogeneous
linear equations (2.11), i.e,
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H =

(2.14)

For convenience, we move the (r+1)th column of the matrix H (2.14) to the 1th column
by elementary column transformation of matrices, and we get

H̃ =

(2.15)

and the elements of the augmented matrix are decided by the (2.1), and we can get

H̃ =

(2.16)
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Add −x1 times row i to row (i+ 1), where i = m(n− 1)− r,m(n− 1)− r − 1, · · · , 2, 1,
then we get

H̃1 =

(2.17)

Add −x2 times row i to row (i+ 1), where i = m(n− 1)− r,m(n− 1)− r − 1, · · · , 3, 2,
then we get

H̃2 =

(2.18)

Similar to above and the rest may be deduced by analogy, and add −xr−1 times row i
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to row (i+ 1), i = m(n− 1)− r,m(n− 1)− r − 1, · · · , r, r − 1, then we get

H̃r−1 =

(2.19)

Add −xp
r times row r to row (r + p), p = 1, 2, · · · ,m(n− 1)− 2r + 1, we get

H̃r =

(2.20)
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Add xr times column j to column (j − 1), j = 2, 3, · · · , r + 1, then we get

Ĥ1 =

(2.21)

Similar to above, and the rest may be deduced by analogy, and add x1 times column 2
to column 1, we get

Ĥr =

(2.22)

where, [Ĥr]12 = (−1)1
1∑

i=1

αi

r∏
k=2

(xi − xk), [Ĥr]13 = (−1)2
2∑

i=1

αi

r∏
k=3

(xi − xk),

[Ĥr]23 = (−1)3
2∑

i=2

αi

1∏
j=1

(xj−xi)
r∏

k=3

(xi−xk).

Due to αi ̸= 0, xi ̸= 0, xj ̸= 0, xk ̸= 0, and xi ̸= xj ̸= xk for i ̸= j ̸= k, i, j, k =

1, 2, · · · , r, we can get that the rank of the matrix Ĥr is rank(Ĥr) = r. From the elementary
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transformations above, we can also see that the nonhomogeneous linear equations (2.11) is
equivalent to the preceding r rows of the equations (2.11). Therefore the nonhomogeneous
linear equations (2.11) has the solutions, that is,

t =



(−1)1hr−1 (−1)2hr−2 · · · (−1)r−1h1 (−1)rh0

(−1)1hr (−1)2hr−1 · · · (−1)r−1h2 (−1)rh1

(−1)1hr+1 (−1)2hr · · · (−1)r−1h3 (−1)rh2

(−1)1hr+2 (−1)2hr+1 · · · (−1)r−1h4 (−1)rh3

(−1)1hr+3 (−1)2h3
r+2 · · · (−1)r−1h5 (−1)rh4

...
...

. . .
...

...
(−1)1h2r−2 (−1)2h2r−3 · · · (−1)r−1hr (−1)rhr−1



−1 

−hr

−hr+1

−hr+2

−hr+3

−hr+4

...
−h2r−1


. (2.23)

Moreover, we can transform the system (2.12) into the following equations
(−1)rxr

1 + (−1)r−1t1x
r−1
1 + (−1)r−2t2x

r−2
1 + · · ·+ (−1)1tr−1x

1
1 + (−1)0tr = 0,

(−1)rxr
2 + (−1)r−1t1x

r−1
2 + (−1)r−2t2x

r−2
2 + · · ·+ (−1)1tr−1x

1
2 + (−1)0tr = 0,

...

(−1)rxr
r + (−1)r−1t1x

r−1
r + (−1)r−2t2x

r−2
r + · · ·+ (−1)1tr−1x

1
r + (−1)0tr = 0.

(2.24)
From the equations (2.24), we know that each equation is a one dimensional equation of the
r-degree with the same coefficients, hence the system of equations (2.24) is equivalent to the
following equation

(−1)rxr + (−1)r−1t1x
r−1 + (−1)r−2t2x

r−2 + · · ·+ (−1)1tr−1x
1 + (−1)0tr = 0. (2.25)

Thus, the solutions of the decomposition (1.3) can be obtained by the equation (2.13) and
the formula (2.25), i.e.,

x = [x1, x2, x3, · · · , xr]
⊺. (2.26)

Now we can input the solution (2.26) to equation (2.2), and according to the formulas (2.8)
and (2.10), we can obtain

1 1 1 1 1 · · · 1
x1 x2 x3 x4 x5 · · · xr

x2
1 x2

2 x2
3 x2

4 x2
5 · · · x2

r

x3
1 x3

2 x3
3 x3

4 x3
5 · · · x3

r

x4
1 x4

2 x4
3 x4

4 x4
5 · · · x4

r
...

...
...

...
...

. . .
...

xr−1
1 xr−1

2 xr−1
3 xr−1

4 xr−1
5 · · · xr−1

r





α1

α2

α3

α4

α5

...
αr


=



h0

h1

h2

h3

h4

...
hr−1


. (2.27)

and the solution of the equation (2.27) is

α1

α2

α3

α4

α5

...
αr


=



1 1 1 1 1 · · · 1
x1 x2 x3 x4 x5 · · · xr

x2
1 x2

2 x2
3 x2

4 x2
5 · · · x2

r

x3
1 x3

2 x3
3 x3

4 x3
5 · · · x3

r

x4
1 x4

2 x4
3 x4

4 x4
5 · · · x4

r
...

...
...

...
...

. . .
...

xr−1
1 xr−1

2 xr−1
3 xr−1

4 xr−1
5 · · · xr−1

r



−1 

h0

h1

h2

h3

h4

...
hr−1


. (2.28)
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Therefore, the new method to solve problem (1.3) can be stated as follows.

Algorithm 2.2 (This algorithm attempts to solve problem (1.3)).
1. Given initial values h0, h1, h2, · · · , hm(n−1) of the Hankel tensor A and rank(A) = r.
2. Compute t = [t1, t2, t3, t4, t5, · · · , tr]⊺ by (2.13).
3. Compute x = [x1, x2, x3, · · · , xr]

⊺ by (2.25).
4. Compute α = [α1, α2, α3, · · · , αr]

⊺ by (2.28).
5. Combining x and α, the exact Vandermonde decomposition (1.3) of Hankel tensor A is
obtained.

3 Numerical Experiments

In this section, we use some examples to show that the new method is feasible to solve
problem (1.3). All experiments are performed in MATLABR2012b on a PC with an Intel
Core i7 processor at 2.4GHz.

Example 3.1. We consider the 3th order 4-dimensional Hankel tensor A as below

A(:, :, 1) =


23/10 353/50 6317/250 51095/498
353/50 6317/250 51095/498 24091/53

6317/250 51095/498 24091/53 55313/26
51095/498 24091/53 55313/26 82401/8

 ,

A(:, :, 2) =


353/50 6317/250 51095/498 24091/53
6317/250 51095/498 24091/53 55313/26
51095/498 24091/53 55313/26 82401/8
24091/53 55313/26 82401/8 152837/3

 ,

A(:, :, 3) =


6317/250 51095/498 24091/53 55313/26
51095/498 24091/53 55313/26 82401/8
24091/53 55313/26 82401/8 152837/3
55313/26 82401/8 152837/3 766576/3

 ,

A(:, :, 4) =


51095/498 24091/53 55313/26 82401/8
24091/53 55313/26 82401/8 152837/3
55313/26 82401/8 152837/3 766576/3
82401/8 152837/3 766576/3 1293794

 ,

where, h0 = 23/10, h1 = 353/50, h2 = 6317/250, h3 = 51095/498, h4 = 24091/53, h5 =
55313/26, h6 = 82401/8, h7 = 152837/3, h8 = 766576/3, h9 = 1293794, and r(A) = 4.

We use Algorithm 2.1 to solve this problem. Firstly, we get the t = [t1, t2, t3, t4]
⊺ =

[79/5, 1803/20, 4357/20, 371/2]⊺ by the equation (2.13), input them to equation (2.25), so
we can get the solutions x = [x1, x2, x3, x4]

⊺ = [5.3, 5, 3.5, 2]⊺ by the equation (2.25), then
input them to equation (2.28), and we can get α = [α1, α2, α3, α4]

⊺ = [0.2, 0.3, 0.6, 1.2]⊺.
Therefore, we get the Vandermonde decomposition of the Hankel tensor A, i.e.,

A =

4∑
k=1

αk(xk ◦ xk ◦ xk), (3.1)

where α1 = 0.2, α2 = 0.3, α3 = 0.6, α4 = 1.2,
x1 = [1, 5.31, 5.32, 5.33]⊺ ∈ R4,x2 = [1, 51, 52, 53]⊺ ∈ R4,
x3 = [1, 3.51, 3.52, 3.53]⊺ ∈ R4,x4 = [1, 21, 22, 23]⊺ ∈ R4.
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Example 3.2. We consider the 3th order 10-dimensional Hankel tensor A, where h0 =
1/2, h1 = −171/50, h2 = 42/125, h3 = −1057/267, h4 = 1749/118, h5 = 7405/239, h6 =
6998/39, h7 = 28594/57, h8 = 124270/69, h9 = 90465/17, h10 = 17003, h11 = 560011/11,
h12 = 625735/4, h13 = 469667, h14 = 1422385, h15 = 4271122, h16 = 12862307, h17 =
38610953, h18 = 116013806, h19 = 348164064, h20 = 1045168064, h21 = 3136080811,
h22 = 9410790796, h23 = 28234957768, h24 = 84714564350, h25 = 254154938458, h26 =
762501952016, h27 = 2287553766609, and r(A) = 5.

We use Algorithm 2.2 to solve this problem. Firstly, we get the t = [t1, t2, t3, t4, t5]
⊺ =

[39/10,−34/25, −741/50,−144/25, 162/25]⊺ by the equation (2.13), input them to equation
(2.25), so we can get the solutions x = [x1, x2, x3, x4, x5]

⊺ = [3,−9/5, 2, 6/5,−1/2]⊺ by the
equation (2.25), then input them to equation (2.28), and we can get α=[α1, α2, α3, α4, α5]

⊺=
[3/10, 3/5,−9/10,−7/10, 6/5]⊺. Therefore, we get the Vandermonde decomposition of the
Hankel tensor A, i.e.,

A =

5∑
k=1

αk(xk ◦ xk ◦ xk), (3.2)

where α1 = 3/10, α2 = 3/5, α3 = −9/10, α4 = −7/10, α5 = 6/5,

x1=[1, 31, 32, 33, 34, 35, 36, 37, 38, 39]⊺ ∈ R10,

x2=[1, (−1.8)1, (−1.8)2, (−1.8)3, (−1.8)4, (−1.8)5, (−1.8)6, (−1.8)7, (−1.8)8, (−1.8)9]⊺∈R10,

x3=[1, 21, 22, 23, 24, 25, 26, 27, 28, 29]⊺ ∈ R10,

x4=[1, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29]⊺ ∈ R10,

x5=[1, (−0.5)1, (−0.5)2, (−0.5)3, (−0.5)4, (−0.5)5, (−0.5)6, (−0.5)7, (−0.5)8, (−0.5)9]⊺∈R10.

Example 3.3. We consider the 10th order 20-dimensional Hankel tensor A (There are a
large number of elements in the Hankel tensor A, and its element values are very large. For
simplicity, it is not shown here.), which is generated by MATLAB and r(A) = 7.

We use Algorithm 2.2 to solve this problem. Firstly, we get the t = [t1, t2, t3, t4, t5, t6, t7]
⊺

= [18,−3102/25, −13709/33,−8551/12, 7883/13,−27737/123, 648/25]⊺ by the equation
(2.13), input them to equation (2.25), so we can get the solutions x=[x1, x2, x3, x4, x5, x6, x7]

⊺

= [6, 5, 3, 2, 6/5, 3/5, 1/5]⊺ by the equation (2.25), then input them to equation (2.28), and
we can get α = [α1, α2, α3, α4, α5, α6, α7]

⊺ = [27/10, 3/2, 8/25, 6, 9, 5, 7/2]⊺. Therefore, we
get the Vandermonde decomposition of the Hankel tensor A, i.e.,

A =

7∑
k=1

αk(xk ◦ xk ◦ · · · ◦ xk︸ ︷︷ ︸
10

), (3.3)

where α1 = 27/10, α2 = 3/2, α3 = 8/25, α4 = 6, α5 = 9, α6 = 5, α7 = 7/2,
x1 = [1, 61, 62, 63, 64, 65, · · · , 618, 619]⊺ ∈ R20,
x2 = [1, 51, 52, 53, 54, 55, 56, · · · , 518, 519]⊺ ∈ R20,
x3 = [1, 31, 32, 33, 34, 35, 36, · · · , 318, 319]⊺ ∈ R20,
x4 = [1, 21, 22, 23, 24, 25, 26, · · · , 218, 219]⊺ ∈ R20,
x5 = [1, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, · · · , 1.218, 1.219]⊺ ∈ R20,
x6 = [1, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, · · · , 0.618, 0.619]⊺ ∈ R20,
x7 = [1, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, · · · , 0.218, 0.219]⊺ ∈ R20.
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4 Conclusion

The exact Vandermonde decomposition problem of Hankel tensor is studied in this paper.
We first reformulate this problem as the systems of nonlinear equations, then design a new
method to solve this problem. Finally, we use some numerical examples to illustrate that
the new method is feasible and effective to solve the problem. In future works, we plan to
get the exact decomposition for other tensors, such as general tensor, symmetric tensor, and
Toeplitz tensor.
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