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decomposable tensors and symmetric low rank orthogonal approximations (SLROA) of given
tensors are much fewer than the general nonsymmetric case. Nevertheless, symmetric tensors
have sources from a very broad areas with important applications [26,29]. Moreover, stable
progress has been carried out in recent years, such as algebraic variety characterization in [7],
a numerical identifiability method [22], approximation method for structured cases [30], and
Jacobi-type methods [27], see references therein. The mostly investigated case is the best
rank one approximation, see [18,23,24,33] and references therein. In [32], a method, together
with a global convergence analysis, is proposed for the symmetric low rank orthogonal
approximation problem, and applications are demonstrated in image processing. Under
mild conditions, the algorithm is shown to be converged for a variant of the symmetric
low rank orthogonal approximation problem. Convergence study in the general case with
application to this problem is also studied in [28]. In [12], the hypothesis guaranteeing global
convergence in [32] is vastly waived to only on a condition for the input parameter of the
algorithm. In the same paper, a problem is raised on establishing an algorithm with nice
convergence properties for the SLROA problem directly, other than a variant of it. A main
purpose of this paper is presenting a complete answer to this question.

In this paper, the proximality technique introduced in [20] along the polar decomposition
in tensor low rank approximations and the shifted power method technique introduced in [24]
will be combined and tailored to the SLROA problem. Then, with advanced techniques
developed recently in the literature, we will present the global convergence of the proposed
algorithm for SLROA without any assumption, other than appropriately chosen parameters.
Sublinear convergence with explicit rate will also be presented.

The rest paper is organized as follows. Some preliminaries on the symmetric best low rank
orthogonal tensor approximation problem is described in Section 2. Section 3 presents some
technical lemmas that are necessary for the subsequent analysis. The global convergence is
established in Sections 4 and 5, corresponding respectively to the global convergence analysis
with proximality and without proximality in the implementation. Section 6 gives a sublinear
convergence rate analysis of the studied algorithm. Some final remarks are given in the last
section to conclude this paper.

2 Preliminaries and Algorithmic Description

2.1 Notation

In this subsection, we review some basic notions of tensors and give some notations. Let
m ≥ 3 and n be given positive integers and R the field of real numbers. We denote ⊗mRn

as the space of real tensors of order m and dimension n. The subspace of symmetric tensors
inside ⊗mRn is denoted as S(⊗mRn). We refer to [23,26] for more details on tensors.

Let A ∈ S(⊗mRn) be a given symmetric tensor with entries ai1,...,im , k ≤ m and x =
(x1, x2, · · · , xn)⊤ ∈ Rn. We define the tensor-vector product Axk ∈ S(⊗m−kRn) via

(Axk)ik+1,··· ,im :=

n∑
i1,··· ,ik=1

ai1,··· ,imxi1 · · ·xik , for all ik+1, . . . , im ∈ {1, . . . , n}.

It is easy to see that this definition is well-defined by the symmetry of A.

Let xm be the symmetric decomposable tensor in S(⊗mRn) defined via

(xm)i1,··· ,im := xi1 · · ·xim , 1 ≤ i1, · · · , im ≤ n.
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Define the Hilbert-Schmidt inner product of two given tensors A,B ∈ ⊗mRn, as follows:

⟨A,B⟩ :=

n1∑
i1=1

· · ·
nm∑

im=1

ai1,··· ,imbi1,··· ,im .

Accordingly, the Hilbert-Schmidt norm ∥A∥ of A is defined by

∥A∥ :=
√
⟨A,A⟩.

In this paper, the spectral radius ρ(A) of A is involved, which is defined as

ρ(A) := max{|⟨A,xm⟩| : x⊤x = 1}, (2.1)

which is equal to

max{|⟨Axm−2,y2⟩| : x⊤x = 1 and y⊤y = 1} = max{ρ(Axm−2) : x⊤x = 1}

by Banach’s theorem of [3]. It can be shown that

ρ(A) ≤ ∥A∥.

Here if m = 2, then ρ(A) becomes the spectral radius of the underlying matrix. For more
discussions on the spectral radius and its consequence on the convergence analysis for tensor
approximation problems, we refer to [33] and references herein.

Finally, for a given matrix X, the Frobenius norm of X is denoted by ∥X∥F and the
spectral norm of X is denoted by ∥X∥, which is equal to ρ(X).

2.2 The symmetric low rank orthogonal approximation problem

Next, we illustrate the symmetric low rank orthogonal approximation (SLROA) problem for
a given symmetric tensor.

Let r ≤ n be a given positive integer and A ∈ S(⊗mRn) be a given nonzero symmetric
tensor. Let X =

[
x1, · · · ,xr

]
∈ Rn×r be a matrix with its i-th column being xi and

λ = (λ1, . . . , λr)⊤ ∈ Rr. The SLROA problem is characterized by the following optimization
problem:

min
X,λ

F (X,λ) := ∥A −
r∑

i=1

λi(xi)
m∥2

s.t. X⊤X = I,
(2.2)

where I is the identity matrix of appropriate size. The constraint set is the Stiefel manifold
St(r, n) := {X ∈ Rn×r : X⊤X = I}.

Problem (2.2) is a nonlinear least square problem with orthogonality constraint. It is very
difficult to solve it, even when r = 1 [18]. Moreover, even if an algorithm is designed to solve
(2.2), the convergence analysis starting from (2.2) is subtle. Actually, utilizing the Lagrange
multiplier theory [5], the optimization problem (2.2) can be reformulated equivalently as the
following maximization problem:

max
r∑

i=1

(A(xi)
m)2

s.t. X⊤X = I.
(2.3)
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Let the objective function of (2.3) be defined as

f(X) :=

r∑
i=1

(A(xi)
m)2. (2.4)

In this paper, we will propose an algorithm for solving the maximization problem (2.3)
and present a global convergence of the algorithm.

Before that, we give the optimality condition of (2.3), which is crucial for the tolerance
of the algorithm and the convergence analysis. It follows from [1, 35] that at an optimizer
X∗ of (2.3) we have

∇f(X∗) = 2X∗S∗ (2.5)

for a unique symmetric matrix S∗. Actually, (2.5) characterizes all the KKT points of
problem (2.3).

Algorithm A An algorithm for SLROA

Input: Given a symmetric tensor A ∈ S(⊗mRn), an orthonormal matrix X(0),
a parameter γ, a proximal parameter ε, a criterion tolerance η.

Output: λ = (λ1, · · · , λr)⊤, X =
[
x1, · · · ,xr

]
∈ St(r, n).

1: for i = 1, · · · , r, do

2: λ
(0)
i := A(x

(0)
i )m

3: end for
4: for p = 0, 1, 2, . . . , do
5: for i = 1, · · · , r, do

6: v
(p+1)
i := λ

(p)
i A(x

(p)
i )m−1 + γ+ϵ

m x
(p)
i

7: end for

8: V (p+1) :=
[
v
(p+1)
1 , · · · ,v(p+1)

r

]
9: X(p+1) := Polar orthogonal factor of V (p+1)

10: for i = 1, · · · , r, do

11: λ
(p+1)
i := A(x

(p+1)
i )m

12: end for
13: if

∥∥X(p+1)(∇f(X(p+1)))⊤X(p+1) −∇f(X(p+1))
∥∥
F
< η, then

14: break
15: end if
16: end for

The termination criterion is chosen as the more standard KKT condition for optimization
problem (2.3).

In this paper, we will show the following result.

Theorem 2.1 (Global Convergence with Sublinear Rate). Under either of the following
conditions

(a) γ > m(m− 1)ρ(A)2 and ϵ > 0,

(b) γ > mmax{2
√
r,m− 1}ρ(A)2 and ϵ ≥ 0,

the iterative sequence {X(p)} converges for all tensors in S(⊗mRn) to a KKT point of (2.3)
with convergence rate at least O(p−1−κ) for some constant κ ∈ (0, 1) depending only on m
and n.

Proof. The result follows from Theorems 4.1, 5.1 and 6.1.
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3 Technical Lemmas

Let St(r, n) := {X ∈ Rn×r : X⊤X = I}. The indicator function δSt(r,n) of St(r, n) is defined
as

δSt(r,n)(X) :=

{
0 if X ∈ St(r, n),
+∞ otherwise.

The subdifferential of the indicator function δSt(r,n) at X ∈ St(r, n) is (cf. [35])

∂δSt(r,n)(X) = NSt(r,n)(X),

where NSt(r,n)(X) is the normal cone of St(r, n) at X ∈ St(r, n), and from [1,13] that

NSt(r,n)(X) = {XS | S ∈ Sr×r},

where Sr×r ⊂ Rr×r is the subspace of r × r real symmetric matrices.
The Kurdyka- Lojasiewicz property is needed in our proof, we refer to [6, 25] for more

details. Let p be an extended real-valued function and ∂p(x) be the set of subdifferentials
of p at x. Let x∗ ∈ dom(∂p), where dom(∂p) := {x : ∂p(x) ̸= ∅}. If there exist some
η ∈ (0,+∞], a neighborhood U of x∗, and a continuous concave function φ : [0, η) → R+,
such that

1. φ(0) = 0,

2. φ is continuously differentiable on (0, η),

3. for all s ∈ (0, η), φ′(s) > 0, and

4. for all x ∈ U ∩ {x : p(x∗) < p(x) < p(x∗) + η}, the Kurdyka- Lojasiewicz inequality
holds

φ′(p(x) − p(x∗)) dist(0, ∂p(x)) ≥ 1,

then we say that p has the Kurdyka- Lojasiewicz property (abbreviated as KL) at x∗. If p
has the KL property at every point, then we say that p is a KL function.

A critical point of a proper lower semicontinuous function p is a point x such that
0 ∈ ∂p(x).

The following abstract convergence result is classic [2].

Lemma 3.1 (Abstract Convergence). Let p : Rn → R ∪ {±∞} be a proper lower semicon-
tinuous function and {x(k)} ⊂ Rn be a sequence satisfying the following properties

(a) there is a constant α > 0 such that

p(x(k)) − p(x(k+1)) ≥ α∥x(k+1) − x(k)∥2,

(b) there is a constant β > 0 and a w(k+1) ∈ ∂p(x(k+1)) such that

∥w(k+1)∥ ≤ β∥x(k+1) − x(k)∥,

3. there is a subsequence {x(ki)} of {x(k)} and x∗ ∈ Rn such that

x(ki) → x∗ and p(x(ki)) → p(x∗) as i → ∞.
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If p has the Kurdyka- Lojasiewicz property at the point x∗, then the whole sequence {x(k)}converges
to x∗, and x∗ is a critical point of p.

Lemma 3.2. Let A ∈ S(⊗mRn) be a symmetric tensor and X =
[
x1,x2, · · · ,xr

]
∈ St(r, n)

be an orthonormal matrix. Define K :=
[
A(x1)m−1, · · · ,A(xr)m−1

]
Λ ∈ Rn×rwith Λ =

diag(λ1, · · · , λr) and λi := A(xi)
m, then we have ρ(X⊤K + K⊤X) ≤ 2

√
rρ(A)2.

Proof. Let B :=
[
A(x1)m−1, · · · ,A(xr)m−1

]
∈ Rn×r, so we have K = BΛ. We know that

ρ(X⊤K +K⊤X) ≤
∥∥XTK + K⊤X

∥∥
F

, where ∥ ·∥F represents the standard Frobenius norm
of a given matrix. Since X is an orthonormal matrix, it follows that

ρ(X⊤K + K⊤X) ≤
∥∥X⊤K + K⊤X

∥∥
F

≤
∥∥X⊤K

∥∥
F

+
∥∥K⊤X

∥∥
F

≤ 2 ∥K∥F
= 2 ∥BΛ∥F
≤ 2 ∥B∥F ∥Λ∥. (3.1)

It also follows from (2.1) that
∥∥A(xi)

m−1
∥∥ ≤ ρ(A). Consequently, we have

∥B∥2F =
∥∥[A(x1)m−1, · · · ,A(xr)m−1

]∥∥2
F

=

r∑
i=1

∥∥A(xi)
m−1

∥∥2 ≤ rρ(A)2. (3.2)

We also have
∥Λ∥2 = max

1≤i≤r
λ2
i ≤ ρ(A)2. (3.3)

Combining (3.1), (3.2)and (3.3), we obtain the desired conclusion

ρ(X⊤K + K⊤X) ≤ 2
√
rρ(A)2.

The conclusion then follows.

The spectral radius of a tensor is not easy to calculate, while ∥A∥ can be computed out.

By ρ(A) ≤ ∥A∥, we have ρ(X⊤K +K⊤X) ≤ 2
√
r ∥A∥2. Let ∥X∥2,∞ be the (2,∞)-norm of

a given matrix X = [x1, . . . ,xr] ∈ Rn×r, defined as

∥X∥2,∞ := max{∥xi∥ : i = 1, . . . , r}.

Lemma 3.3. Let A ∈ S(⊗mRn) be a symmetric tensor and X =
[
x1,x2, · · · ,xr

]
∈ St(r, n)

be an orthonormal matrix. Define g(X) :=
r∑

i=1

(A(xi)
m)2 + γ∥X∥2F . If γ > m(m −

1)ρ(A)2, then g(X) is convex over an open neighborhood of the unit disc Ω = {X | X ∈
Rn×r, ∥X∥2,∞ ≤ 1}.

Proof. As g(X) =
r∑

i=1

(A(xi)
m)2 + γ∥X∥2F , we have

∇g(X) = 2m
[
λ1A(x1)m−1, . . . , λrA(xr)m−1

]
+ 2γX ∈ Rn×r.

Therefore, ∇2g(X) is a linear operator such that

⟨∇2g(X)Y, Y ⟩ = 2γ∥Y ∥2F + 2m(m− 1)

r∑
i=1

λiA(xi)
m−2y2

i + 2m2
r∑

i=1

(A(xi)
m−1yi)

2
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for all Y ∈ Rn×r. Therefore, whenever

ρ(m(m− 1)λiA(xi)
m−2) < γ,

we can conclude that g is a convex function over an open neighborhood of Ω [34].
On the other hand, we have that

ρ(λiA(xi)
m−2) ≤ ρ(A)2.

Consequently, whenever
γ > m(m− 1)ρ(A)2,

the convexity conclusion follows.

The following polar decomposition is classic [15].

Lemma 3.4 (Polar Decomposition). Let A ∈ Rn×r with n ≥ r. Then there exist an
orthonormal matrix X ∈ St(r, n) and a unique symmetric positive semidefinite matrix P ∈
Sr×r such that A = XP and

X ∈ argmax{⟨Q,A⟩ : Q ∈ St(r, n)}.

Moreover, if A is of full rank , then the matrix X is uniquely determined and P is positive
definite.

The next result can be found in [20].

Lemma 3.5 (Error Bound). If A ∈ Rn×r is of full rank, and the polar decomposition of A
is A = XP with X ∈ St(r, n). Let σmin be the minimum positive singular value of A, then
for all Y ∈ St(r, n), we have

⟨A,X − Y ⟩ ≥ σmin

2
∥X − Y ∥2F .

Lemma 3.6 ( [20]). For any orthonormal matrices U,W ∈ V (m,n), we have

∥U⊤W − I∥2F ≤ ∥U −W∥2F .

The next result is a basic fact in matrix analysis, which is recorded for subsequent
analysis.

Lemma 3.7. Let r ≤ n and A ∈ Rn×r, if A⊤A is a positive definite matrix, then A is of
full rank. If λmin is the minimum eigenvalue of A⊤A, then σmin =

√
λmin is the minimum

singular value of A.

The next result shows the Lipschitz property of the Veronese mapping over the sphere.

Lemma 3.8. Let x,y ∈ Rn be unit vectors, then we have ∥xm − ym∥ ≤ m ∥x− y∥ .

Proof. We have

∥xm − ym∥ =
∥∥xm−1 ⊗ x− xm−1 ⊗ y + xm−1 ⊗ y − ym−1 ⊗ y

∥∥
=

∥∥xm−1 ⊗ (x− y) + (xm−1 − ym−1) ⊗ y
∥∥

≤
∥∥xm−1 ⊗ (x− y)

∥∥ +
∥∥(xm−1 − ym−1) ⊗ y

∥∥
≤

∥∥xm−1
∥∥ ∥x− y∥ +

∥∥xm−1 − ym−1
∥∥ ∥y∥ .
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We know x and y are unit vectors, it is easy to see
∥∥xm−1

∥∥ = 1 and ∥y∥ = 1. It follows
that

∥xm − ym∥ ≤ ∥x− y∥ +
∥∥xm−1 − ym−1

∥∥ . (3.4)

Inductively, we have ∥∥xm−1 − ym−1
∥∥ ≤ ∥x− y∥ +

∥∥xm−2 − ym−2
∥∥ .

By putting the above inequality into (3.4) and using an induction, we get that ∥xm − ym∥ ≤
m ∥x− y∥.

Below is the  Lojasiewicz’s gradient inequality for polynomials (cf. [11]) which will play
a key role in our sublinear convergence rate analysis.

Lemma 3.9 ( Lojasiewicz’s Gradient Inequality for Polynomials). Let f be a real polynomial
on Rn with degree d ∈ N. Suppose that f(0) = 0 and ∇f(0) = 0. Then there exist constants
c, ϵ > 0 such that for all ∥x∥ ≤ ϵ, we have

∥∇f(x)∥ ≥ c|f(x)|κ with κ = 1 − 1

d(3d− 3)n−1
.

4 The Global Convergence with Proximality

We are now in the position to present the global convergence of Algorithm A with proxi-
mality, one of our main results.

Theorem 4.1 (Convergence under Proximality). Let A ∈ S(⊗mRn) be a symmetric tensor.
Suppose that ϵ > 0 and γ > m(m − 1)ρ(A)2. Then any sequence {X(p)} generated by
Algorithm A converges to a KKT point X∗ of the problem (2.3).

Proof. Recall that f(X) =
r∑

i=1

(A(xi)
m)2, and let h(X) := −f(X) + δSt(r,n)(X). Then we

have
∇f(X) = 2m

[
A(x1)m−1, . . . ,A(xr)m−1

]
Λ, (4.1)

where
Λ = diag(λ1, . . . , λr)

with λi = A(xi)
m.

With the function h, we can see that the problem (2.3) is equivalent to the following
unconstrained optimization problem

− min
X∈Rn×r

h(X). (4.2)

In the following, we will apply Lemma 3.1 to problem (4.2). Thus, the rest proof is
divided into three parts for clarity accordingly.

Part I. Let X ∈ Rn×r and g(X) =
r∑

i=1

(A(xi)
m)2+γ∥X∥2F as before. We will restrict the

function g over a suitable open neighborhood of the unit disc Ω = {X | X ∈ Rn×r, ∥X∥2,∞ ≤
1}. It can be shown that g is convex over such a neighborhood of Ω when γ > m(m−1)ρ(A)2

by Lemma 3.3. We also have that

∇g(X(p)) = 2m
[
A(x

(p)
1 )m−1, . . . ,A(x

(p)
r )m−1

]
Λ(p) + 2γX(p)

= 2mK(p) + 2γX(p),
(4.3)
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where Λ(p) = diag(λ
(p)
1 , · · · , λ(p)

r ) and K(p) =
[
A(x

(p)
1 )m−1, . . . ,A(x

(p)
r )m−1

]
Λ(p).

On the one hand, we have

h(X(p)) − h(X(p+1))

= f(X(p+1)) − f(X(p))

=

r∑
i=1

(
A(x

(p+1)
i )m

)2 − r∑
i=1

(
A(x

(p)
i )m

)2
=

( r∑
i=1

(
A(x

(p+1)
i )m

)2
+ γ∥X(p+1)∥2F

)
−
( r∑

i=1

(
A(x

(p)
i )m

)2
+ γ∥X(p)∥2F

)
= g(X(p+1)) − g(X(p)), (4.4)

where we used the fact that both X(p+1) ∈ St(r, n) and X(p) ∈ St(r, n).
On the other hand, we know that X(p+1) is the polar orthonormal matrix of V (p+1) by

Algorithm A, which is equal to the K(p) + γ+ϵ
m X(p), so by Lemma 3.4 we have that〈

X(p+1),K(p) +
γ + ϵ

m
X(p)

〉
≥

〈
X(p),K(p) +

γ + ϵ

m
X(p)

〉
,

i.e., 〈
X(p+1) −X(p),K(p) +

γ + ϵ

m
X(p)

〉
≥ 0.

So we could obtain that〈
X(p+1) −X(p),K(p) +

γ

m
X(p)

〉
≥

〈
X(p) −X(p+1),

ϵ

m
X(p)

〉
=

ϵ

2m
∥X(p+1) −X(p)∥2F ,

(4.5)

where the equality follows from the fact that both X(p) ∈ St(r, n) and X(p+1) ∈ St(r, n).
By using the convexity of g and combining (4.3),(4.4) and (4.5), we have

h(X(p)) − h(X(p+1)) = g(X(p+1)) − g(X(p))

≥
〈
∇g(X(p)), X(p+1) −X(p)

〉
= 2m

〈
K(p) +

γ

m
X(p), X(p+1) −X(p)

〉
≥ ϵ∥X(p+1) −X(p)∥2F .

(4.6)

Hence, the first condition of Lemma 3.1 is established.
Part II. Recall that h(X) = −f(X) + δSt(r,n)(X), ∂δSt(r,n) = NSt(r,n) and

∂δSt(r,n)(X
(p+1)) = NSt(r,n)(X

(p+1)) = {X(p+1)S|S ∈ Sr×r}.

It follows that (cf. [35])

∂h(X(p+1)) = −∇f(X(p+1)) + NSt(r,n)(X
(p+1)). (4.7)

It follows from (4.1) and Algorithm A that the polar decomposition of 1
2m∇f(X(p))+ γ+ϵ

m X(p)

is
1

2m
∇f(X(p)) +

γ + ϵ

m
X(p) = X(p+1)S(p+1). (4.8)
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Let S̄(p+1) := S(p+1) − γ+ϵ
m I, then S̄(p+1) is a symmetric matrix and hence X(p+1)S̄(p+1) ∈

NSt(r,n)(X
(p+1)). Therefore, by (4.7), we have

2mW (p+1) ∈ ∂h(X(p+1)) with W (p+1) := − 1

2m
∇f(X(p+1)) + X(p+1)S̄(p+1). (4.9)

On the other hand, by (4.8), we have that

X(p+1)S̄(p+1) = X(p+1)(S(p+1) − γ + ϵ

m
I)

= X(p+1)S(p+1) − γ + ϵ

m
X(p+1)

=
1

2m
∇f(X(p)) +

γ + ϵ

m
(X(p) −X(p+1)). (4.10)

By (4.9) and (4.10), we have∥∥∥W (p+1)
∥∥∥
F

=

∥∥∥∥− 1

2m
∇f(X(p+1)) + X(p+1)S̄(p+1)

∥∥∥∥
F

=

∥∥∥∥− 1

2m
∇f(X(p+1)) +

1

2m
∇f(X(p)) +

γ + ϵ

m
(X(p) −X(p+1))

∥∥∥∥
F

≤ 1

2m

∥∥∥∇f(X(p+1)) −∇f(X(p))
∥∥∥
F

+
γ + ϵ

m

∥∥∥X(p+1) −X(p)
∥∥∥
F
. (4.11)

We also have that

1

2m

∥∥∥∇f(X(p+1)) −∇f(X(p))
∥∥∥
F

≤
r∑

i=1

∥∥∥λ(p+1)
i A(x

(p+1)
i )m−1 − λ

(p)
i A(x

(p)
i )m−1

∥∥∥
≤

r∑
i=1

∥∥∥λ(p+1)
i A(x

(p+1)
i )m−1 − λ

(p+1)
i A(x

(p)
i )m−1

∥∥∥
+

r∑
i=1

∥∥∥λ(p+1)
i A(x

(p)
i )m−1 − λ

(p)
i A(x

(p)
i )m−1

∥∥∥
≤ ∥A∥

r∑
i=1

|λ(p+1)
i |

∥∥∥(x
(p+1)
i )m−1 − (x

(p)
i )m−1

∥∥∥
+

r∑
i=1

(
|λ(p+1)

i − λ
(p)
i |

∥∥∥A(x
(p)
i )m−1

∥∥∥ )
≤ ∥A∥2

r∑
i=1

∥∥∥(x
(p+1)
i )m−1 − (x

(p)
i )m−1

∥∥∥ + ∥A∥
r∑

i=1

∥∥∥A(x
(p+1)
i )m −A(x

(p)
i )m

∥∥∥
≤ (m− 1) ∥A∥2

r∑
i=1

∥∥∥x(p+1)
i − x

(p)
i

∥∥∥ + m ∥A∥2
r∑

i=1

∥∥∥x(p+1)
i − x

(p)
i

∥∥∥
≤ (m− 1)r ∥A∥2

∥∥∥X(p+1) −X(p)
∥∥∥
F

+ mr ∥A∥2
∥∥∥X(p+1) −X(p)

∥∥∥
F

= (2mr − r) ∥A∥2
∥∥∥X(p+1) −X(p)

∥∥∥
F
,

(4.12)
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where the first inequality follows from (4.1) and the fifth follows from Lemma 3.8.

Combining (4.11) and (4.12), we have∥∥∥W (p+1)
∥∥∥
F
≤ 1

2m

∥∥∥∇f(X(p+1)) −∇f(X(p))
∥∥∥
F

+
γ + ϵ

m

∥∥∥X(p+1) −X(p)
∥∥∥
F

≤ (2mr − r) ∥A∥2
∥∥∥X(p+1) −X(p)

∥∥∥
F

+
γ + ϵ

m

∥∥∥X(p+1) −X(p)
∥∥∥
F

=
(
(2m− 1)r ∥A∥2 +

γ + ϵ

m

) ∥∥∥X(p+1) −X(p)
∥∥∥
F
.

(4.13)

Let β := 2m(2m− 1)r ∥A∥2 + 2(γ + ϵ) > 0. Then, we see that∥∥∥2mW (p+1)
∥∥∥
F
≤ β

∥∥∥X(p+1) −X(p)
∥∥∥
F
.

Then, the second condition of Lemma 3.1 is established.

Part III. Recall from Algorithm A that {X(p)} ⊂ St(r, n) and the fact that St(r, n) is
a compact set. So there is a subsequence {X(pi)} of {X(p)} and X∗ ∈ St(r, n) such that

X(pi) → X∗ as i → ∞.

Obviously, h is continuous over St(r, n). Hence when X(pi) → X∗ as i → ∞, we have
h(X(pi)) → h(X∗). The third condition of Lemma 3.1 follows.

Finally, the fact that h is a KL function is also known (cf. [2]). Therefore, the whole
sequence {X(p)} converges to X∗, and X∗ is a critical point of h(X) by Lemma 3.1.

5 The Global Convergence without Proximality

In this section, we present a global convergence proof for Algorithm A without the proxi-
mality. Avoiding proximality is preferable in numerical computations [20].

Theorem 5.1 (Convergence without Proximality). Let A ∈ S(⊗mRn) be a symmetric ten-
sor. Suppose that ϵ ≥ 0 and γ > mmax{2

√
r, (m − 1)}ρ(A)2. Then any sequence {X(p)}

generated by Algorithm A converges to a KKT point X∗ of the problem (2.3).

Proof. The notations in the proof of Theorem 4.1 will be adopted and Lemma 3.1 will be
applied again. The proof is divided into three parts for clarity accordingly, and similar proof
as that of Theorem 4.1 will be omitted for simplicity.

Part I. From Algorithm A, we know that

V (p+1) =
[
v
(p+1)
1 , · · · ,v(p+1)

r

]
=

[
λ
(p)
1 A(x

(p)
1 )m−1 + γ+ϵ

m x
(p)
1 , · · · , λ(p)

r A(x
(p)
r )m−1 + γ+ϵ

m x
(p)
r

]
=

[
A(x

(p)
1 )m−1, · · · ,A(x

(p)
r )m−1

]
diag(λ

(p)
1 , · · · , λ(p)

r ) +
γ + ϵ

m
X(p)

= K(p) +
γ + ϵ

m
X(p),

where

K(p) :=
[
A(x

(p)
1 )m−1, · · · ,A(x

(p)
r )m−1

]
diag(λ

(p)
1 , · · · , λ(p)

r ).
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Thus, we have

(V (p+1))⊤V (p+1) = (K(p) +
γ + ϵ

m
X(p))⊤(K(p) +

γ + ϵ

m
X(p))

=
(γ + ϵ)2

m2
I +

γ + ϵ

m
(X(p))⊤K(p) +

γ + ϵ

m
(K(p))⊤X(p) + (K(p))⊤K(p),

where the second equality follows from the fact that X(p) ∈ St(r, n). By Lemma 3.2, we
know

ρ((X(p))⊤K(p) + (K(p))⊤X(p)) ≤ 2
√
rρ(A)2.

On the other hand, (K(p))⊤K(p) is a positive semidefinite symmetric matrix. Therefore,

when (γ+ϵ)2

m2 > 2γ+ϵ
m

√
rρ(A)2, i.e., γ+ϵ > 2m

√
rρ(A)2, (V (p+1))⊤V (p+1) is a positive definite

matrix. By Lemma 3.7, we get that V (p+1) is of full rank. Consequently, by Lemma 3.4, we
know V (p+1) has a unique polar decomposition. Moreover, by Lemma 3.7, we have

σmin ≥
√

(γ + ϵ)2

m2
− 2

γ + ϵ

m

√
rρ(A)2

=
√
γ + ϵ

√
γ + ϵ

m2
− 2

m

√
rρ(A)2

≥
√

γ2

m2
− 2γ

m

√
rρ(A)2 > 0,

where σmin is the minimum singular value of V (p+1).
Let

g̃(X) :=

r∑
i=1

(A(xi)
m)2 + (γ + ϵ)∥X∥2F .

By Lemma 3.3 and the fact that γ + ϵ > m(m − 1)ρ(A)2, we see that g̃ is convex over an
open neighborhood of the unit disc Ω = {X | X ∈ Rn×r, ∥X∥2,∞ ≤ 1}. Therefore, from
(4.4) and by using the convexity of g̃ and Lemma 3.5, we have

h(X(p)) − h(X(p+1)) = g(X(p+1)) − g(X(p))

= g̃(X(p+1)) − g̃(X(p))

≥
〈
∇g̃(X(p)), X(p+1) −X(p)

〉
= 2m

〈
V (p+1), X(p+1) −X(p)

〉
≥ mσmin

∥∥∥X(p+1) −X(p)
∥∥∥2
F

≥
√

γ2 − 2mγ
√
rρ(A)2

∥∥∥X(p+1) −X(p)
∥∥∥2
F
,

where the second equality follows from the fact that both X(p) and X(p+1) are orthonormal
matrices by Algorithm A.

Thus, the first condition in Lemma 3.1 is satisfied.
Parts II. and III. The proofs are the same as those for Theorem 4.1.
In summary, the conclusion follows.

Theorem 5.1 presents a possibility of Algorithm A without the proximality. This is in
particular meaningful whenever m − 1 ≥ 2

√
r. We see that this is the case for low rank

approximations for higher order tensors.



ALGORITHMIC ANALYSIS FOR SYMMETRIC TENSOR APPROXIMATION 131

6 The Sublinear Convergence Rate

In this section, we will give a sublinear convergence rate analysis for Algorithm A. The
proof follows from a similar framework as that in [19], with the global convergence results
established in the above sections. We want to remark that the general result Lemma 3.1
and the  Lojasiwicz property with explicit exponent in Lemma 3.9 cannot directly imply the
conclusions in this section. An apparent difference is the second condition in Lemma 3.1
and a key inequality (6.8) to be used in the proof for the next Theorem 6.1.

Recall from (2.4) that

f(X) =

r∑
i=1

(A(xi)
m)2.

Theorem 6.1 (Sublinear Convergence Rate). Let {X(p)} be a sequence generated by Al-
gorithm A for a given nonzero tensor A ∈ S(⊗mRn). Suppose that the sequence {X(p)}
converges globally to a KKT point of problem (2.3). Let N := r

2 (2n + r + 1) and

τ := 1 − 1

2m(6m− 3)N−1
. (6.1)

The following statements hold:

(a) the sequence {f(X(p))} converges to f∗, with sublinear convergence rate at least

O(p
1

1−2τ ), that is, there exist M1 > 0 and p1 ∈ N such that for all p ≥ p1,

f∗ − f(X(p)) ≤ M1p
1

1−2τ ;

(b) the sequence {X(p)} converges to X∗ globally with the sublinear convergence rate at

least O(p
1−τ
2τ−1 ), that is, there exist M2 > 0 and p1 ∈ N such that for all p ≥ p1,

∥X(p) −X∗∥F ≤ M2p
τ−1
2τ−1 .

Proof. By the hypothesis, the sequence {X(p)} converges to a KKT point X∗ of (2.3) with
the corresponding unique multiplier P ∗. Note that P ∗ is symmetric and by (2.5)

P ∗ =
1

2
(X∗)⊤∇f(X∗).

Let
q(X,P ) := f(X) −

〈
P,X⊤X − I

〉
for X ∈ Rn×r and P ∈ Sr, and

q̂(X,P ) := q(X,P ) − q(X∗, P ∗).

Thus, we have q̂(X∗, P ∗) = 0 and ∇q̂(X∗, P ∗) = 0. Note that q̂ is a polynomial in X ∈ Rn×r

and P ∈ Sr of degree 2m. Thus, the number of variables is N = nr+ r(r+1)
2 = r

2 (2n+r+1).
Consequently, by Lemma 3.9, there exist constants δ, c > 0 such that

∥∇q̂(X,P )∥F ≥ c|q̂(X,P )|τ for all ∥(X,P ) − (X∗, P ∗)∥F ≤ δ,

where τ is given by (6.1).
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Therefore,

∥∇f(X) − 2XP∥2F ≥ c2
(
f(X) − f(X∗)

)2τ
(6.2)

for any feasible point X of (2.3) and P ∈ Sr satisfying ∥(X,P ) − (X∗, P ∗)∥F ≤ δ, since in
this case

∇P q̂(X,P ) = X⊤X − I = 0 and ∇X q̂(X,P ) = ∇f(X) − 2XP.

The rest proof will be divided into two parts, for respectively (a) and (b).
Part I. Proof of (a).
Let

P (p) := mS(p) − (γ + ϵ)I = m(X(p))⊤V (p) − (γ + ϵ)I,

where S(p) is the positive semidefinite factor matrix of the matrix V (p) from Algorithm A.
By (4.11) and (4.13), we have

∥ − ∇f(X(p+1)) + 2X(p+1)P (p+1)∥F
=∥ − ∇f(X(p+1)) + 2mX(p+1)S(p+1) − 2(γ + ϵ)X(p+1)∥F
≤
(
2m(2m− 1)r∥A∥2 + 2(γ + ϵ)

)
∥X(p+1) −X(p)∥F . (6.3)

Let

P̂ (p) :=
1

4

(
(X(p))⊤∇f(X(p)) +

(
∇f(X(p))

)⊤
X(p)

)
. (6.4)

Let
M (p) :=

[
λ
(p)
1 A(x

(p)
1 )m−1 . . . λ

(p)
r A(x

(p)
r )m−1

]
. (6.5)

Then

V (p+1) = M (p) +
γ + ϵ

m
X(p).

Note that
∇f(X(p)) = 2mM (p).

We have

∥P (p+1) − P̂ (p+1)∥F

=∥m(X(p+1))⊤V (p+1) − (γ + ϵ)I − 1

4

(
(X(p+1))⊤∇f(X(p+1)) +

(
∇f(X(p+1))

)⊤
X(p+1)

)
∥F

=∥m
2

(X(p+1))⊤M (p)+
m

2
(M (p))⊤X(p+1)+

(γ + ϵ)

2
((X(p+1))⊤X(p)+(X(p))⊤X(p+1) − 2I)

− m

2

(
(X(p+1))⊤M (p+1) + (M (p+1))⊤X(p+1)

)
∥F

≤m

2
∥(X(p+1))⊤M (p) − (X(p+1))⊤M (p+1) + (M (p))⊤X(p+1) − (M (p+1))⊤X(p+1)∥F

+ (γ + ϵ)∥(X(p+1))⊤X(p) − I∥F
≤m∥(X(p+1))⊤M (p) − (X(p+1))⊤M (p+1)∥F + (γ + ϵ)∥X(p+1) −X(p)∥F
≤m

√
r∥M (p) −M (p+1)∥F + (γ + ϵ)∥X(p+1) −X(p)∥F

≤C0∥X(p+1) −X(p)∥F , (6.6)

where C0 > 0 is a constant, in the second equality we used the fact that the matrix
(X(p+1))⊤V (p+1) is symmetric by Lemma 3.4 and Algorithm A, the second inequality follows
from Lemma 3.6, and the last one follows from the fact that the matrix M defined in (6.5)
is Lipschitz continuous.
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Therefore, we have

∥∇f(X(p+1)) − 2X(p+1)P̂ (p+1)∥F
≤∥∇f(X(p+1)) − 2X(p+1)P (p+1)∥F + ∥2X(p+1)P (p+1) − 2X(p+1)P̂ (p+1)∥F
≤C∥X(p+1) −X(p)∥F (6.7)

for some constant C > 0 by (6.3) and (6.6).
It follows from the definition of P̂ (p) (cf. (6.4)) that P̂ (p) ∈ Sr and it converges as X(p)

converges. We have

lim
p→∞

P̂ (p) =
m

2
((X∗)⊤M∗ + (M∗)⊤X∗) =

1

2
(X∗)⊤∇f(X∗) = P ∗.

Hence for sufficiently large p (saying p ≥ p0 for some positive p0), we may conclude that

∥(X(p), P̂ (p)) − (X∗, P ∗)∥F ≤ δ.

Therefore,

c2
(
f(X(p)) − f(X∗)

)2τ
≤ ∥∇f(X(p)) − 2X(p)P̂ (p)∥2F
≤ ∥∇f(X(p+1)) − 2X(p+1)P̂ (p+1)∥2F

+ ∥∇f(X(p+1)) − 2X(p+1)P̂ (p+1) −
(
∇f(X(p)) − 2X(p)P̂ (p)

)
∥2F

≤ (C2 + L2)∥X(p+1) −X(p)∥2F

≤ C2 + L2

ϵ

(
f(X(p+1)) − f(X(p))

)
, (6.8)

where the first inequality follows from (6.2), the third from (6.7) and the fact that the
funciton ∇f(X(p)) − 2X(p)P̂ (p) is Lipschitz continuous with respect to X(p), and the last
from (4.6). Here L is the Lipschitz constant of the function ∇f(X(p)) − 2X(p)P̂ (p) on the
Stiefel manifold.

We let βp := f(X∗) − f(X(p)), from (6.8), there exists a constant D > 0, we have

βp − βp+1 = f(X(p+1)) − f(X(p)) ≥ D
(
f(Xp) − f(X(∗))

)2τ
= Dβ2τ

p . (6.9)

Note that the sequence {βp} is a sequence of positive numbers, since otherwise the algorithm
terminates in finitely many steps.

Define a function h(x) := x−2τ , it follows that

βp − βp+1 ≥ Dβ2τ
p = Dh(βp)−1.

Define another function t(x) := x1−2τ

1−2τ , then we have h(x) = t′(x) and it is easy to verify
that h is non-increasing on R++, the set of positive real numbers. Thus, we have

D ≤ h(βp)(βp − βp+1) ≤
∫ βp

βp+1

h(x) dx

= t(βp) − t(βp+1) =
1

1 − 2τ
(β1−2τ

p − β1−2τ
p+1 )

=
1

2τ − 1
(β1−2τ

p+1 − β1−2τ
p ).
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Consequently, we have by induction that

β1−2τ
p ≥ D(2τ − 1) + β1−2τ

p−1 ≥ · · · ≥ D(2τ − 1)(p− p0) + β1−2τ
p0

≥ D(2τ − 1)(p− p0).

By the definition of τ (cf. (6.1)), we have that 1 < 2τ . Let p1 = 2p0, so for all p ≥ p1, we
have

βp ≤ [D(2τ − 1)(p− p0)]
1

1−2τ = [D(2τ − 1)
(p− p0)

p
]

1
1−2τ · p

1
1−2τ ≤ [D(2τ − 1)

1

2
]

1
1−2τ · p

1
1−2τ .

Therefore, there exists M1 > 0 such that for all p ≥ p1,

0 ≤ βp ≤ M1p
1

1−2τ .

The conclusion (a) then follows.
Part II. Proof of (b).
From (6.8), we have

c2
(
f(X(p)) − f(X∗)

)2τ ≤ (C2 + L2)∥X(p+1) −X(p)∥2F .

Let d := C2 + L2, it follows that

(
f(X∗) − f(X(p))

)τ ≤
√
d

c
∥X(p+1) −X(p)∥F .

Define sp := ∥X(p+1) −X(p)∥F , so we could have

βτ
p ≤

√
d

c
sp. (6.10)

Define a function ϕ(s) := −s1−τ . It is easy to verify that ϕ is convex on R++, and hence we
have

ϕ(βp+1) − ϕ(βp) ≥ ϕ′(βp)(βp+1 − βp).

Therefore, it follows that

β1−τ
p − β1−τ

p+1 ≥ (1 − τ)β−τ
p (βp − βp+1)

= (1 − τ)β−τ
p

(
f(X(p+1)) − f(X(p))

)
≥ (1 − τ)ϵβ−τ

p ∥X(p+1) −X(p)∥2F
= (1 − τ)ϵβ−τ

p s2p

≥ (1 − τ)ϵ
c√
d
sp,

where the first equality follows from (6.9), the second inequality from (4.6) and the last from

(6.10). Let Cd :=
√
d

(1−τ)ϵc , hence, we obtain

sp ≤ Cd(β1−τ
p − β1−τ

p+1 ). (6.11)

For any N > N0 > p0, summing the inequality (6.11) from p = N0 to p = N it follows that

N∑
p=N0

sp ≤ Cd(β1−τ
N0

− β1−τ
N+1).
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Note that we have βN → 0 as N → ∞. It then follows that

∞∑
p=N0

sp ≤ Cdβ
1−τ
N0

. (6.12)

This shows that
∞∑
p=1

sp < +∞. For p ≥ p0, define ∆p :=
∞∑
i=p

si. Then, combining (6.10) and

(6.12), we have

∆p ≤ Cd

(√
d

c
sp

) 1−τ
τ

.

As 0 < 1−τ
τ < 1, there exists constant K > 0 such that

∆
τ

1−τ
p ≤ Ksp = K(∆p − ∆p+1).

Consequently, we have a relation

∆p ≥ ∆p+1 +
1

K
∆

τ
1−τ
p .

Note that this is a relation for the sequence {∆p} in the same formula as {βp} in (6.9). We
also have that τ

1−τ > 1 since 2τ > 1. Therefore, a similar argument as that in Part I after
the relation (6.9) will give the conclusion that there exists constant M2 > 0 such that

∆p ≤ M2p
τ−1
2τ−1 .

With this, finally we have

∥X(p) −X∗∥F ≤
∞∑
i=p

∥X(p) −X(p+1)∥F = ∆p ≤ M2p
τ−1
2τ−1 .

The conclusion (b) then follows.
The proof is then complete.

7 Conclusions

In this paper, we studied the problem of low rank symmetric orthogonal approximations
for given symmetric tensors and proposed an algorithm for solving this problem. The main
conclusion is that under only a condition on the parameters of the proposed algorithm, we
can show that this algorithm converges globally with an explicit sublinear convergence rate
without any further assumption. Furthermore, this sublinear rate is better than the usual
O( 1

p ) rate for first order methods in optimization [4], and it is of order O( 1
p1+κ ) for some

κ ∈ (0, 1). Since the best possible rate is O( 1
p2 ) in the convexity case under some additional

assumptions [31], the derived sublinear rate is sharp in this sense.
Further investigations on the linear convergence rate for the generic case may be carried

out as [20], which is left as our next work.
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