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addition, problem (P) also appears in finance and investment [7], minimum ratio spanning
tree problem [32], multi-objective bond portfolio optimization problem [18, 19], multi-stage
stochastic shipping problem [1], MIMO networks [16], economics [27], geometric problem
and other practical problems [6]. In theory, problem (P) is NP-hard [10], and it possesses
many local optimal solutions, which increases the difficulty of finding the global solution of
problem (P).

During the past several decades, effective global algorithms for sum of linear ratios
problems have been reported in the literature. In the case of p = 1, problem (P) is called
single ratio linear fractional programming problem, for this problem, Ozkok [23] presented
a novel iterative algorithm based on the (ε, δ)−definition of continuity. When p = 2, and
the denominator of one of the linear fractions is 1, Xia et al. [35] developed an efficient
branch-and-bound algorithm on the basis of improving the existing sawtooth-curve bounds
to new wave-curve bounds. When p > 2, Benson [3] presented and validated a simplicial
branch and bound duality bounds algorithm for globally solving the linear sum-of-ratios
fractional program. Based on a linear relaxation of the objective function, Carlsson and
Shi [5] introduced a global algorithm for solving the sum-of-linear-ratios problem with lower
dimension. A branch and bound outer approximation algorithm was shown by Benson [4]
for globally solving this class of problems. Moreover, Jiao et al. proposed an outcome space
range reduction method [15], Shen et al. developed a regional division and reduction method
[29] and a branch-reduction-bound algorithm [28], and a new branch and reduce approach
was presented by Zhang and Wang [37] for solving generalized linear fractional programming.
By means of classifying the coefficient symbols of all linear functions in the objective function,
an output-space branch and bound algorithm based on solving the linear programming
problem was proposed by Liu et al. [21]. In addition, based on different relaxation strategies,
various branch and bound algorithms were proposed in [11,13,14,30,31,33,36,38]. Different
from the aforementioned global optimization approach, Xia et al. [34] developed a fully
polynomial time approximation scheme for minimizing the sum of linear fractional functions
over the cone of positive semidefinite matrices. Besides, two approximation algorithms for
a class of linear ratios optimization problems were designed by Shen et al. [25], Depetrini
and Locatelli [8], respectively. And Phuong and Tuy [24] introduced an uniform monotonic
method for solving this class of problems. Apart from the approaches mentioned above,
some practical algorithms have been utilized for solving the sum of linear ratios problems,
such as parametric simplex method [20], image space method [9], heuristic method [17], and
interior point algorithm [22].

The main purpose of this paper is to present a reliable and effective algorithm for glob-
ally solving problem (P). To this end, we first show that problem (P) can be equivalently
converted into problem (EP) by introducing auxiliary variables, and problem (EP) can be
further represented as a two-layer problem (EP1). It can be proved that problems (P), (EP)
and (EP1) have the same global optimal value. For purpose of acquiring the lower bound
of the optimal value for problem (P), a novel convex relaxation problem (CRP) is derived
based on problem (EP1). Then a new branch and bound method is designed to globally
solve problem (P). The main computational effort of the presented algorithm lies in solving
a series of linear programming problems. In addition, the convergence and computational
complexity of the algorithm are given. The branch and bound algorithm proposed in our
work is closely related to the method in [35], where the authors considered the problem of
minimizing the sum of a convex-concave function and a convex function over a convex set
(SFC). When p = 2, and the denominator of one of the linear fractions is 1, problem (P)
reduces to a special case of problem (SFC). Similar to the approach in [35], we reformulate
problem (P) as a box constrained minimization problem, where the objective function is
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evaluated by solving linear subproblems. The optimal Lagrangian multipliers of the linear
subproblems are used to construct lower bounding functions for the objective of the box
constrained minimization problem. However, as we shall see later, the method in [35] is
tailored to the case that p = 2, while the presented algorithm in this work can deal with
more general case such as p > 2. Besides, compared with the existing branch and bound
method in [14], the main features of the introduced algorithm are listed as follows. To begin
with, the computational complexity of the proposed algorithm is estimated, which is not
available in [14]. Meanwhile, the number of linear subproblems need to be solved at each
iteration in our algorithm is one less than that of the approach in [14], and the structure of
the subproblem in our method is comparatively simple, concretely, the number of variable
for the linear subproblem in our algorithm is 2p less than that of [14], and the number of
constraint for the linear subproblem in our algorithm is 3p less than that of [14]. Finally,
the experimental results for Examples 1-2 indicate that the introduced method can solve
practical problems effectively. And the numerical results in Tables 2-4 show that the pro-
posed approach requires much less CPU time than that of the algorithms in [14, 25, 35] for
finding the global optimal solutions of the tested instances.

The contributions of this work are twofold. First, we consider the equivalent transfor-
mation of problem (P) on the basis of layering idea, and construct a novel convex relaxation
which has a closed form solution to obtain the lower bound of the optimal value for prob-
lem (P). Based on the convex relaxation, we introduce a branch and bound algorithm to
globally solve problem (P). Second, the computational complexity analysis of the proposed
algorithm is presented, and the maximum iterations of the algorithm is estimated. Prelimi-
nary numerical results demonstrate that the developed algorithm outperforms the algorithms
in [14,25,35] for all the tested instances.

The remainder of this paper is organized as follows. The equivalent problems (EP) and
(EP1) of the problem (P) are constructed in Section 2. Section 3 presents an innovative
convex relaxation technique. In Section 4, a new branch and bound algorithm for globally
solving problem (P) is introduced, and the analysis of the convergence and computational
complexity for the algorithm are given. In Section 5, we give two application examples of
problem (P): the transportation problem [2] and the production planning problems [23].
And the numerical results for the tested instances are reported. Finally, some conclusions
are gained in Section 6.

2 Equivalent Problem

In this section, for solving problem (P), we first establish a problem (EP) which is equivalent
to problem (P), and then problem (EP) is represented as a two-layer problem (EP1), besides,
it will be proved that problems (P), (EP) and (EP1) have the same optimal value.

In order to construct problem (EP), we introduce the additional variables ti, i = 1, · · · , p,
and define the initial box T 0 as follows.

T 0 = [t0, t
0
] ≜ {t ∈ Rp| t0i ≤ ti ≤ t

0
i , i = 1, · · · , p},

where t0i = min{gi(x) | x ∈ Ω}, t0i = max{gi(x) | x ∈ Ω}, i = 1, · · · , p. Then problem (P)
can be equivalently converted to the following form:

(EP) :


v(EP) = min ψ(x, t) =

p∑
i=1

fi(x)

ti
s.t. gi(x) ≥ ti, i = 1, · · · , p,

x ∈ Ω, t ∈ T 0.
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The equivalent theorem for problems (P) and (EP) is presented as follows.

Theorem 2.1. If x∗ is a global optimal solution of problem (P), then (x∗, t∗) is a global
optimal solution of problem (EP) with t∗i = gi(x

∗), i = 1, . . . , p. Conversely, if (x∗, t∗) is a
global optimal solution of problem (EP), then x∗ is a global optimal solution of problem (P).
Additionally, the global optimal values of problems (P) and (EP) are equal.

Proof. If x∗ is a global optimal solution of problem (P), let t∗i = gi(x
∗), i = 1, . . . p, then

it is clear that (x∗, t∗) is a feasible solution of problem (EP). Suppose that (x∗, t∗) is not
an optimal solution of problem (EP), then there exists a feasible solution (x̂, t̂) of problem
(EP) which satisfies

ψ(x̂, t̂) =

p∑
i=1

fi(x̂)

t̂i
<

p∑
i=1

fi(x
∗)

t∗i
= ψ(x∗, t∗). (2.1)

Notice that x̂ ∈ Ω, gi(x̂) ≥ t̂i, i = 1, . . . p, from (2.1) we can get

ϕ(x̂) =

p∑
i=1

fi(x̂)

gi(x̂)
≤

p∑
i=1

fi(x̂)

t̂i
<

p∑
i=1

fi(x
∗)

t∗i
=

p∑
i=1

fi(x
∗)

gi(x∗)
= ϕ(x∗),

which contradicts the fact that x∗ is a global optimal solution of problem (P). So (x∗, t∗) is
a global optimal solution of problem (EP).

Conversely, if (x∗, t∗) is a global optimal solution of problem (EP), then x∗ is feasible to
problem (P), assume that x∗ is not an optimal solution of problem (P), then there exists
x̂ ∈ Ω such that

ϕ(x̂) =

p∑
i=1

fi(x̂)

gi(x̂)
<

p∑
i=1

fi(x
∗)

gi(x∗)
= ϕ(x∗). (2.2)

Let t̂i = gi(x̂), i = 1, . . . p, then it is obvious that (x̂, t̂) is a feasible solution of problem (EP).
Therefore, from (2.2) we have

ψ(x̂, t̂) =

p∑
i=1

fi(x̂)

t̂i
=

p∑
i=1

fi(x̂)

gi(x̂)
<

p∑
i=1

fi(x
∗)

gi(x∗)
≤

p∑
i=1

fi(x
∗)

t∗i
= ψ(x∗, t∗),

which contradicts the optimality of (x∗, t∗) for problem (EP). As a result, x∗ is a global
optimal solution of problem (P).

Moreover, it can be concluded that the global optimal solution (x∗, t∗) of problem (EP)
satisfies t∗i = gi(x

∗), i = 1, . . . p. If not, there exists gj(x
∗) > t∗j for at least one j ∈ {1, . . . p},

let t
′
= (t

′

i)p×1 with t
′

j = gj(x
∗) > t∗j , t

′

i = t∗i , i = 1, · · · , p, i ̸= j, then (x∗, t
′
) is feasible to

problem (EP), and we have

ψ(x∗, t
′
) =

p∑
i=1,i ̸=j

fi(x
∗)

t
′
i

+
fj(x

∗)

t
′
j

<

p∑
i=1,i ̸=j

fi(x
∗)

t∗i
+
fj(x

∗)

t∗j
= ψ(x∗, t∗),

which contradicts the optimality of (x∗, t∗) for problem (EP). Thus, it follows that

v(EP) =

p∑
i=1

fi(x
∗)

t∗i
=

p∑
i=1

fi(x
∗)

gi(x∗)
= ϕ(x∗) = v(P).

The proof is completed.
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Next, to solve problem (EP), we first denote

X(t) = {x ∈ Rn| x ∈ Ω, gi(x) ≥ ti, i = 1, · · · , p}. (2.3)

Then problem (EP) can be transformed into a two-layer problem as follows:

(EP1) :

{
hT 0 = min h(t)

s.t. t ∈ T 0,

where h(t) is the optimal value of the following optimization problem with parameter t:

(Pt) :

 h(t) = min ψ(x, t) =
p∑

i=1

fi(x)

ti
s.t. x ∈ X(t).

The key equivalence result for problems (EP) and (EP1) is given by the following theorem.

Theorem 2.2. If t∗ is a global optimal solution of problem (EP1), then (x∗, t∗) is a global
optimal solution of problem (EP) with x∗ = argmin{ψ(x, t∗) | x ∈ X(t∗)}. Conversely, if
(x∗, t∗) is a global optimal solution of problem (EP), then t∗ is a global optimal solution of
problem (EP1). Moreover, problems (EP) and (EP1) have the same global optimal value.

Proof. If t∗ is a global optimal solution of problem (EP1), let

x∗ = argmin{ψ(x, t∗) | x ∈ X(t∗)},

then it is clear that (x∗, t∗) is a feasible solution of problem (EP). Suppose that (x∗, t∗)
is not an optimal solution of problem (EP), then there exists a feasible solution (x̂, t̂) of
problem (EP) which satisfies

ψ(x̂, t̂) < ψ(x∗, t∗). (2.4)

Besides, it is obvious that x̂ ∈ X(t̂), thus x̂ is feasible to problem (Pt̂), from (2.4) we have

h(t̂) = minx∈X(t̂)ψ(x, t̂) ≤ ψ(x̂, t̂) < ψ(x∗, t∗) = h(t∗). (2.5)

Since t̂ is feasible to problem (EP1), the formula (2.5) contradicts the fact that t∗ is an
optimal solution of problem (EP1), then it can be concluded that (x∗, t∗) is a global optimal
solution of problem (EP).

Conversely, if (x∗, t∗) is a global optimal solution of problem (EP), then t∗ is feasible to
problem (EP1), and x∗ ∈ X(t∗) is a feasible solution of problem (Pt∗). Assume that t∗ is
not an optimal solution of problem (EP1), then there exists t̂ ∈ T 0 satisfying

h(t̂) < h(t∗). (2.6)

Denote
x(t̂) = argmin{ψ(x, t̂) | x ∈ X(t̂)},

and apply (2.6), it holds that

ψ(x(t̂), t̂) = h(t̂) < h(t∗) = minx∈X(t∗)ψ(x, t
∗) ≤ ψ(x∗, t∗). (2.7)

Due to the feasibility of (x(t̂), t̂) for problem (EP), the formula (2.7) contradicts the opti-
mality of (x∗, t∗) for problem (EP). As a result, t∗ is a global optimal solution of problem
(EP1).
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Based on the above results, we know that if t∗ is a global optimal solution of
problem (EP1), then (x∗, t∗) is a global optimal solution of problem (EP) with x∗ =
argmin{ψ(x, t∗) | x ∈ X(t∗)}. Thus, we have

h(t∗) = ψ(x∗, t∗).

The proof is completed.

Based on Theorems 2.1 and 2.2, it can be seen that problems (P), (EP) and (EP1) are
equivalent to each other, and their optimal values satisfy:

v(P) = v(EP) = hT 0 . (2.8)

In next section, a new convex relaxation problem for problem (EP1) will be shown, which
can provide a lower bound for hT 0 .

3 Convex Relaxation Technique

In this section, for acquiring the lower bound of hT 0 , we need to establish the convex
relaxation program for problem (EP1). With regards to this, the main approach is to
construct the underestimated convex function for the objective function h(t) of problem
(EP1).

For the sake of discussion, assume that

T = [t, t] ≜ {t ∈ Rp| ti ≤ ti ≤ ti, i = 1, · · · , p},

denotes T 0 or a subrectangle of T 0 which is generated by the branching process in the branch
and bound algorithm to be presented. Therefore, the corresponding problem (EP1) on T
can be rewritten as follows:

(EP1(T)) :

{
hT = min h(t)

s.t. t ∈ T.

Next, to construct a convex lower bounding function for h(t) over the box T = [t, t], we first
fix t = t in problem (Pt), then problem (Pt) is a linear program with decision variable x as
follows:

(Pt) :


h(t) = min ψ(x, t) =

p∑
i=1

fi(x)

ti
s.t. gi(x) ≥ ti, i = 1, · · · , p,

x ∈ Ω.

It is easy to get the dual problem (DPt) for problem (Pt), given by

(DPt) : dh(t) = max
λ⪰0

min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λi(−gi(x) + ti)).

According to the strong duality for linear program, we have h(t) = dh(t). So it follows that

h(t) = max
λ⪰0

min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λi(−gi(x) + ti))

= min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λ∗i (−gi(x) + ti))

(3.1)
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where λ∗ ∈ Rp
+ is the optimal Lagrange multiplier corresponding to the constraints gi(x) ≥

ti, i = 1, · · · , p.
Similar to the above process, for any fixed t ∈ T, it holds that

h(t) = max
λ⪰0

min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λi(−gi(x) + ti))

≥ min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λ∗i (−gi(x) + ti)).

(3.2)

It easy to see that

p∑
i=1

(
fi(x)

ti
+ λ∗i (−gi(x) + ti)) =

p∑
i=1

(
fi(x)

ti
+ λ∗i (−gi(x) + ti) + fi(x)(

1

ti
− 1

ti
) + λ∗i (ti − ti)).

Then from (3.2), we have

h(t) ≥ min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λ∗i (−gi(x) + ti) + fi(x)(

1

ti
− 1

ti
) + λ∗i (ti − ti)). (3.3)

Next, in order to acquire the lower convex function of h(t), let us denote

f̄i = max
x∈Ω

fi(x), i = 1, · · · , p, (3.4)

then apply (3.1) and (3.3), it holds that

h(t) ≥ min
x∈Ω

p∑
i=1

(
fi(x)

ti
+ λ∗i (−gi(x) + ti))

+

p∑
i=1

(f̄i(
1

ti
− 1

ti
) + λ∗i (ti − ti))

= h(t) +

p∑
i=1

(f̄i(
1

ti
− 1

ti
) + λ∗i (ti − ti)).

Therefore, the lower bounding function of h(t) over T can be defined as

h(t) = h(t) +

p∑
i=1

(f̄i(
1

ti
− 1

ti
) + λ∗i (ti − ti)),

which is a simple convex function about the variable t ∈ Rp. Now, assume that

δ = h(t)−
p∑

i=1

(
f̄i
ti

+ λ∗i ti),

then h(t) can be rewritten as

h(t) = δ +

p∑
i=1

(
f̄i
ti

+ λ∗i ti). (3.5)
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From the above discussion, we know that h(t) ≥ h(t) holds for any fixed t ∈ T. Thus, we
can obtain the convex relaxation problem (CRP(T)) for problem (EP1(T)) as follows:

(CRP(T)) :

{
hT = min h(t)

s.t. t ∈ T.

Note that problem (CRP(T)) is separable, so the solution process of (CRP(T)) can be
decomposed into solving p simple univariate convex subproblems, each subproblem has the
form:

(CRP(Ti)) :

 hTi
= min hi(t) =

f̄i
ti

+ λ∗i ti,

s.t. ti ∈ Ti,

where Ti = [ti, t̄i]. It is easy to see that the optimal value of problem (CRP(Ti)) satisfies:

hTi
=

{
hi(t̃i), if ti < t̃i < t̄i,

min{hi(ti), h
i(t̄i)}, otherwise,

where t̃i =
√

f̄i
λ∗
i
, i = 1, · · · , p. Therefore, the optimal value of problem (CRP(T)) can be

obtained by

hT = δ +

p∑
i=1

hTi
.

Based on the above results, it can be seen that the optimal value of problem (CRP(T))
provides a valid lower bound for the optimal value of problem (EP1(T)).

4 Algorithm and its Theoretical Analysis

In this section, on the basis of the former results, a new branch and bound algorithm for
solving problem (P) is developed, and the analysis of the convergence and computational
complexity of the proposed algorithm are then given.

4.1 Branch and bound algorithm

In each iterative step of the proposed branch and bound algorithm, we utilize the standard
bisection rule which subdivides the rectangle T along the midpoint of its longest edge, and
this branching rule can guarantee the convergence of the algorithm.

For each subrectangle T = [t, t] generated by the branching process, solve linear problem
(Pt) by using the linear programming solver “cplexlp” to obtain its optimal solution x̄ and
optimal value h(t), and the corresponding optimal multiplier λ̄ can be gained as an output
parameter in “cplexlp”. And then compute the optimal value hT to (CRP(T)) to get a lower
bound LB(T ) of hT by letting LB(T ) = hT . Additionally, notice that x̄ is a feasible solution
for problem (P), thus we can update the current upper bound UB of the optimal value v(P)
to problem (P) via setting UB = ϕ(x̄). More precisely, the basic steps of the proposed
branch and bound algorithm (denoted by BB for short) for globally solving problem (P) are
summarized as follows.

BB Algorithm:
Step 0: Given ε ≥ 0 and the initial box T 0 = [t0, t̄0].
Step 1: Solve problem (Pt0) to get its optimal solution x̄0, optimal multiplier λ̄0 and

optimal value h(t0), and then calculate the optimal solution t̃0 and optimal value hT 0 to
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problem (CRP(T0)). Let LB0 = hT 0 , UB0 = ϕ(x̄0), x̃0 = x̄0. If UB0 − LB0 ≤ ε, then
the algorithm stops: x̃0 is a global ε−optimal solution for problem (P). Otherwise, let
k = 1, T 1 = T 0, S = {T 1}. Proceed to Step 2.

Step 2: Use the branching rule to subdivide T k into two new sub-rectangles T k1 =
[tk1, t̄k1] and T k2 = [tk2, t̄k2], set tk = tk2,H = {T k1, T k2}.

Step 3: Solve problem (Ptk) to obtain its optimal solution x̄k, optimal multiplier λ̄k

and optimal value h(tk). For each rectangle T ks(s = 1, 2), compute the optimal solu-
tion t̃ks and optimal value hTks to problem (CRP(Tks)). Let LB(T ks) = hTks , x̃k =
argmin{ϕ(x̃k−1), ϕ(x̄k)}, UBk = ϕ(x̃k). If LB(T ks) > UBk, set H = H \ T ks. Let S =
(S \ T k) ∪H, LBk = min{LB(T )| T ∈ S}.

Step 4: Set S = S \ {T | UBk − LB(T ) ≤ ε, T ∈ S}. If S = ∅, terminate: x̃k is
a global ε−optimal solution for problem (P). Otherwise, select T k+1 satisfying T k+1 =
argminT∈SLB(T ), set k = k + 1, and return to Step 2.

4.2 Convergence of BB Algorithm

In order to obtain the convergence result of BB Algorithm, we first give the following lemma.

Lemma 4.1. Given T = [t, t], assume that t̃ is the optimal solution of problem (CRP(T)),
and (x̄, λ̄) is the KKT point for problem (Pt). Let σ = min1≤i≤p ti, then

ϕ(x̄)− h(t̃) ≤
p∑

i=1

f̄i
σ2

(ti − ti).

Proof. Since x̄ is the optimal solution of problem (Pt), we have x̄ ∈ Ω and

gi(x̄) ≥ ti, i = 1, · · · , p. (4.1)

Combining (4.1) and the definitions of ϕ(x) and h(t), it follows that

ϕ(x̄)− h(t̃) =

p∑
i=1

fi(x̄)

gi(x̄)
− h(t)−

p∑
i=1

(f̄i(
1

t̃i
− 1

ti
) + λ̄i(t̃i − ti))

≤
p∑

i=1

fi(x̄)

ti
−

p∑
i=1

fi(x̄)

ti
+

p∑
i=1

(f̄i(
1

ti
− 1

t̃i
) + λ̄i(ti − t̃i))

≤
p∑

i=1

f̄i(
1

ti
− 1

t̄i
)

=

p∑
i=1

f̄i
tit̄i

(t̄i − ti)

≤
p∑

i=1

f̄i
σ2

(ti − ti).

The proof is completed.

Next, we will prove the convergence of BB Algorithm.
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Theorem 4.2. Given ε ≥ 0, if BB Algorithm terminates finitely, then x̃k is a global
ε−optimal solution to problem (P) in the sense that

ϕ(x̃k) ≤ v(P) + ε,

otherwise, every accumulation point of the sequence {x̃k} is a global optimal solution for
problem (P).

Proof. If BB Algorithm is finite, without loss of generality, suppose it terminates at kth
iteration. According to the algorithm, it follows that

UBk − LBk ≤ ε.

From Step 3 of the algorithm, we have

UBk = ϕ(x̃k),

we can then obtain

ϕ(x̃k)− v(P) = UBk − v(P) ≤ UBk − LBk ≤ ε.

Thus, x̃k is a global ε−optimal solution for problem (P).
If BB Algorithm is infinite, it must generate an infinitely nested sequence of rectangles

{T k} such that
lim
k→∞

tki = lim
k→∞

t̄ki = t∗i , i = 1, · · · , p. (4.2)

Also, for each rectangle T k, we can obtain the optimal solution sequence {t̃k} to problem
(CRP(Tk)) and the sequence {x̄k} by solving problem (Ptk). Besides, the algorithm gener-

ates the best known solution sequence {x̃k} (i.e. UBk = ϕ(x̃k)), and the monotone bounded
sequences {LBk} and {UBk}. Since Ω and T k are nonempty compact set, the sequences
{t̃k}, {x̄k} and {x̃k} are all bounded infinite sequences.

Without loss of generality, suppose that the subsequence {T kj} satisfies

LBkj
= LB(T kj ).

Then it is clear that
lim
j→∞

t
kj

i = lim
j→∞

t̄
kj

i = t∗i , i = 1, · · · , p. (4.3)

And correspondingly, the subsequences {t̃kj} and {x̄kj} are the optimal solution sequences
for problems (CRP(Tkj)) and (Ptkj ), respectively. Then from Step 3 of BB Algorithm, we

have
LBkj

= LB(T kj ) = h(t̃kj ). (4.4)

Moreover, from Lemma 4.1, it holds that

ϕ(x̄kj )− h(t̃kj ) ≤
p∑

i=1

f̄i
σ2

(t
kj

i − t
kj

i ). (4.5)

Combining (4.3) and (4.5), we can derive that

lim
j→∞

ϕ(x̄kj )− h(t̃kj ) ≤ 0. (4.6)
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Since we have
ϕ(x̄kj )− h(t̃kj ) ≥ v(P)− h(t̃kj ) = v(P)− LBkj

≥ 0, (4.7)

it follows that
lim
j→∞

ϕ(x̄kj )− LBkj = lim
j→∞

ϕ(x̄kj )− h(t̃kj ) = 0. (4.8)

Additionally, the sequence {x̃k} must have a convergent subsequence, without loss of gen-
erality, suppose that limk→∞ x̃k = x̃∗. Since

LBkj
≤ v(P) ≤ UBk = ϕ(x̃k) ≤ ϕ(x̄kj ),

from (4.8), we can obtain that

lim
k→∞

LBk = lim
j→∞

LBkj = v(P) = lim
k→∞

UBk = ϕ(x̃∗).

Therefore, every accumulation point of the sequence {x̃k} is a global optimal solution for
problem (P). The proof is completed.

4.3 Computational complexity of BB Algorithm

In this subsection, the computational complexity analysis of the BB Algorithm will be given.
To this end, let us introduce some notations as follows:

θ = min
i∈{1,··· ,p}

t0i ,

U = max
i∈{1,··· ,p}

f̄i,

where f̄i is defined by (3.4).

Lemma 4.3. Given ε > 0, if the selected rectangle T k = [tk, t̄k] in Step 3 of BB Algorithm
at kth iteration satisfies

t̄ki − tki ≤ εθ2

pU
, i = 1, · · · , p,

then the algorithm terminates and returns a global ε−optimal solution x̃k for problem (P).

Proof. Assume that t̃k is the optimal solution of problem (CRP(Tk)), and (x̄k, λ̄k) is the
KKT point for problem (Ptk). From Step 3 of the algorithm, it follows that

LBk = h(t̃k).

If t̄ki − tki ≤ εθ2

pU , i = 1, · · · , p, from Lemma 4.1, we have

ϕ(x̄k)− LBk = ϕ(x̄k)− h(t̃k) ≤
p∑

i=1

f̄i
σ2

(t
k
i − tki ) ≤

p∑
i=1

U

θ2
(t

k
i − tki ) ≤ ε. (4.9)

Combining (4.9) and UBk ≤ ϕ(x̄k), it can be derived that

UBk − LBk ≤ ε.

Thus, the algorithm terminates. Moreover, it holds that UBk = ϕ(x̃k) and LBk ≥ UBk − ε,
which implies that

ϕ(x̃k)− ε ≤ LBk ≤ v(P) ≤ ϕ(x̃k),

thus, x̃k is a global ε−optimal solution for problem (P). The proof is completed.
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Lemma 4.3 indicates that if each edge of the initial rectangle T 0 is subdivided into at most

⌈ (t̄0i−t0i )Up
εθ2 ⌉ subintervals, the BB Algorithm will terminate and return a global ε−optimal

solution for problem (P). Therefore, we have the following result.

Theorem 4.4. The running time of BB Algorithm is bounded from above by

T (n,m+ p)

p∏
i=1

⌈ (t̄
0
i − t0i )Up

εθ2
⌉

to obtain a global ε−optimal solution x∗ to problem (P) such that ϕ(x∗) ≤ ϕ(x) + ε holds
for all x ∈ Ω, where T (n,m + p) denotes the time taken to solve a linear program with n
variables and m+ p constraints.

5 Numerical Experiment

In this section, we report numerical comparisons for the proposed branch and bound al-
gorithm and the algorithms introduced by [14, 25, 35]. All the numerical experiments were
implemented in Matlab(2018a) and ran on a Intel(R) Core(TM) i5-3550S CPU 3.00GHz
with 4G memory microcomputer. In our computational experiment, each linear program-
ming problem was solved by using CPLEX [12], the tolerance parameter ε was set as 10−4,
and the maximum CPU time limit was set equal to 3600 seconds.

Some notations in the following Tables 1-4 have been used for column headers:

Opt.val: the average optimal value obtained by the relevant algorithm;

CPU: the average execution time in seconds;

Iter: the average number of the algorithm iterations;

“...”: means that the method fails to find the optimal solution within 3600s at all
cases.

5.1 A Transportation Problem

We consider a transportation problem [2]: A company has three electric power plants that
supply the power needs of four cities. The variable xij for each possible path of electricity
is defined to denote the unknown quantity of kwh of electricity sent from ith plant to jth
city (i = 1, 2, 3, j = 1, 2, 3, 4). Using the relevant data provided by [2], the transportation
problem can be formulated as:

Example 1.

max
f(x)

g(x)
s.t. x11 + x12 + x13 + x14 ≤ 35,

x21 + x22 + x23 + x24 ≤ 50,
x31 + x32 + x33 + x34 ≤ 40,
x11 + x21 + x31 ≥ 45,
x12 + x22 + x32 ≥ 20,
x13 + x23 + x33 ≥ 30,
x14 + x24 + x34 ≥ 30,
xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4,

where
f(x) = 5x11 + 4x12 + 4x13 + 3x14 + 16x21 + 2x22 + 3x23 + 4x24+

+ 10x31 + 5x32 + 6x33 + 2x34,
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g(x) = 8x11 + 6x12 + 10x13 + 9x14 + 9x21 + 12x22 + 13x23 + 7x24+

+ 14x31 + 9x32 + 16x33 + 5x34.

By solving Example 1 through BB Algorithm, after 1 iteration we get the optimal solution
x∗ = (0, 20, 15, 0, 5, 0, 15, 30, 40, 0, 0, 0)⊤ and the optimal value 0.5742 with 0.004 seconds
CPU time.

5.2 The production planning problems

We next consider the randomly generated instances with the production planning problem
structure in [23]. The mathematical model for this problem can be constructed as follows:

Example 2.

max

∑n
j=1 cjxj + c0∑n
j=1 djxj + d0

s.t. Ax ≤ b, x ≥ 0,

where the elements of A, b, d, d0 are generated as random integer numbers in [0, 10], and
the elements of c, c0 are generated as random integer numbers in [−10, 0]. For each problem
instance, we ran BB Algorithm for five times, and summarized the average numerical results
in Table 1. From Table 1 we can see that BB Algorithm can solve Example 2 efficiently.

Table 1: Numerical results for Example 2
(m,n) CPU Iter (m,n) CPU Iter

(10,10) 0.0282 11.2 (1000,1000) 0.3030 1.0
(100,100) 0.0186 3.4 (1500,1500) 0.7436 1.0
(250,250) 0.0190 1.0 (2000,2000) 1.3120 1.0
(500,500) 0.0748 1.0 (3000,3000) 3.0774 1.0
(750,750) 0.1408 1.0 (5000,5000) 8.8282 1.0

5.3 Randomly generated examples

In this subsection, we test several randomly generated examples to verify the performance
of the proposed BB Algorithm. We first test the BB Algorithm and the algorithm in [35]
on Example 3, and Table 2 demonstrated the average performance of these two algorithms
for five instances of Example 3.

Example 3.

min
a⊤1 x+ b1
a⊤2 x+ b2

+ a⊤0 x

s.t. Bx = c, x ∈ [0, 2]n,

where b1 = b2 = 5, the parameters a1, a0 are randomly generated in [0.1, 1], and the
elements of a2 and B are randomly generated in [1, 2] and [0, 20], respectively. To guarantee
the feasible region Ω = {x ∈ Rn|Bx = c, x ∈ [0, 2]n} is nonempty, we first randomly generate
an x0 ∈ [0, 2]n and then set c = Bx0.
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Table 2: Computational results for Example 3
(m,n) BB Algorithm Algorithm in [35]

Opt.val CPU Iter Opt.val CPU Iter

(40,200) 70.1808 0.0442 11.4 70.1808 0.0472 10.2
(100,500) 185.3839 0.4642 10.8 185.3839 0.5568 10.6
(200,1000) 385.7250 3.9894 11.0 385.7251 4.7102 10.6
(240,1200) 454.0594 6.9336 10.8 454.0594 8.3450 10.6
(300,1500) 577.4159 15.6244 11.4 577.4160 18.1758 10.6
(400,2000) 769.8532 43.2348 10.8 769.8532 51.2278 10.4
(440,2200) 834.5629 62.3506 11.0 834.5630 73.2158 10.2
(500,2500) 951.8400 99.9148 10.6 951.8400 122.5110 10.8
(560,2800) 1059.8792 151.2046 11.0 1059.8792 179.1894 10.8
(750,3000) 1185.5338 93.5688 11.0 1185.5338 131.7112 10.8
(800,3200) 1264.5978 116.7984 11.4 1264.5979 154.8932 10.2
(900,3600) 1427.7086 170.3298 10.6 1427.7086 252.8228 10.8
(1000,4000) 1572.0285 241.2394 11.0 1572.0285 355.4106 10.4
(1100,4400) 1727.3257 327.0276 11.4 1727.3258 454.6804 10.4
(1250,5000) 1975.8170 595.0798 13.4 1975.8170 788.8456 10.8

From Table 2 it can be observed that, for each set of fixed (m,n), to obtain the optimal
values, the algorithm in [35] is more time-consuming than BB Algorithm, though the number
of iterations is smaller for most cases. The main reason is that the approach in [35] uses
the function value information of two endpoints of the current interval in each iteration,
while the BB Algorithm only utilizes the function value information of one endpoint. This
indicates that BB Algorithm may require less CPU time but more iterations to get the global
optimal values than that of the method in [35]. Besides, the algorithm in [35] can only deal
with the case that p = 2, and the denominator of one of the linear fractions is 1, while the
BB Algorithm is capable of solving more general cases, as we will see later, the case when
p > 2.

In order to further evaluate the performance of BB Algorithm, we finally test the BB
Algorithm and two algorithms in [14,25] on the following problems:

Example 4.

min
∑p

i=1

∑n
j=1 cijxj + c0i∑n
j=1 dijxj + d0i

s.t. Ax ≤ b, x ≥ 0,

where c0i = 0.5, d0i = 5, the parameters cij , dij are randomly generated in [0, 0.5] and [0, 5],
respectively, and all elements of A ∈ Rm×n, b ∈ Rm are the random numbers in the interval
[0.1, 20] and [0, 1], respectively. In Tables 3-4, we summarize the average numerical results
of the BB Algorithm and the algorithms in [14,25] for five instances of Example 4.

Table 3: Computational results for Example 4 with p ≤ 5
(p,m, n) BB Algorithm Algorithm in [14] Algorithm in [25]

Opt.val CPU Iter Opt.val CPU Iter Opt.val CPU

(2,200,2000) 0.1998 0.55 4.2 0.1998 1.00 8.8 0.1998 0.75
(2,400,4000) 0.1999 2.83 3.6 0.1999 4.75 6.2 0.1998 4.95
(2,600,6000) 0.1999 7.07 3.4 0.1999 9.82 4.6 0.1999 11.71
(2,800,8000) 0.2000 10.23 1.6 0.2000 13.16 2.0 0.1999 19.46
(2,1000,10000) 0.1999 19.54 2.4 0.1999 28.29 3.6 0.1999 27.30
(3,10,100) 0.2984 0.17 71.8 0.2984 0.89 705.0 0.2984 1183.15
(3,30,300) 0.2984 0.23 43.0 0.2984 1.86 643.2 0.2984 1781.90
(3,50,500) 0.2989 0.39 54.4 0.2989 2.98 537.6 0.2989 2956.26
(3,250,2500) 0.2996 2.45 14.8 0.2996 9.74 65.4 ... ...
(3,500,5000) 0.2998 8.43 6.8 0.2998 25.06 24.6 ... ...
(4,100,1000) 0.3992 2.61 124.4 0.3992 31.64 1690.0 ... ...
(4,300,3000) 0.3997 11.56 36.2 0.3997 97.35 326.0 ... ...
(4,500,5000) 0.3998 18.34 17.6 0.3998 100.77 113.8 ... ...
(4,700,7000) 0.3999 28.38 11.8 0.3999 106.83 57.0 ... ...
(5,200,2000) 0.4992 21.77 266.0 0.4992 574.36 6928.6 ... ...
(5,400,4000) 0.4996 50.61 94.0 0.4996 798.59 1466.4 ... ...
(5,600,6000) 0.4998 58.21 42.6 0.4998 803.59 635.2 ... ...
(5,800,8000) 0.4998 109.38 38.6 0.4998 984.22 378.6 ... ...
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The numerical results for Example 4 with the change of p from 2 to 5 are reported in
Table 3. As can be seen from Table 3, for finding the global solutions for all tested instances,
the CPU time required by the proposed algorithm is the least among three methods (BB
Algorithm and the algorithms in [14, 25]). The average CPU time cost by BB Algorithm
increases relatively slowly as n increases, compared with the methods in [14,25]. In addition,
the algorithm in [25] fails to find the global solutions within 3600s in the case that p > 3 or
the value of (p,m, n) exceeds (3, 250, 2500). This is because the approach in [25] has to solve
the linear programming problems related to each grid node, it may not be very effective
when the number of grid node increases.

In order to further test the performance of BB Algorithm, we increased the size of the
instances to be tested. Table 4 lists the computational results for Example 4 with p > 5.
From Table 4, it can be seen that the average CPU time spent by the BB Algorithm is much
less than that of [14] for the large scale instances of Example 4. The average CPU time of the
algorithm in [14] grows fast as (m,n) increases, compared with BB Algorithm. Moreover,
the BB Algorithm performs more effectively than the method in [14] when p ≥ 7. The main
reason for this phenomenon is that the number of linear problems need to be solved at each
iteration in BB Algorithm is one less than that of the algorithm in [14], and the structure
of the linear problem in our method is relatively simple. Based on the above observation, it
can be concluded that BB Algorithm can efficiently solve the tested instances.

6 Conclusion

In this article, we consider how to globally solve a class of sum of linear ratios problems
(P) which have significant applications in many fields. The original problem (P) is equiv-
alently transformed into problem (EP) by introducing variables, and then problem (EP) is
represented as a two-layer problem (EP1). A new convex relaxation technique is presented
based on problem (EP1), which can provide a reliable lower bound for the optimal value
of problem (P). Through combining the convex relaxation technique and standard bisection
rule, a branch and bound method is designed for globally solving problem (P), and we also
analyse the convergence and computational complexity of the proposed algorithm. Numer-
ical results show that the developed algorithm performs better than the known methods in
the literature.

Notice that the complexity of BB Algorithm grows exponentially in terms of p, which
indicates that BB Algorithm may not be effective for the instances with large p. More work
should be considered for designing practical deleting strategy, adaptive branching rule and
some local search techniques to improve the computational efficiency in the future. Besides,
to enhance the tightness of relaxation problem by exploiting some valid cut techniques may
bring further improvement to our branch and bound algorithm. Another interesting direction
for future research is to investigate whether similar global approaches can be developed
for generic fractional programming problems with nonconvex feasible set, or the fractional
programming problems in uncertain variable environment. More study is needed to address
these issues.
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Table 4: Computational results for Example 4 with p > 5
(p,m, n) BB Algorithm Algorithm in [14] Algorithm in [25]

Opt.val CPU Iter Opt.val CPU Iter Opt.val CPU

(6,100,1000) 0.5992 20.67 902.4 0.5992 683.78 25456.4 ... ...
(6,300,3000) 0.5997 53.64 172.2 0.5997 1021.42 3288.6 ... ...
(6,500,5000) 0.5998 85.87 95.8 0.5998 1327.02 1346.0 ... ...
(6,700,7000) 0.5998 162.75 91.0 0.5998 2234.58 1272.8 ... ...
(7,80,800) 0.6990 197.06 10901.4 0.6990 3100.38 102754.0 ... ...
(7,200,2000) 0.6992 213.17 2621.2 0.6992 3542.67 38442.0 ... ...
(7,300,3000) 0.6993 560.42 1928.2 ... ... ... ... ...
(7,400,4000) 0.6995 732.00 1362.2 ... ... ... ... ...
(8,100,200) 0.7993 51.72 6909.8 0.7993 2387.38 87095.4 ... ...
(8,100,1000) 0.7986 617.45 21543.4 ... ... ... ... ...
(8,200,2000) 0.7994 1063.12 12112.4 ... ... ... ... ...
(9,100,100) 0.8995 136.28 13306.4 0.8995 2606.24 97426.2 ... ...
(9,100,300) 0.8992 427.38 26626.2 ... ... ... ... ...
(9,100,500) 0.8988 1463.48 52671.6 ... ... ... ... ...
(10,50,50) 0.9993 345.80 29934.0 ... ... ... ... ...
(10,100,100) 0.9995 385.70 29943.4 ... ... ... ... ...
(10,100,500) 0.9990 1719.67 63211.2 ... ... ... ... ...
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