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To address the above mentioned issues, various modifications of SVM for matrix-form
data classification have been presented. Wolf et al. [35] designed rank-k SVM by regularizing
the regression matrix into the sum of k rank-one orthogonal matrices, thus catching the
holistic feature of matrix data. The bilinear SVM (BSVM) [27] decomposed regression
matrix into the product of two low-rank matrices. Although the above algorithms can
hold the structural information of the rows and columns in input matrices, the rank of the
regression matrix needs to be determined beforehand, which makes it difficult to adjust the
parameters to the desired result. By using the nuclear norm of the matrix as the convex
substitution of the matrix rank, one [16] could automatically figure out the rank of the
regression matrix. There are other improved models [6,8,18,39]. Specifically, Luo et al. [18]
represented an innovative support matrix machine (named as SMM) through the use of
hinge loss, Frobenius norm, and nuclear norm, which can obtain structural information
from the input matrices. By comparison with other matrix classification algorithms, SMM
is more suitable for image classification and electroencephalogram (EEG) classification. The
alternating direction method of multipliers (ADMM) algorithm can effectively solve SMM.
Nevertheless, in numerous practical applications, the scale of matrix variables in the era
of big data is increasing. It is still a challenging task to solve the problem of large-scale
matrix variables because the computational cost increases quickly with the size of the matrix
variables. Consequently, for large-scale matrix variables datasets, degrading the training cost
of SMM is a matter worthy of research.

Ghaoui et al. [10] developed a safe screening method to optimize Lasso, which distin-
guishes features that are homologous to zero coefficients and eliminates them before solving
the problem. Thus we only need to solve a smaller problem and accelerate the computing
speed. So far, there are many improved algorithms [2,7,22,23,29]. Furthermore, safe screen-
ing rule was first introduced into SVM by Ogawa et al. [24]. It aims to identify non-support
vectors and preassign them beforehand. Motivated by that idea, there are also various
improvement algorithms [25, 33] and it has been widely adopted to other models [37, 42].
However, none of these methods are suitable for matrix-shape datasets. Thus, the SMM
cannot use the above-mentioned methods to speed up the training process. Fortunately,
by imposing low-rank constraints on the regression matrix, the SMM can be considered a
problem for minimizing the nuclear norm. While a great deal of work [15,21] has been done
to develop effectual nuclear norm minimization solvers, the vast majority of them are still
unable to solve large-scale problems. Although Yao et al. [36] proposed an effective algo-
rithm to solve large-scale matrix completion problems, SMM cannot be directly equivalent
to the problem. Recently, inspired by the idea that the nuclear norm is equivalent to the
l1-norm on singular values, Hsieh et al. [13] represented an active subspace selection method,
which identifies a small active subspace and efficiently minimizes the reduced-sized nuclear
norm minimization problem.

Motivated by the above studies, we first introduce the squared hinge loss-based support
matrix machine (L2-SMM), which is smooth and allows for better optimization. Subse-
quently, we develop a subspace elimination strategy for accelerating L2-SMM (SES-L2-
SMM) to reduce the computational cost. The SES-L2-SMM is presented by analyzing the
regression matrix composed of the sum of rank one matrices. L2-SMM implements low rank
constraint of matrix by adopting nuclear norm regularization. The low rank of the matrix
can be represented by the sparsity of the subspace. Therefore, we can identify the zero weight
and eliminate the corresponding subspace. Thus we are able to obtain a lower-dimensional
matrix variable, and accordingly, the scale of the L2-SMM is reduced which is less expensive
to optimize. Moreover, the SES is independent from the solver because it is implemented
before solving the optimization problem. Therefore, the different efficient solvers can be
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combined. We construct an alternating direction method of multipliers (ADMM) as our
efficient solver.

The main contributions of our approach are summarized as follows:
(i) We propose a SES-L2-SMM via sparse representation of the matrix to efficiently deal

with the problem of large-scale matrix-variables.
(ii) To the best of our knowledge, this is the first attempt to apply the subspace elimi-

nation strategy to L2-SMM.
(iii) The SES is independent from the solver as it is applied before solving L2-SMM

model. Hence, other efficient solvers can be combined. In this work, we construct the
alternating direction method of multipliers (ADMM) as the efficient solver.

This paper is constructed as follows: Section 2 introduces the basic idea of subspace
elimination strategy and reviews the basic concepts of SMM and L2-SMM. In Section 3,
details of SES for L2-SMM are introduced. The calculation of reducing L2-SMM is given
in Section 4. Section 5 carries out numerical experiments on three real-world datasets to
validate the efficacy of the presented algorithm. The last section draws some conclusions.

Notations: In this paper, scalar, vector, and matrix are represented by lowercase letter
(e.g. w), lowercase bold letter (e.g. w), and uppercase bold letter (e.g. W), respectively. For

a matrix W = [Wij ] ∈ Rp×q, its Frobenius norm is ∥W∥F =
√

tr(WTW) =
√∑

i,j W
2
ij ,

nuclear norm is ∥W∥∗ =
∑

i σi(W), where σi(W) is the singular value. ∥ · ∥ denotes
the 2-norm of a vector or matrix. For two matrices X, W, the matrix trace operation is
tr(WTX) =

∑p
i

∑q
j=1 WijXij . For a smooth function g, ∇g denotes its gradient. The

training data T = {Xi, yi}ni=1, where Xi ∈ Rp×q and yi ∈ {−1, 1}, contains n samples and
each sample with p × q features. Xi is the i-th sample and yi is the corresponding class
label.

2 Preliminaries

In this section, we provide some basic knowledge of this paper, including the SMM model,
its important properties and the central idea of subspace selection.

2.1 Support matrix machine with hinge loss

The structure information embedded in matrix data will inevitably be ignored by vectorizing
the matrix-form data. Visually, we take the following formula into consideration:

min
W,b

1

2
∥W∥2F + C

n∑
i=1

{1− yi[tr(W
TXi) + b]}+, (2.1)

here, W ∈ Rp×q is the matrix of regression coefficients. Nonetheless, from the viewpoint of
computation, when w = vec(W) and xi = vec(Xi), since ∥W∥2F = tr(WTW) = wTw =
∥w∥2 and tr(WTXi) = wTxi, Eq. (2.1) is essentially equivalent to the model of classical
SVM. The method of directly executing classification algorithm with (2.1) cannot efficiently
acquire the underlying structure of matrices efficiently.

To eliminate the adverse effects of vectorization, Luo et al. [18] developed an innovative
algorithm called support matrix machine (SMM), which consists of the hinge loss and the
spectral elastic net penalty are shown below:

min
W,b

1

2
∥W∥2F + τ∥W∥∗ + C

n∑
i=1

{1− yi[tr(W
TXi) + b]}+, (2.2)
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here, tr(·) is the matrix trace operation, b is the bias term, and W ∈ Rp×q is the regression
matrix. 1

2∥W∥
2
F + τ∥W∥∗ is called spectral elastic net because ∥W∥2F =

∑
i σi(W)2 and

∥W∥∗ =
∑

i σi(W). According to [18], the spectral elastic net is analogous to the elastic
net of [43]. τ and C are positive scalars chosen beforehand. Because of the properties of
grouping effect of the spectral elastic net and the nature of low rank of the nuclear norm,
SMM can powerfully catch the internal structural information within matrix-form data.

2.2 Subspace elimination strategy

The subspace elimination strategy (SES) is based on the idea of sparse representation of the
matrix. Its main idea is as follows:

Generally, matrix W ∈ Rp×q can be presented as the sum of rank one matrices

W =

p∑
i=1

q∑
j=1

Θijuiv
T
j , (2.3)

where Θ ∈ Rp×q, {ui ∈ Rp}pi=1 and {vj ∈ Rq}qj=1 are orthogonal bases in Rp×p and

Rq×q, respectively. The reason we impose the nuclear norm on regression matrix is that
the regression matrix is assumed low-rank representable. On the other hand, the low rank
of the matrix can be represented by the sparsity of the subspace. Thus the matrix Θ is
sparse. In other words, it will have numerous elements that are equal to zero. Consequently,
the purpose of SES is to distinguish the set {uiv

T
j |Θij = 0}, namely inactive subspaces,

before solving the final solution. Then we can only tackle the dimension reduction problem
composed of the remaining rank one subspaces, which correspond to {uiv

T
j |Θij ̸= 0}, namely

active subspaces. Later, the scaled problem can be efficiently resolved.

3 Subspace Elimination Strategy for L2-SMM

In this section, we first develop the L2-SMM, then construct the SES procedure for L2-SMM,
and later obtain the reduction problem.

3.1 Support matrix machine with squared hinge loss function

Similar to SVM with the squared hinge loss function, we change the hinge loss to squared
hinge loss (termed as L2-SMM) to make it smooth for efficient optimization. Furthermore,
the L2-SMM is employed for subsequent search. Then, the formula of L2-SMM is as follows:

min
W,b

1

2
∥W∥2F + τ∥W∥∗ + C

n∑
i=1

max{0, 1− yi[tr(W
TXi) + b]}2. (3.1)

To avoid puzzlement, we follow the symbols in problem (2.2).

3.2 SES-L2-SMM

We need to search a set {uivi|Θij = 0} according to the basic idea of SES. Assume the
optimal solution to problem (3.1) is W∗ =

∑p
i=1

∑q
j=1 Θ

∗
ijuiv

T
j , if there exists a particular

subspace uivj , the value of Θ∗
ij will be 0 if and only if

uT
i W

∗vj = 0, (3.2)
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since {uivj , i = 1, 2, · · · , p, j = 1, 2, · · · , q} are orthogonal to each other. Then we have

uT
i UVTvj = 0. (3.3)

The problem (3.1) can be represented as a function with respect to Θij by the form
(2.3). We first give the symbol shorthand for facilitating notation.

G(W, b) = h(W, b) + τ∥W∥∗,

h(W, b) =
1

2
∥W∥2F + C

n∑
i=1

max{0, 1− yi[tr(W
TXi) + b]}2.

Then, two Lemmas for the computation of the sub-differential ∂Θij
G(W, b) are provided

below.

Lemma 3.1. [34] For a real matrix W ∈ Rp×q, if the singular value decomposition (SVD)
of W is UΣV, the sub-differential of ∥W∥∗ is defined as

∂∥W∥∗ =
{
UVT +P : P ∈ Rp×q, UTP = 0, PV = 0, ∥P∥ ≤ 1

}
. (3.4)

Lemma 3.2. (Cauchy Schwarz). For x, y ∈ Rn

|⟨x, y⟩| ≤ ∥x∥∥y∥. (3.5)

Subsequently, we calculate the sub-differential and estimate its range. Here, we only
consider Θij = 0. The sub-differential with respect to Θij can be represented as

∂ΘijG(W, b) = uT
i ∇Wh(W, b)vj + τuT

i (UVT +P)vj

= uT
i ∇Wh(W, b)vj + τuT

i Pvj ,
(3.6)

where the second equation holds because of the formula (3.3).
Meanwhile, we have the following inequations from Lemmas 3.1 and 3.2

τ |uT
i Pvj | = τ |⟨ui,Pvj⟩|

≤ τ∥ui∥ · ∥Pvj∥
≤ τ∥ui∥ · ∥P∥
= τ∥P∥
≤ τ,

(3.7)

Later, we can get

∂ΘijG(W, b) ∈ [uT
i ∇Wh(W, b)vj − τ,uT

i ∇Wh(W, b)vj + τ ].

Finally, a Theorem is given to define the inactive subspace and active subspace as follows:

Theorem 3.3. For problem (3.1), we define the inactive subspace set L as

L = {uvT |uTWv = 0 ∧ |uT∇Wh(W, b)v| ≤ τ},

and the active subspace set E as

E = {uvT |uTWv ̸= 0 ∨ |uT∇Wh(W, b)v| > τ},

where ∧ denotes logical operation “and” and ∨ represents logical operation “or”.
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Proof. Let 0 ∈ ∂Θij
G(W, b), we could easily obtain that

|uT
i ∇Wh(W, b)vj | ≤ τ.

The above conclusion can be established only when the formula (3.2) is satisfied. Thus
the inactive subspace is defined as:

L = {uvT |uTWv = 0 ∧ |uT∇Wh(W, b)v| ≤ τ}.

Therefore, all the rank one subspace in L have zero weight in the current solution W.
Afterward, the active subspace is as follows:

E = {uvT |uTWv ̸= 0 ∨ |uT∇Wh(W, b)v| > τ},

which is the complementary set of L.
This completes the proof. □
If we can find the elements that belong to the above set, we can distinguish inactive

subspaces and active subspaces. To do this, we first give a Lemma, and then provide a
Theorem.

Lemma 3.4. Let UΣVT represent the SVD of matrix W, then, the singular value thresh-
olding (SVT) operator [4] is as follows

Dτ (W) = UΣτV
T , (3.8)

where (Στ )ii = max(0,Σii − τ).

For simplicity, let Z = W −∇Wh(W, b), then we give the following Theorem.

Theorem 3.5. Assume W = UΣVT is the reduced SVD of W (U ∈ Rp×k,V ∈ Rq×k and Σ
has positive diagonal values, and Dτ (Z) = UgΣgVg (also a reduced SVD). Let Us be an or-
thonormal basis of span(U,Ug), Vs be an orthonormal basis of span (V,Vg), and U⊥

s ,V
⊥
s

are orthonormal complements to Us,Vs, then

{uvT |u ∈ U⊥
s ∨ v ∈ V⊥

s } ⊂ L. (3.9)

Proof. We first prove uvT ∈ L for all u if v ∈ V⊥
s .

If v ∈ V⊥
s , notice that Vs is an orthonormal basis of span{V,Vg}, the following equal-

ities will be obtained:

VTv = 0⇒Wv = 0,

VT
g v = 0⇒ for ∀ u, |uTZv| < τ ⇒ |uT∇Wh(W, b)v| ≤ τ.

Combine above two formulas, we have uvT ∈ L for all u if v ∈ V⊥
s . For u ∈ U⊥

s , the
proof is omitted since it is similar. Therefore, (3.9) is demonstrated to be true. □

Thus, Us and Vs are the active subspace. Subsequently, we discuss how to calculate the
values of Us and Vs. Note that to solve the issue, the values of U (V) and Ug (Vg) need
be computed.

In the procedure of SES, the matrix W maintains a low-rank decomposition, namely
W = UΣVT . Hence we do not need to calculate the values of U and V.

To compute Ug and Vg, we have to reckon the SVD of Z and then compute Dτ (Z).
The process of SVD is often time-consuming, particularly for large-scale matrix data. Based
on this fact, we mainly manage to calculate effectively SVD of matrix Z. Following the
literature [12], we first utilize an auxiliary variable computed from the following Proposition
and then give the singular vectors we need. Later, we could obtain the Ug and Vg.
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Proposition 3.6. Let m̃ be the number of singular values in Z ∈ Rp×q larger than τ , and
Q ∈ Rp×m, where m ≥ m̃, be orthogonal and contains the subspaces spanned by the top m̃
left singular vectors of Z. Then, Dτ (Z) = QDτ (Q

TZ).

Thus, if the span of Z’s top m left singular vectors are given, we only need to perform
SVD on a smaller QTZ ∈ Rm×q (instead of Z ∈ Rp×q). The matrix Q can be found by
using the power method [12] detailed in Algorithm 1.

Algorithm 1 Power method

Input: Z ∈ Rp×q, R ∈ Rq×m, and the number of iterations Iter ;
Output: Q;
1: initialize Q0 = QR(ZR); /* QR(·) is QR factorization */
2: for all i = 1, 2, · · · , Iter do
3: Qi = QR(Z(ZTQi−1));
4: end for
5: return QIter.

Based on the results above, we calculate the SVD of QTZ and QDτ (Q
TZ) to get Ug

and Vg. The procedure is shown in Algorithm 2.

Algorithm 2 Calculating Dτ (Z)

Input: Z ∈ Rp×q, R ∈ Rq×m, Iter, and τ ≥ 0;
Output: Ug, Vg;
1: Q = Powermethod(Z,R, Iter); ← Algorithm 1
2: [Ũ,Σ,V] = SVD(QTZ); /* Calculate the SVD of a smaller matrix */
3: U = QŨ; /* Form the Orthogonal matrix */
4: Ug = {uii|Σii > τ};
5: Vg = {vii|Σii > τ};
6: return Ug, Vg.

Since Us (Vs) is an orthogonal basis of span(U,Ug) (span(V,Vg)), we utilize the QR
factorization to get that in our method.

3.3 The reduced problem of L2-SMM

Given Us, Vs, we can construct the column basis Ũ = [Us,U
⊥
s ] and row basis Ṽ =

[Vs,V
⊥
s ]. Subsequently, regression matrix W can be re-parameterize as W = ŨΩ̃ṼT ,

here Ω̃ ∈ Rp×q. Therefore, the optimization problem (3.1) can be rewritten as

arg min
Ω̃∈Rp×q,b

G(ŨΩ̃ṼT , b) = h(ŨΩ̃ṼT , b) + τ∥ŨΩ̃ṼT ∥∗. (3.10)

Suppose both Us and Vs have k columns. Through the preceding analysis, only the
k × k upper-left corner sub-matrix of Ω̃ is the active subspace set, while the other is the
inactive subspace set. By employing the SES, the problem (3.10) downsizes to the below
equivalence problem:

arg min
Ω∈Rk×k,b

G(UsΩVT
s , b) = h(UsΩVT

s , b) + τ∥UsΩVT
s ∥∗, (3.11)
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here, Ω = Ω̃1:k,1:k ∈ Rk×k. Additionally, Us,Vs are orthogonal bases, which indicates that
∥UsΩVT

s ∥∗ = ∥Ω∥∗. Afterward, the reduced problem (3.11) is written as follows:

arg min
Ω∈Rk×k,b

G̃(Ω, b) = h̃(Ω, b) + τ∥Ω∥∗, (3.12)

where h̃(Ω, b) = h(UsΩVT
s , b). In problem (3.12), we just need to solve a reduced optimiza-

tion problem with a k × k matrix variables instead of p× q as in problem (3.1), which can
potentially improve computation speed. However, in problem (3.12), we do not know the
values of Us and Vs. Subsequently, we will discuss how to obtain Us and Vs, and how to
solve problem (3.12).

4 ADMM

In this section, we solve the problem (3.12). As ∥Ω∥∗ is convex but non-smooth, it is difficult
to directly solve the problem (3.12). Fortunately, the ADMM method is an efficient solution
method for low rank constrain problem [9], therefore, the problem (3.12) is solved with
ADMM. To adopt ADMM strategy to our problem, we need to make our objective function
separable. Therefore, we introduce one auxiliary variable L to replace Ω in the nuclear term
of our objective function. Hence, the objective function of (3.12) becomes two separable
objective functions with a linear constraint:

min
Ω,b,L

h̃(Ω, b) + τ∥L∥∗ (4.1)

s.t. Ω = L.

For problem (4.1), the augmented Lagrangian function is given by

L(Ω, b,L,Γ) = h̃(Ω, b) + τ∥L∥∗ + tr(ΓT (L−Ω)) +
µ

2
∥L−Ω∥2F , (4.2)

where Γ ∈ Rk×k is Lagrangian multiplier and µ > 0 is the positive penalty parameter.
ADMM algorithm iteratively estimates the optimal solutions by minimizing problem (4.2).
In each iteration process, a variable is solved by fixing the remaining variables, and the
updating order for all variables is reported below:

(Ωl, bl) = argmin
Ω,b
L(Ω, b,Ll−1,Γl−1),

Ll = argmin
L
L(Ωl, bl,L,Γl−1),

Γl = Γl−1 + µ(Ll −Ωl),

(4.3)

where l ∈ N indicates the index of iteration. Then, the detailed solutions of above subprob-
lems are described as follows.

(1) (Ω, b)-subproblem: To update Ω and b, we first fix the other variables, and then
consider the problem described below:

(Ω∗, b∗) = argmin
Ω,b

1

2
h̃(Ω, b)− tr(ΓTΩ) +

µ

2
∥L−Ω∥2F . (4.4)
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For ∥UsΩVT
s ∥2F = tr(VsΩ

TUT
s UsΩVs) = tr(ΩTΩ), the above problem is equivalent to

solving the following problem:

min
Ω,b,ξ

1

2
tr(ΩTΩ)− tr(ΓTΩ) +

µ

2
∥L−Ω∥2F + C

n∑
i=1

ξ2i (4.5)

s.t. yi
[
tr(VsΩ

TUT
s Xi) + b

]
≥ 1− ξi, i = 1, 2, · · · , n,

where ξ is slack vector and C > 0 is parameter chosen in advance.

To solve the optimization problem (4.5), we construct the following Lagrangian function

L′(Ω, b, ξ,α) =
1

2
tr
(
ΩTΩ

)
− tr

(
ΓTΩ

)
+

µ

2
∥L−Ω∥2F

+ C

n∑
i=1

ξ2i −
n∑

i=1

αi

{
yi
[
tr
(
VsΩ

TUT
s Xi

)
+ b

]
− 1 + ξi

}
,

(4.6)

where α ≥ 0 is the Lagrangian multiplier.

According to the KKT conditions, the following equations are calculated as follows:

∂L′

∂Ω
= 0→ Ω =

1

1 + µ
(Γ+ µL+

n∑
i=1

αiyiU
T
s XiVs),

∂L′

∂b
= 0→

n∑
i=1

αiyi = 0,

∂L′

∂ξi
= 0→ ξi =

1

2C
αi. (4.7)

Substituting the above formulations into (4.6), we have

L′(Ω, b, ξ,α) =
1

2
tr(ΩTΩ)− tr(ΓTΩ) +

µ

2
∥L−Ω∥2F −

1

4C
αTα

−
n∑

i=1

αi{yi[tr(VsΩ
TUT

s Xi)]− 1}

=
1 + µ

2
tr(ΩTΩ)− tr

[
(ΓT + µLT +

n∑
i=1

αiyiV
T
s X

T
i Us)Ω

]

− 1

4C
αTα+α

= −1 + µ

2
tr(ΩTΩ)− 1

4C
αTα+α

= − 1

2(1 + µ)

 n∑
i=1

n∑
j=1

αiαjyiyj tr(X
T
i Xj)


− 1

1 + µ

n∑
i=1

αiyi tr[(Γ+ µL)TUT
s XiVs]−

1

4C
αTα+α+ const

= −1

2
αT (H+

1

2C
I)α+ fTα+ const,

(4.8)



164 R. FENG, P. ZHONG AND Y. XU

where H = [Hij ] ∈ Rn×n, f ∈ Rn, and const is a constant, specifically,

Hij =
yiyj tr(X

T
i Xj)

1 + µ
, fi = 1− yi tr[(Γ+ µL)TUT

s XiVs]

1 + µ
,

const = − 1

2(1 + µ)
tr[ΓTΓ+ 2µΓTL+ µ2LTL]. (4.9)

Through the KKT conditions (4.7) and αi ≥ 0, we derive the dual problem of (4.5)
below:

max
α

−1

2
αT (H+

1

2C
I)α+ fTα (4.10)

s.t.

n∑
i=1

αiyi = 0,

α ≥ 0.

By solving the problem (4.10) with “quadprog” toolbox of MATLAB, we could get the
vector α∗, then we can obtain Ω∗ from the following formulation:

Ω∗ =
1

1 + µ
(Γ+ µL+

n∑
i=1

α∗
i yiU

T
s XiVs). (4.11)

As for the optimal solution of b, we consider the KKT conditions, which provide

αi{yi[tr(ΩTXi) + b]− 1 + ξi} = 0, (4.12)

for ∀αi > 0, we have

yi[tr(Ω
TXi) + b]− 1 + ξi = 0, (4.13)

according to (4.7), the following formulation is derived

yi[tr(Ω
TXi) + b] = 1− α∗

i

2C
→ b = yi(1−

α∗
i

2C
)− tr(ΩTXi). (4.14)

Practically, we compute the optimal b with the averaging solution

b∗ = 1
|E∗|

∑
i∈E∗{yi(1− α∗

i

2C )− tr(ΩTXi)}, (4.15)

where E∗ = {i|α∗
i > 0}.

(2) L-subproblem: In this step, we fix the other variables, and update L as follows:

L∗ = argmin
L

τ∥L∥∗ + tr(ΓTL) +
µ

2
∥L−Ω∥2F . (4.16)

Since ∥L∥∗ is non-smooth and non-differentiable, we derive the sub-gradient for L as

0 ∈ τ∂∥L∥∗ + Γ+ µ(L−Ω), (4.17)

where ∂∥Ω∥∗ is denoted as the sub-gradient of the nuclear norm.
To solve (4.16), suppose the SVD of µΩ− Γ as

µΩ− Γ = U1Σ1V
T
1 +U−1Σ−1V

T
−1, (4.18)
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where Σ1 is a diagonal matrix whose diagonal values are all greater than τ . U1 and V1 are
the corresponding singular matrices. By contrast, Σ−1 is a diagonal matrix whose diagonal
values are all not greater than τ . U−1 and V−1 are the corresponding singular matrices.

Similar to [40], let L = 1
µU1(Σ1 − τI)VT

1 , and thus we can obtain

µ(Ω− L)− Γ =µΩ− Γ− µL

=U1Σ1V
T
1 +U−1Σ−1V

T
−1 −U1(Σ1 − τI)VT

1

=τ(U1V1 +
1

τ
U−1Σ−1V

T
−1).

(4.19)

According to Lemma 3.1, let P = 1
τU−1Σ−1V

T
−1. It is easy to verify that U1P

T =
0,PV1 = 0, and ∥P∥ ≤ 1 for the diagonal matrix Γ1 is bounded by τ . Therefore, we have
µ(Ω− L)− Γ ∈ τ∂∥Ω∥∗, and the updating formula for L is obtained as

L =
1

µ
U1(Σ1 − τI)VT

1 =
1

µ
Dτ (µΩ− Γ). (4.20)

(3) Update Multiplier: We update the multiplier by

Γ = Γ+ µ(L−Ω). (4.21)

Finally, to accelerate ADMM and guarantee convergence, we use a restart rule [11].
The details are represented in Algorithm 3, where the stopping criteria are the number of
iterations l reaches the maximum number maxIter, which is set to 1000, or the algorithm
satisfies the following convergence condition:

|objl −mean(objrecent)|
|mean(objrecent)|

< 10−5, (4.22)

where obj denotes the value of the objective function, objl is the value of the l-th iteration,
and objrecent represents the value of the last 50 times (it implies that the method at least
iterates 50 times).

Furthermore, our proposed subspace elimination strategy for accelerating L2-SMM can
be concluded in Algorithm 4. In our experiments, the maximum number MaxIter of SES
is set to 10 and convergence criterion is

errW =

√
∥Wm −Wm−1∥2F

numel(W)
≤ 10−5, (4.23)

where Wm is the value of m-th iteration and numel(W) denotes the number of elements in
matrix W.

5 Numerical Experiments

To illustrate the efficacy of our proposed acceleration scheme, experiments on multiple
datasets are conducted in this section. All experiments are conducted in MATLAB R2019a
on Windows 7 running on a PC with system configuration Intel(R) Core(TM) i5-4590
CPU(3.30 GHZ) with 8.00 GB of RAM. Moreover, to demonstrate the effectiveness of
our SES-L2-SMM, five other algorithms are compared in the experiments, i.e., Sparse SVM
(SSVM) [41], bilinear SVM (BSVM) [16], Sparse SMM (SSMM) [39], SMM [18], and L2-
SMM. Among them, SSVM is the representative vector-based method and others are state-
of-the-art matrix classifiers. The package is download from the website.

SSMM: https://github.com/zhengqq/SSMM. SMM: http://bcmi.sjtu.edu.cn/luoluo/code/smm.zip.
SSVM and BSVM can be regard as the special cases of SSMM when parameter τ = 0 and γ = 0.
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Algorithm 3 ADMM algorithm for problem (3.12)

Input: Ω ∈ Rk×k, Us ∈ Rp×k, Vs ∈ Rq×k, τ ≥ 0, C ≥ 0, and maxIter ;
Output: Ω, b;
1: Initialize: L−1 = L̃ = 0, µ = 10
2: repeat
3: update (Ωl, bl) = argmin

Ω,b
L(Ω, b, L̃l, Γ̃l)← Formula (4.11) and (4.15);

4: update Ll = argmin
L
L(Ωl, bl,L, Γ̃l)← Formula (4.20);

5: update Γl = Γ̃l + µ(Ll −Ωl)← Formula (4.21);
6: /* restart rule */
7: cl = µ−1∥Γl − Γ̃l∥2F + µ∥Ll − L̃l∥2F ;
8: if cl < ηcl−1 then

9: γl+1 =
1+
√

1+4γ2
l

2 ;

10: L̃l+1 = Ll +
γl−1
γl+1

(Ll − Ll−1);

11: Γ̃l+1 = Γl +
γl−1
γl+1

(Ll −Ll−1);

12: else
13: γl+1 = 1;
14: L̃l+1 = Ll−1;
15: Γ̃l+1 = Γl−1;
16: cl = η−1cl−1;
17: end if
18: until l ≥ maxIter or convergence
19: return Ω, b.

Algorithm 4 SES-L2-SMM

Input: dataset {Xi, yi}ni=1, parameter C ≥ 0, and τ ≥ 0;
Output: W, b;
1: repeat
2: Z = W −∇Wh(W, b);
3: [Ug,Σg,Vg] = Dτ (Z);← Algorithm 2
4: Us = QR([Ug,U]); /* Us ∈ Rp×km */
5: Vs = QR([Vg,U]); /* Vs ∈ Rq×km */
6: Calculate (Ω, b)← Algorithm 3;
7: W = UsΩVT

s ;
8: m = m+ 1;
9: until m ≥MaxIter or convergence

10: return W, b.

5.1 Experiments settings

We first introduce the settings of our experiment. Parameters C and τ are tuned by altering
the values of the parameters on a grid of 5×5, which gains values from C = {2i|i = −4 : 2 : 4}
and τ = {0.1, 0.5, 1, 5, 10}. For fair comparison, the free parameters of all competitive
algorithms are carefully adjusted to acquire the best classification results. Additionally,
five-fold cross-validation is employed in our experiments.
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5.2 Real datasets

A. Fish dataset

Disease and decay of seafood can cause serious human health problems and economic
losses. Therefore, the evaluation of the quality of seafood is highly crucial. However, since
disease and decay of seafood show different symptoms in different species, it is first necessary
to classify the species. In this section, we carry out extensive experiments on a large-scale fish
dataset (Fish dataset) [30]. The dataset contains 9 different seafood types which are widely
consumed. All the fish in the process of image acquisition are fresh, and they are placed
at various displacements and angles, but the light conditions do not change distinctly. The
background of images is blue and noisy to make the dataset useable for the study of practical
problems. The size of each image is 2832 × 2128 or 1024 × 768. There are approximately
30-50 images each class.

In our experiments, we select alphabetically the first 5 classes, namely, black sea sprat
(B), gilt head bream (G), horse mackerel (H), red mullet (R1), and red sea bream (R2). Some
samples are shown in Fig. 1. We adopt a “1-versus-1” structure and form C2

5 = 10 binary

Figure 1: Some samples from Fish dataset, from top to bottom belong to black sea sprat
(B), gilt head bream (G), horse mackerel(H), red mullet (R1), and red sea bream (R2),
respectively.

classification problems. For facilitation, we will use the abbreviations of these datasets,
for instance, “BG” indicates that “Black sea sprat-versus-Gilt head bream”. In addition,
some image samples contain time stamp at the bottom right of the picture. To prevent
this information from being learned as additional information, which would unfairly affect
the results, we delete these images. We first convert the images into gray scale images and
then use the pixel values as features. Finally, the detailed description of our used dataset is
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displayed in Table 1.

B. MaskedFace-Net

COVID-19 causes an outbreak of severe pneumonia with worldwide human-to-human
transmission and leads to significant morbidity and mortality. To a certain extent, wearing
face masks might limit the spread of COVID-19. It makes sense to use a recognition system
to check whether people are wearing masks in regulated areas. However, it is even more
crucial to wear a mask correctly. Actually, plenty of people are not properly wearing their
masks because of bad practices, bad behavior or the vulnerability of individuals. For the
above reasons, [3] collected masked face detection dataset, that is, MaskedFace-Net data.
Subsequently, we perform experiments on that dataset to detect faces having their masks
correctly worn or incorrectly worn. MaskedFace-Net data is composed of two types, namely,
the Correctly Masked Face Data set (CMFD) and the Incorrectly Masked Face Data set
(IMFD). Besides, IMFD is subdivided into three subclasses, as depicted in Fig. 2. The

Figure 2: View of the MaskedFace-Net data tree.

dataset contains 67049 images with CMFD and 66734 images with IMFD at 1024 × 1024.
In our experiments, we use CMFD (C) and IMFD1 (I1), IMFD2 (I2), IMFD3 (I3) to

form three binary classifications, respectively. Analogously, the abbreviation of the dataset
is used for the name of the dataset, for example, “CI1” represents “CMFD-versus-IMFD1”.
Some instances are deployed in Fig. 3. We select part of the data for the experiment and
the detailed information is shown in Table 1. Similar to Fish date set, we convert the images
into gray scale images and extract the gray pixel values as the input matrix-form features.

C. GAMEEMO

Numerical experiments are further conducted on the application of EEG Emotion data
classification. Emotion impacts individuals’ daily life and plays a crucial role. Unfavorable

C is the first 100 images of “00000” folder; I2 is the top 100 images of IMFD2 in “00000” folder; I1 and
I3 is selected from “00000” folder.
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Figure 3: The picture on the left shows samples of correctly masked faces; The picture on
the right represents samples of incorrectly masked faces; specifically, in the right picture,
the first two rows are uncovered chin (IMFD1), the middle two rows are uncovered nose
(IMFD2), and the last two rows are uncovered nose and mouth (IMFD3).

emotions can lead people to develop poor mental health conditions while positive emotions
provide a better standard of living. GAMEEMO [1] includes games-based EEG signals.
They are collected from 28 different subjects with wearable and portable EEG device called
14 channel Emotiv Epoc+. Subjects played emotionally 4 different computer games, in-
cluding Train Sim World, Unravel, Slender-The Arrival, and Goat, to evoke the target
emotion, that is, boring (B), calm (C), horror (H), and funny (F), respectively. EEG sig-
nals are collected from various EEG channels during the data obtaining process. There are
38252 samples in an EEG channel, total 14 EEG channels, therefore, our feature matrix
is 14 × 38252. Similarly, we form C2

4 = 6 binary classification datasets. “BC” consists of
boring EEG emotion signal and calm EEG emotion signal. The detailed description is also
shown in Table 1.

5.3 Experimental results

The performance comparisons are listed in Tables 2-4, where “Acc” is the best testing
accuracy among all parameters; “Time” shows the average time of the cross validation,
which contains the SES time and training time for each pair of parameters. “k” (k =
(k1+ · · ·+km)/m) is the mean value of step 4 in Algorithm 4. “Speedup” is calculated from
the ratio of solving time of L2-SMM and that of SES-L2-SMM.

Table 2 shows the results of Fish dataset. It is can be seen that SES-L2-SMM has
the superior prediction performance and the admirable computational speed. SES-L2-SMM
significantly reduces the solving time and its maximum speedup is up to 10.58 on the R1R2
of the Fish dataset. As Table 2 clearly demonstrates, matrix classifiers outperform the
vector classifier on most datasets because they take advantage of the structural information
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Table 1: The statistics of three datasets.
Data sets Subsets #Instances #Features

Fish date set

BG 79 1024×768
BH 80 1024×768
BR1 83 1024×768
BR2 81 1024×768
GH 59 1024×768
GR1 62 1024×768
GR2 60 1024×768
HR1 63 1024×768
HR2 61 1024×768
R1R2 64 1024×768

MaskedFace-Net

CI1 181 1024×1024
CI2 200 1024×1024
CI3 176 1024×1024

GAMEEMO

BC 56 14×38252
BH 56 14×38252
BF 56 14×38252
CH 56 14×38252
CF 56 14×38252
HF 56 14×38252

the within feature matrix. Besides, it must also be mentioned that the accuracies of SMM,
L2-SMM, and our SES-L2-SMM are very close. The main reason for this situation is that
these algorithms are based on the same SMM model. The accuracy differences between these
methods are tiny in this data set, but our method performs better than the vector classifier
SSVM in both time and accuracy in most cases. These results highlight the effectiveness
of matrix classifiers and illustrate the significance of our proposed SES for accelerating the
L2-SMM.

Table 2: Performance comparisons of six algorithms on Fish dataset.

Data

SSVM BSVM SSMM SMM L2-SMM SES-L2-SMM

Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time k Speedup

BG 78.31 378.21 91.64 225.44 89.82 311.07 98.06 473.72 98.33 449.6 98.33 80.06 16 5.62
BH 86.16 396.1 87.14 272.22 87.98 335 93.36 481.49 93.36 482.23 94.2 173.98 26 2.77
BR1 67.86 419.5 69.06 329.2 66.03 376.29 66.48 441.89 67.28 439.38 67.28 182.75 107 2.4
BR2 87.42 387.2 90.53 235.7 91.83 325.01 92.89 472.25 92.89 489.5 94.22 46.1 34 10.62
GH 80.71 362.89 90 230.57 89.76 322.16 87.86 440.77 85.71 438.92 85.71 61.86 43 7.1
GR1 81.15 363.87 93.93 213.42 90.63 312.17 86.83 444.92 86.83 443.86 86.83 76.09 21 5.83
GR2 76.9 354.05 85.95 235.57 87.62 319.14 80.95 463.91 80.95 459.94 80.95 45.8 29 10.04
HR1 81.67 389.63 88.41 252.39 87.46 380.08 88.81 450.47 88.81 444.14 88.81 116.1 31 3.83
HR2 90.71 364.92 91.11 254.59 91.11 356.26 90.63 437.87 90.63 437.29 90.63 48.44 31 9.03
R1R2 86.65 367.73 92.05 226.9 91.5 333.48 97.38 445.92 97.38 448.37 97.38 42.39 30 10.58

The results of MaskedFace-Net are given in Table 3. Significantly, since the number of
variables in the feature matrix is much greater than that of the Fish dataset, the computation
time is increased across all algorithms. Our proposed strategy still has a significant speedup
effect.

From Tables 2-4, the value of k×k is much less than the value of p×q. Even if we iterate
over Algorithm 3 many times, our proposed SES-L2-SMM is still faster than L2-SMM. It
demonstrates that reducing the number of matrix variables can accelerate the solving speed
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of optimization problems to a certain extent.

Table 3: Performance comparisons of six algorithms on MaskedFace-Net.

Data

SSVM BSVM SSMM SMM L2-SMM SES-L2-SMM

Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time k Speedup

CI1 84.95 1883.97 84.32 787.17 89.27 1296.42 89.08 1066.73 88.83 1044.75 88.83 488.17 29 2.14
CI2 87.11 1450.44 85.09 1177.25 87.08 1400.64 88.9 1035.44 88.96 1002.33 88.96 711.45 33 1.41
CI3 88.67 1323.23 81.38 1071.02 88.03 1249.26 88.97 1145.29 88.96 1165.2 89.36 435.57 25 2.68

Table 4 shows the performance comparisons on GAMEEMO. It is clear that the matrix
classifiers perform significantly better than the vector classifier. One of the primary causes
is that EEG signals are usually highly relevant. Matrix classifiers have better performance
because they can capture inherent structure information. It demonstrates the strong effi-
ciency of matrix classifiers in the task of EEG emotion signal classification. Obviously, our
proposed algorithm is consistently superior to all competing classifiers on all binary matrix
subsets of GAMEEMO for time comparison. That fully demonstrates that our algorithm is
significantly effective.

Table 4: Performance comparisons of six algorithms on GAMEEMO.

Data

SSVM BSVM SSMM SMM L2-SMM SES-L2-SMM

Acc Time Acc Time Acc Time Acc Time Acc Time Acc Time k Speedup

BC 66.32 135.23 96.19 86.65 88.57 112.74 94.29 24.01 94.29 31.86 93.33 10.39 26 3.07
BH 67.36 133.71 81.9 94.7 96.19 111.21 91.6 24.98 88.83 32 90.65 10.87 26 2.94
BF 66.32 137.42 88.92 84.95 86.06 112.51 86.15 26.89 86.15 30.85 90.65 16.34 26 1.89
CH 66.32 136.66 90.48 95.41 90.48 110.84 88.92 30.8 88.92 30.93 92.55 23.05 26 1.34
CF 66.32 138.24 91.6 88.07 74.72 111.47 88.83 25.91 88.83 30.15 90.65 16.76 26 1.8
HF 59.65 143.59 79.13 107.78 64.59 116.13 87.19 27.63 87.19 30.31 90.82 17.37 26 1.74

5.4 Experimental result analysis

To visually explicate the speedup of SES-L2-SMM, the bar charts of three datasets are de-
picted in Fig. 4 of two algorithms using the results in Tables 2-4. It should be noted that the
time consumption of different datasets varies greatly, thus the relative time consumption is
used as the ordinate in this paper. Relative time-consuming means that the time consump-
tion of L2-SMM is set to 1, and the computation time of SES-L2-SMM is the relative time
compared with L2-SMM. We can observe that our method have significantly acceleration
effect on all datasets. In addition, SES provides first-rate acceleration performance across
the Fish dataset. The reason for this situation might be that the data sample itself has a
lower rank due to the fact that the image of the dataset consists of only two parts: the blue
background and the fish.

Furthermore, by taking the Fish dataset and MaskedFace-Net for example, we explore
the influence of parameters C and τ on subspace elimination. The results are reported in
Fig. 6, where “ratio” is calculated by the following formula:

ratio = (1− k × k

p× q
) ∗ 100.

As is obvious from Fig. 6 where the speedup effect of SES-L2-SMM is stable when the
parameters C and τ are small. However, when the parameter C is large, the elimination
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Figure 4: The graphical representation about relative time-consuming for L2-SMM and
SES-L2-SMM on three datasets.
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Figure 5: Convergence process for SES-L2-SMM on the first three subsets of three datasets,
respectively.

Fig. 5 shows the convergence process of SES-L2-SMM on the first three subsets of three
datasets, respectively. In the picture, “errW” denotes the value of equation (4.23) in each
iteration and “the number of iterations” represents the value of m in Algorithm 4. It verifies
that our algorithm converges fast in ten steps, which is consistent with the description in
literature [13]. Similar phenomena also occur when using SES-L2-SMM in other datasets.
It shows the efficacy of our method.
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ratio decreases with the increase of the parameter τ . Similarly, when the parameter τ is
large, the elimination ratio grows as the increase of parameter C. In other words, when a
parameter is small, the elimination ratio is higher.

Figure 6: Ratio of subspace elimination across two datasets. The first row is a subset of the
Fish dataset and the second row is the MaskedFace-Net.

Later, GAMEEMO is taken as an example to show that our subspace elimination strategy
converges very quickly. We compute the similarity [13] between (Us)l (Us at the l-th
iteration) and U∗, which is measured by the smallest singular value of (U∗)T (Us)l. If
U∗ ⊂ span((Us)l), this value will be 1. From Fig. 7, we can see the value converges to 1 in
ten steps.
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Figure 7: Subspace similarity between active subspace and the final solution on GAMEEMO.

6 Conclusion

In this paper, a novel subspace elimination strategy based on rank-one factorization for
L2-SMM is exploited to reduce computational cost and improve efficacy. Our method could
eliminate most of the active subspaces before solving optimization problem, thus we only
need to solve a smaller problem. Our approach is performed independently of the solver,
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hence other effective solvers can be integrated into this method. We further provide ADMM-
L2-SMM as an efficacious solver in this paper. In our numerical experiments, we carry out
the SES-L2-SMM with other algorithms on multiple real-world datasets. The experimental
results verify the validity of our algorithm. How to apply the subspace elimination strategy
to other matrix classifiers is worthy of future research.
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