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there is the need to calculate two projections onto C, and convergence is proved under the
assumption of Lipschitz continuity and monotonicity. It is well known that, if C is a general
closed convex set, this might be computationally expensive and hence it will affect the
efficiency of the proposed algorithms. To overcome the difficulty, Censor et al. [7] proposed
a subgradient extragradient algorithm for solving single-valued variational inequality, in
which the second projection is onto C instead of the half-space; see also [8,20]. We note that
the above algorithms need at least two projections per iteration. Further, one-projection
methods for solving single-valued variational inequality problems were proposed; see for
example [23,24,29].

Projection-type methods for solving multi-valued variational inequality have been pro-
posed. Li and He [22] proposed a projection algorithm for solving multi-valued variational
inequality in which the hyperplane strictly separates the current iteration from the solution
set; see also [13]. Xia and Huang [31] studied a projection-proximal point algorithm for
solving multi-valued variational inequalities in Hilbert spaces and obtained the weak con-
vergence result under the assumption of pseudomonotonicity. Further, Fang and Chen [12]
extended the subgradient extragradient algorithm in [7] to solve multi-valued variational
inequality (1.1). Recently, Burachik and Milln [6] suggested a projection-type algorithm
for solving (1.1), in which the next iteration is a projection of the initial point onto the
intersection of some suitable convex subsets. He et al. [16] proposed two projection-type
algorithms for solving the multivalued variational inequality and studied the convergence
of the proposed algorithms. Inspired by Fang et al. [12, 15], Dong et al. [11] presented a
projection and contraction method for solving multi-valued variational inequality (1.1) and
proved the strong convergence of the proposed algorithm.

The inertial-type methods originate from an implicit discretization method of the heavy-
ball with friction(HBF) system, the main feature of which is that each new iteration point
depends on the previous two iterations [1]. Subsequently, this inertial technique was ex-
tended to solve the inclusion problem of maximal monotone operators [2]. Since then, there
has been increasing interest in studying inertial-type algorithms; see, for example, inertial
forward-backward splitting methods [3, 25], inertial Douglas-Rachford splitting method [5],
inertial ADMM [9], inertial-type methods for variational inequalities [10,35].

Motivated by the recent work mentioned above, in this paper, we present an inertial
Tseng’s extragradient method for solving multi-valued variational inequalities, in which
only one projection is needed at each iteration; see Step 3 in Algorithm 3.3. In our method,
the projection onto the hypeplane in [12] is replaced by the Tseng’s term; see Step 4 in
Algorithm 3.3. In addition, the mapping A is assumed to be pseudomonotone with nonempty
compact convex values. Under those assumptions above, we prove that the iterative sequence
generated by our method converges strongly to a solution of the multi-valued variational
inequality (1.1). We also present numerical results of the proposed method.

This paper is organized as follows. In Section 2, we present definitions and auxiliary
material. In Section 3, we describe our algorithm and investigate the global convergence of
our method. Numerical experiments are reported in Section 4. Finally, some concluding
remarks are stated in Section 5.

2 Preliminaries

In this section, we introduce some basic concepts which will be used in this paper.
The multi-valued mapping A : Rn → 2R

n

is said to be upper semicontinuous at x ∈ C
if for every open set V containing A(x), there is an open set U containing x such that
A(y) ⊂ V for all y ∈ C

∩
U . A is said to be lower semicontinuous at x ∈ C if given any
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sequence {xn} converging to x and any y ∈ A(x), there exists a sequence {yn} satisfying
yn ∈ A(xn) that converges to y. A is said to be continuous at x ∈ C if it is both upper
semicontinuous and lower semicontinuous at x.

Let the set C be given by

C := {x ∈ Rn | g(x) ≤ 0},

where g : Rn → R is a convex function. We denote the subdifferential of g at a point x by

∂g(x) := {w ∈ Rn|g(y) ≥ g(x) + ⟨w, y − x⟩, ∀y ∈ Rn}.

The multi-valued mapping A is called monotone on C, if for any x, y ∈ C,

⟨u− ν, x− y⟩ ≥ 0, ∀u ∈ A(x), ∀ν ∈ A(y).

The multi-valued mapping A is called pseudomonotone on C, if for any x, y ∈ C,

⟨ν, x− y⟩ ≥ 0, ∃ν ∈ A(y) =⇒ ⟨u, x− y⟩ ≥ 0, ∀u ∈ A(x). (2.1)

Denote by S the solution set of the multi-valued variational inequality (1.1). Throughout
this paper, we assume that the solution set S is nonempty satisfying the following property:

⟨w, y − x⟩ ≥ 0, ∀y ∈ C ∀w ∈ A(y) ∀x ∈ S. (2.2)

The property (2.2) holds if A is pseudomonotone on C.
The projection of a point x ∈ Rn onto a closed set C is defined as

PC(x) = argminy∈C ∥ y − x ∥ .

Lemma 2.1 ( [32]). Let C be a closed convex subset of Rn. For any x, y ∈ Rn and z ∈ C,
the following statements hold,

(i) ⟨x− PC(x), z − PC(x)⟩ ≤ 0;

(ii) ∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2 − ∥PC(x)− x+ y − PC(y)∥2.

Proposition 2.2 ( [22]). x ∈ C, and w ∈ A(x) solve the problem (1.1) if and only if

rµ(x,w) := x− PC(x− µw) = 0.

Proposition 2.3 ( [12]). For any x ∈ Rn, w ∈ A(x) and µ > 0,

min{1, µ}∥r1(x,w)∥ ≤∥ rµ(x,w) ∥≤ max{1, µ}∥r1(x,w)∥.

Lemma 2.4 ( [35]). For all x, y ∈ H and λ ∈ [0, 1],

∥ λx+ (1− λ)y ∥2= λ ∥ x ∥2 +(1− λ)∥y∥2 − λ(1− λ)∥x− y∥2,

where H is a real Hilbert space.

Lemma 2.5 ( [2]). Let {φn}, {θn}, and {αn} be sequences in [0,+∞), such that

φn+1 ≤ φn + αn(φn − φn−1) + θn ∀n ≥ 1,

+∞∑
n=1

θn < +∞

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N . Then, the following
hold:
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(i) Σ+∞
n=1[φn − φn−1]+ < +∞, where [t]+ = max{t, 0}.

(ii) There exists φ∗ ∈ [0,+∞), such that limn→+∞ φn = φ∗.

Lemma 2.6 ( [26]). Let C be a nonempty set of H and xn be a sequence in H such that the
following two conditions hold:

(i) For every x ∈ C, limn→∞ ∥xn − x∥ exists.

(ii) Every sequential weak cluster point of xn is in C. Then, xn converges weakly to a
point in C.

3 Main Results

In this section, we introduce the inertial Tseng’s extragradient algorithm for solving the
multi-valued variational inequality problems. In order to find a point of the set C, we have
the following procedure.

Procedure A [18]
Data A Point x ∈ Rn.
Output A point R(x).
step 0. If x ∈ C, set R(x) = x. Otherwise, set y0 = x, n = 0.
Step 1. Choose wn ∈ ∂g(yn), set yn+1 − 2g(yn)

wn

∥wn∥2 .

Step 2. If yn+1 ∈ C, set R(x) = yn+1 and stop. Otherwise, set n = n + 1 go to Step 1.
We get the following results from Procedure A.

Proposition 3.1 ( [21]). The number of iterations in Procedure A is finite.

Proposition 3.2 ( [18]). Let x ∈ Rn, we have

∥R(x)− y∥ ≤ ∥x− y∥, ∀y ∈ C, R(x) ∈ C.

Algorithm 3.3. Choose x̃0 ∈ Rn, x̃1 ∈ Rn and two parameters µ, γ ∈ (0, 1). Set n = 1
Step 1. Apply Procedure A with x = x̃0 and set x0 = R(x̃0).
Step 2. Apply Procedure A with x = x̃n and set xn = R(x̃n).
Step 3. Let wn = xn + αn(xn − xn−1), choose un ∈ A(wn), and compute

yn = PC(wn − λnun),

where λn = γmn and mn is the smallest nonnegative integer m such that

νn ∈ A(PC(wn − γmun)). (3.1)

γm∥un − νn∥ ≤ µ∥rγm(wn, un)∥. (3.2)

If rλn
(wn, un) = 0, then stop.

Step 4. Compute

x̃n+1 = yn − λn(νn − un). (3.3)

Set n := n+ 1 and return to Step 2.
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We first show that Algorithm 3.3 is well defined.

Lemma 3.4. Suppose that the assumption (2.2) holds, then for any γ ∈ (0, 1) and xn ∈ C,
the linesearch procedure in Algrithm 3.3 is well defined.

Proof. If r1(wn, un) = 0, then by Proposition 2.3 we have rγm(wn, un) = 0, i.e., wn =
PC(wn − γmun) and hence we can take νn = un which satisfies (3.1) and (3.2).

Assume now that ∥r1(wn, un)∥ > 0. Suppose that for all m and ν ∈ A(ym) = A(PC(wn−
γmun)), we have

γm∥un − ν∥ > µ∥rγm(wn, un)∥, (3.4)

i.e.,

∥un − ν∥ >
µ

γm
∥rγm(wn, un)∥ ≥ µ

γm
min{1, γm}∥r1(wn, un)∥ = µ∥r1(wn, un)∥, (3.5)

where the second inequality follows from Proposition 2.3 and the equality follows from
γ ∈ (0, 1) and m ≥ 0.

We now consider the two cases, wn ∈ C and wn /∈ C.
(i) If wn ∈ C. Since PC(·) is continuous, ym = PC(wn − γmun) → wn(m → ∞). Since

A is lower semicontinuous, un ∈ A(wn) and ym → wn(m → ∞), there is νm ∈ A(ym) such
that νm → un(m → ∞). Therefore, from (3.5) we have

∥un − νm∥ > µ∥r1(wn, un)∥, ∀m. (3.6)

Letting m → ∞ in (3.6), we have

0 = ∥un − un∥ ≥ µ∥r1(wn, un)∥ > 0.

This is a contradiction.
(ii) If wn /∈ C, then ∥rγm(wn, un)∥ → ∥wn − PC(wn)∥ ̸= 0(m → ∞). Letting m → ∞ in

(3.4), we have

0 = γm∥un − ν∥ ≥ µ∥wn − PC(wn)∥ > 0,

as A is continuous. This is a contradiction. Thus, Algorithm 3.3 is well defined and imple-
mentable.

Next we show that the stopping criterion in Step 3 is valid.

Lemma 3.5. If rλn(wn, un) = 0 in Algorithm 3.1, then wn ∈ S.

Proof. If rλn
(wn, un) = 0, then wn = PC(wn − λnun). Since λn > 0, it follows from

Proposition 2.2 that wn ∈ S.

The following two lemmas play an important role in proving the convergence of Algorithm
3.3.

Lemma 3.6. Let {xn} be a sequence generated by Algorithm 3.1. Then for every x∗ ∈ S

∥ xn+1 − x∗ ∥2≤∥ wn − x∗ ∥2 −(1− µ2) ∥ rλn(wn, un) ∥2 (3.7)
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Proof. From (3.3) we have

∥x̃n+1 − x∗∥2 = ∥yn − λn(νn − un)− x∗∥2

= ∥yn − x∗∥2 + λ2
n∥νn − un∥2 − 2λn⟨yn − x∗, νn − un⟩

= ∥wn − x∗∥2 + ∥wn − yn∥2

+ 2⟨yn − wn, wn − x∗⟩+ λ2
n∥νn − un∥2 − 2λn⟨yn − x∗, νn − un⟩

= ∥wn − x∗∥2 + ∥wn − yn∥2 − 2⟨yn − wn, yn − wn⟩+ 2⟨yn − wn, yn − x∗⟩
+ λ2

n∥νn − un∥2 − 2λn⟨yn − x∗, νn − un⟩
= ∥wn − x∗∥2 − ∥wn − yn∥2 + 2⟨yn − wn, yn − x∗⟩
+ λ2

n∥νn − un∥2 − 2λn⟨yn − x∗, νn − un⟩.
(3.8)

Since yn = PC(wn − λnun),

⟨yn − wn + λnun, yn − x∗⟩ ≤ 0,

or equivalently

⟨yn − wn, yn − x∗⟩ ≤ −λn⟨un, yn − x∗⟩. (3.9)

From (3.8) and (3.9), we get

∥x̃n+1 − x∗∥2 ≤ ∥wn − x∗∥2 − ∥wn − yn∥2 − 2λn⟨un, yn − x∗⟩
+ λ2

n∥νn − un∥2 − 2λn⟨yn − x∗, νn − un⟩
= ∥wn − x∗∥2 − ∥wn − yn∥2 + λ2

n∥νn − un∥2 − 2λn⟨yn − x∗, νn⟩
≤ ∥wn − x∗∥2 − ∥rλn(wn, un)∥2

+ µ2∥rλn
(wn, un)∥2 − 2λn⟨yn − x∗, νn⟩

≤ ∥wn − x∗∥2 − (1− µ2)∥rλn(wn, un)∥2 − 2λn⟨yn − x∗, νn⟩.

(3.10)

Since νn ∈ A(yn) and x∗ ∈ S, it follows from (2.2) that

⟨νn, yn − x∗⟩ ≥ 0. (3.11)

Combining (3.10) and (3.11), we have

∥x̃n+1 − x∗∥2 ≤ ∥wn − x∗∥2 − (1− µ2)∥rλn
(wn, un)∥2,

and hence from Proposition 3.2 we get

∥xn+1 − x∗∥2 ≤ ∥x̃n+1 − x∗∥2 ≤ ∥wn − x∗∥2 − (1− µ2)∥rλn(wn, un)∥2.

This completes the proof.

Lemma 3.7. Assume that the sequence {αn} satisfies 0 ≤ αn ≤ αn+1 ≤ α and

α < 1− 4√
8τ + 1 + 3

, (3.12)

where τ = 2
µ+1 − 1, and that x∗ ∈ S. Then,
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(1) limn→∞ ∥xn − x∗∥ exists;

(2) limn→∞ ∥wn − xn∥ = 0.

Proof. By the definition of x̃n+1, we have

∥x̃n+1 − yn∥ = ∥yn − λn(νn − un)− yn∥
≤ λn∥νn − un∥
≤ µ∥rλn(wn, un)∥.

Therefore,

∥x̃n+1 − wn∥ ≤ ∥x̃n+1 − yn∥+ ∥yn − wn∥
≤ (1 + µ)∥rλn(wn, un)∥,

which implies

∥rλn
(wn, un)∥ ≥ 1

1 + µ
∥x̃n+1 − wn∥. (3.13)

Let x∗ ∈ S . By Lemma 3.6, we have

∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 − (1− µ2)∥rλn(wn, un)∥2. (3.14)

From (3.13) and (3.14), we have

∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 − 1− µ2

(1 + µ)2
∥x̃n+1 − wn∥2

= ∥wn − x∗∥2 − (
2

µ+ 1
− 1)∥x̃n+1 − wn∥2

= ∥wn − x∗∥2 − τ∥x̃n+1 − wn∥2

≤ ∥wn − x∗∥2 − τ∥xn+1 − wn∥2.

(3.15)

By the definition of wn, we have

∥wn − x∗∥2 = ∥xn + αn(xn − xn−1)− x∗∥2

= ∥(1 + αn)(xn − x∗)− αn(xn−1 − x∗)∥2

= (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + αn(1 + αn)∥xn − xn−1∥2.
(3.16)

Thus, it follows from (3.15) and (3.16) that

∥xn+1 − x∗∥2 ≤ (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + αn(1 + αn)∥xn − xn−1∥2

≤ (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + 2α∥xn − xn−1∥2.
(3.17)

Also,

∥xn+1 − wn∥2 = ∥xn+1 − xn − αn(xn − xn−1)∥2

= ∥xn+1 − xn∥2 + α2
n∥xn − xn−1∥2 − 2αn⟨xn+1 − xn, xn − xn−1⟩

≥ ∥xn+1 − xn∥2 + α2
n∥xn − xn−1∥2 − 2αn∥xn+1 − xn∥∥xn − xn−1∥

≥ (1− αn)∥xn+1 − xn∥2 + (α2
n − αn)∥xn − xn−1∥2.

(3.18)
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Combining (3.15), (3.16) and (3.18), we have

∥xn+1 − x∗∥2 ≤ (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + αn(1 + αn)∥xn − xn−1∥2

− τ(1− αn)∥xn+1 − xn∥2 − τ(α2
n − αn)∥xn − xn−1∥2

= (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 − τ(1− αn)∥xn+1 − xn∥2

+ [αn(1 + αn)− τ(α2
n − αn)]∥xn − xn−1∥2

= (1 + αn)∥xn − x∗∥2 − αn∥xn−1 − x∗∥2

− σn∥xn+1 − xn∥2 + δn∥xn − xn−1∥2,

(3.19)

where σn = τ(1− αn) > 0 and δn = αn(1 + αn)− τ(α2
n − αn) ≥ 0.

Set

Φn = ∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + δn∥xn − xn−1∥2,

and hence

Φn+1 = ∥xn+1 − x∗∥2 − αn+1∥xn − x∗∥2 + δn+1∥xn+1 − xn∥2.

Therefore, from (3.19) we have

Φn+1 − Φn = ∥xn+1 − x∗∥2 − (1 + αn+1)∥xn − x∗∥2 + αn∥xn−1 − x∗∥2

+ δn+1∥xn+1 − xn∥2 − δn∥xn − xn−1∥2

≤ ∥xn+1 − x∗∥2 − (1 + αn)∥xn − x∗∥2 + αn∥xn−1 − x∗∥2

+ δn+1∥xn+1 − xn∥2 − δn∥xn − xn−1∥2

≤ −(σn − δn+1)∥xn+1 − xn∥2.

(3.20)

Since 0 ≤ αn ≤ αn+1 ≤ α,

σn − δn+1 = τ(1− αn)− αn+1(1 + αn+1) + τ(α2
n+1 − αn+1)

≥ τ(1− αn+1)− αn+1(1 + αn+1) + τ(α2
n+1 − αn+1)

≥ τ(1− α)− α(1 + α) + τ(α2 − α)

= τ − 2τα− α− α2 + τα2

= −(1− τ)α2 − (1 + 2τ)α+ τ.

(3.21)

Combining (3.20) and (3.21), we get

Φn+1 − Φn ≤ −ξ∥xn+1 − xn∥2, (3.22)

where ξ = −(1− τ)α2 − (1 + 2τ)α+ τ . From (3.12) we know that ξ > 0. Therefore,

Φn+1 − Φn ≤ 0. (3.23)
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Thus, the sequence {Φn} is nonincreasing. Since

Φn = ∥xn − x∗∥2 − αn∥xn−1 − x∗∥2 + δn∥xn − xn−1∥2

≥ ∥xn − x∗∥2 − αn∥xn−1 − x∗∥2,
∥xn − x∗∥2 ≤ αn∥xn−1 − x∗∥2 +Φn ≤ α∥xn−1 − x∗∥2 +Φ1

≤ · · · ≤ αn∥x0 − x∗∥2 +Φ1(α
n−1 + · · ·+ 1)

≤ αn∥x0 − x∗∥2 + Φ1

1− α
. (3.24)

Similarly, we have

Φn+1 = ∥xn+1 − x∗∥2 − αn+1∥xn − x∗∥2 + δn+1∥xn+1 − xn∥2

≥ −αn+1∥xn − x∗∥2.
(3.25)

Thus, it follows from (3.24) and (3.25) that

−Φn+1 ≤ αn+1∥xn − x∗∥2 ≤ α∥xn − x∗∥2 ≤ αn+1∥x0 − x∗∥2 + αΦ1

1− α
,

and hence from (3.22) we get

ξ

k∑
n=1

∥xn+1 − xn∥2 ≤ Φ1 − Φk+1 ≤ αk+1∥x0 − x∗∥2 + Φ1

1− α
≤ ∥x0 − x∗∥2 + Φ1

1− α
,

which implies that Σ∞
n=1∥xn+1 − xn∥2 < +∞. Therefore, ∥xn+1 − xn∥ → 0(n → ∞). Since

{αn} is bounded, from (3.18) we have ∥xn+1 − wn∥ → 0(n → ∞). Since

0 ≤ ∥wn − xn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − wn∥,
∥wn − xn∥ → 0 as n → ∞.

In addition, using Lemma 2.5, from (3.17) we have

lim
n→∞

∥xn − x∗∥ = ρ,

for some ρ ≥ 0. Applying the boundedness of {αn}, from (3.16) we also have

lim
n→∞

∥wn − x∗∥ = ρ.

Theorem 3.8. If A : Rn → 2R
n

is continuous with nonempty compact convex values on C
and the suppose S ̸= ∅, then the sequence {xn} generated by Algorithm 3.3 converges to a
solution x̄ of (1.1).

Proof. Let x∗ ∈ S. Since µ ∈ (0, 1), (1− µ) ∈ (0, 1). It follows from Lemma 3.6 that

0 ≤ (1− µ2)∥rλn
(wn, un)∥2 ≤ ∥wn − x∗∥2 − ∥xn+1 − x∗∥2 → 0 as n → ∞,
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which implies that

lim
n→∞

∥rλn(wn, un)∥2 = 0. (3.26)

By the boundedness of {xn}, there exists a convergent subsequence {xnj
} converging to x̄.

By Lemma 3.7 (2), there also exists a convergent subsequence {wnj
} converging to x̄.

If x̄ is a solution of the problem (1.1), i.e., x̄ ∈ S. In view of Lemma 3.7, we know that
limn→∞ ∥xn − x̄∥ exists. Hence, by Lemma 2.6 we have that the sequence {xn} converges
to x̄.

Suppose now that x̄ is not a solution of the problem (1.1), i.e., x̄ /∈ S. We first show
that {mn} in Algorithm 3.3 cannot tend to ∞. Since A is continuous with compact values,
Proposition 3.11 in [4] implies that {A(wn)|n ∈ N} is bounded set, and so the sequence
{un} is a bounded set. Therefore, there exists a subsequence {unj

} converging to ū. Since
A is upper semicontinuous with compact values, Proposition 3.7 [4] implies that A is closed,
and so ū ∈ A(x̄). By the definition of mn, we have

γmn−1∥un − ν∥ > µ∥rγmn−1(wn, un)∥. ∀ν ∈ A(PC(wn − γmn−1un)).

i.e.,

∥un − ν∥ >
µ

γmn−1
∥rγmn−1(wn, un)∥

≥ µ

γmn−1
min{1, γmn−1}∥r1(wn, un)∥

= µ∥r1(wn, un)∥, ∀ ν ∈ A(PC(wn − γmn−1un))∀ mn ≥ 1,

where the second inequality follows from Proposition 2.3 and the equality follows from
γ ∈ (0, 1).

If mnj
→ ∞ , then PC(wnj

− γmnj
−1un) → x̄. By the lower semicontinuity of A, we get

that there exists ūnj
∈ A(PC(wnj

−γmnj
−1unj

)) such that {ūnj
} converges to ū. Therefore,

∥unj
− ūnj

∥ > µ∥r1(wnj
, unj

)∥ (3.27)

Letting j → ∞ in (3.27), we obtain the contradiction

0 ≥ µ∥r1(x̄, ū)∥ > 0.

Therefore, {mn} is bounded, and so is{λn}. By Proposition 2.3 ,

∥rλn
(wn, un)∥ ≥ min{1, λn}∥r1(wn, un)∥ = λn∥r1(wn, un)∥. (3.28)

It follows from (3.26) and (3.28) that

lim
n→∞

λn∥r1(wn, un)∥ = 0.

Hence,

lim
n→∞

∥r1(wn, un)∥ = 0.

Since r1(·, ·) is continuous and the sequences {wn} and {un} are bounded, there exists an
accumulation point (x̄, ū) of {(wn, un)} such that r1(x̄, ū) = 0. Hence x̄ is a solution of
the multi-valued variational inequality (1.1). Similar to the preceding proof, we obtain that
{xn} converges to x̄.



AN INERTIAL TSENG’S EXTRAGRADIENT METHOD WITH ONE PROJECTION 149

4 Numerical Experiments

In this section, we present some numerical experiments for the proposed algorithm. The
Matlab codes are run on a PC (with Intel(R) Core(TM) i3-4010U CPU @ 1.70GHZ) under
MATLAB Version 8.4.0.150421 (R2014b) Service Pack 1. Now, we apply our algorithms to
solve the VIP and compare numerical results with other algorithms.

In the following tables, “Iter.” denotes the number of iterations and “CPU” denotes the
CPU time in seconds. The tolerance ε means when ∥rµ(x,w)∥ ≤ ε, the procedure stops.

Example 4.1. Let

C := {x = (x1, x2) ∈ R2
+ : 0 ≤ xn ≤ 10, n = 1, 2},

and A : C → 2R
2

be defined by

A(x) = {(x2
1 + t, x2

2), ∀ x = (x1, x2) ∈ R2, t ∈ [0, 1/5]}.

It is obvious that A satisfies the assumptions in Theorem 3.8. We choose µ = 0.98,
γ = 0.91, α = 0.03 for our Algorithm 3.3; µ = 0.35, γ = 0.55 for Algorithm 2.1 in [12];
µ = 0.54, γ = 0.74 for Algorithm 3.1 in [11]. See Figure 1 and Table 1.

Table 1 Example 4.1 .

Algorithm3.1 Algorithm 2.1 [12] Algorithm 3.1 [11]
Tolerance ε Iter. CPU Iter. CPU Iter. CPU
10−1 11 0.0780 13 0.2964 15 0.0780
10−2 13 0.0936 14 0.3076 29 0.1560
10−3 14 0.0936 15 0.3120 42 0.2340
10−4 15 0.0936 - - - -

Example 4.2. Let n = 4 The feasible set C is given by

C :=

{
x ∈ Rn|

n∑
i=1

xi = 1,−10 ≤ xi ≤ 10, i = 1, · · · , n

}
.

and A : C → 2R
2

be defined by

A(x) = {(t+ x1, x1, x1, x1) : t ∈
[ 1

10
,
1

5
]
}

Example 4.2 is tested in [34]. It is obvious that A is pseudomonotone and all the as-
sumptions in Theorem 3.8 are satisfied. We choose µ = 0.14, γ = 0.10, α = 0.72 for our
Algorithm 3.3; µ = 0.52, γ = 0.49 for Algorithm 2.1 in [12]; µ = 0.37, γ = 0.34 for Algorithm
3.1 in [11]; See Figure 2 and Table 2.
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Figure 1: ∥rµ(x,w)∥ and time in Example 4.1

Figure 2: ∥rµ(x,w)∥ and time in Example 4.2
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Table 2 Example 4.2.

Alrithm3.1 Algorithm 2.1 [12] Algorithm 3.1 [11]
Tolerance ε Iter. CPU Iter. CPU Iter. CPU
10−3 8 0.0624 9 0.3120 28 0.1248
10−5 12 0.7800 18 0.3900 45 0.2028
10−7 16 0.0936 26 0.4680 63 0.2808

5 Conclusion

In this paper, we proposed an inertial Tseng’s extragradient algorithm for solving multi-
valued variational inequalities. We proved the convergence of the sequences generated by
the proposed algorithm and presented some numerical experiments to illustrate the efficiency
of our method. Compared with those algorithms in [6, 16], only one projection is needed
at each iteration in our method. Our method is also different from that in [11]. First, we
incorporate the inertial effects in our method. Secondly, the next iteration is related to
Tseng’s technique in our method while in [11] the next iteration is based on contraction
method studied in [15].
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