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The problem (MLFP) has aroused interest of practitioners and researchers for many
years. On the one hand, the problem (MLFP) has a wide range of applications in many
fields, such as data envelopment analysis, electronic circuit design [2], system identification
[11, 12, 34], optimal design [3], signal processing [13], iterative parameters estimation [14].
On the other hand, the problem (MLFP) is a nonconvex global optimization problem, which
may have multiple local optimal solutions that are not global optimal solutions, it is still
challenging to solve this problem. Therefore, it is necessary to design an effective algorithm
to globally solve the problem (MLFP).

In the past few decades, some algorithms have been proposed for solving the problem
(MLFP) and its special form. According to the characteristic structures of these algorithms,
which can be classified into the following categories: interior-point algorithm [15], param-
eter programming method [9], partial linearization algorithm [16], monotonic optimization
method [27], cutting plane algorithm [4], branch-and-bound algorithm [17, 21]. Recently,
Ghazi and Roubi [21] proposed a DC method for solving the minimax fractional program-
ming problem with ratios of convex functions; Addoune et al. [1] presented a proximal
point algorithm to solve the generalized fractional programming problem; Based on the
proximal bundle method, Boualam and Roubi [5] designed a dual algorithm for convex min-
imax fractional programming problem; Boufi and Roubi [6] gave a dual method of centers
for the generalized fractional programs; Boufi and Haffari [7] presented some optimization
conditions and a method of centers for the minimax fractional programs with difference of
convex functions; Smail et al. [29] presented a proximal bundle algorithm for solving the
nonlinear constrained convex minimax fractional programs; Roubi and Haffari [28] proposed
a prox-dual regularization algorithm for solving the generalized fractional programs; Boufi
and Roubi [8] gave some duality results and a dual bundle method for solving the minimax
fractional programming problem; Chen et al. [10] proposed a generic algorithm for gen-
eralized fractional programming problem. However, the above reviewed methods can only
deal with particular forms of the problem (MLFP), or they are difficult to solve large-scale
practical problems. Therefore, it is still necessary to propose a practical efficient algorithm
for solving the general form of the problem (MLFP).

In addition to the algorithms reviewed above, some optimality conditions and duality
theorems for the minimax fractional programming problem have also been obtained. For
example, Li et al. [23] presented the optimality condition and duality for the minimax
fractional programming problems with data uncertainty; Lai and Huang [24] gave the dual
theorem for the nondifferentiable minimax fractional programming problem under the gen-
eralized convex condition; Lai and Liu [25] gave the Kuhn-Tucker type sufficient optimal
conditions for complex minimax fractional programming problem under generalized con-
vex functions; Gao and Rong [19] gave the optimality conditions and duality for a class
of nondifferentiable multi-objective generalized fractional programming problems; Lai et al.
[26] proposed some necessary and sufficient optimal conditions for the minimax fractional
programs. For an excellent review of algorithms and theories for the minimax fractional pro-
gramming problem, the reader can be referred to Schaible and Shi [30] and Stancu-Minasian
[31, 32].

In this paper, we present an image space branch-and-bound algorithm for globally solv-
ing the problem (MLFP). In the algorithm, first of all, by introducing new variables, an
equivalent problem (EP1) of the problem (MLFP) is constructed. Next, we present a new
linearizing technique for constructing the linear relaxation programming problem of the
problem (EP1). By subsequently refining the initial image space region, and by solving a
series of linear relaxation programming problems, the proposed algorithm is globally conver-
gent to the optimal solution of the problem (MLFP). Finally, the numerical results indicate
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that the proposed algorithm can effectively find the globally optimal solutions of all test
examples with any given tolerance ϵ.

Compared with the existing branch-and-bound algorithms [16, 21, 35], the novelty and
main contributions of this paper are given as follows. (1) The branching search of the
proposed algorithm takes place in the image space Rp of the linear fractional functions

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, . . . , p, rather than in the variable dimension space Rn, where n usually

far exceeds p, which may mitigate the required computational efforts of the proposed algo-
rithm. (2) By analysing the computational complexity of the proposed algorithm, we give
a maximum estimation of number of iterations of the algorithm for the first time, which is
not available in other literatures [16, 21, 35]. (3) Numerical results show that the proposed
algorithm has higher computational efficiency than some existing algorithms [16, 21, 35].

The outline of this article is as follows. In section 2, we transform the original problem
into an equivalent problem, and a linearizing technique is proposed for constructing the
linear relaxation programming problem (LRP) of the problem (MLFP). In section 3, we
present an image space branch-and-bound algorithm, and give the global convergence of
the algorithm. In section 4, we give a maximum estimation of number of iterations of the
algorithm by analysing the computational complexity of the algorithm. In Section 5, the
numerical experiments are reported. Finally, some conclusions are given in Section 6.

2 Equivalent Problem and Its Linear Relaxation

In the following, we firstly convert the problem (MLFP) into an equivalent problem. For this

purpose, for each i = 1, . . . , p, we need to calculate the minimum value L0
i = min

x∈D

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

and the maximum value U0
i = max

x∈D

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

of the linear fractional function

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

overD. To obtain the values of L0
i and U0

i , i = 1, . . . , p, here, we firstly consider the following
linear fractional programming problem:

L0
i = min

x∈D

n∑
j=1

dijxj + gi

n∑
j=1

eijxj + hi

, i = 1, 2, . . . , p. (2.1)

As everyone knows, the linear fractional function

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

is a quasi-convex function,

so that it can attain the minimum value at some vertex of D. Since the denominator
n∑

j=1

eijxj + hi ̸= 0, we have
n∑

j=1

eijxj + hi < 0 or
n∑

j=1

eijxj + hi > 0, when
n∑

j=1

eijxj + hi < 0,

since

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

=
−(

n∑
j=1

dijxj+gi)

−(
n∑

j=1
eijxj+hi)

, then without loss of generality, we can always suppose

that
n∑

j=1

eijxj + hi > 0. To solve the problem (2.1), for any i ∈ {1, 2, . . . , p}, by introducing
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new variables ti =
1

n∑
j=1

eijxj+hi

, and let zj = tixj , then we can convert the problem (2.1) into

the following equivalent linear programming problem:
min

n∑
j=1

dijzj + giti

s.t.
n∑

j=1

eijzj + hiti = 1

Az ≤ bti.

(2.2)

Remark 2.1. x∗ ∈ Rn is the global optimal solution of the problem (2.1) if and only if
(z∗, t∗i ) ∈ Rn+1 is the global optimal solution of the problem (2.2), the problems (2.1) and
(2.2) have the equal global optimal values. Therefore, for each i = 1, 2, . . . , p, L0

i can be
obtained by solving the linear programming problem (2.2).

Similarly, we can get the maximum value U0
i = max

x∈D

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

of the linear fractional

function

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, . . . , p. So we can obtain the initial image space rectangle Ω0 =

{y ∈ Rp | L0
i ≤ yi ≤ U0

i , i = 1, . . . , p}.

Next, by introducing new variables r and yi =

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, 2, . . . , p, we can get the

equivalent problem (EP) of the problem (MLFP) as follows.

(EP) :



min r
s.t. yi − r ≤ 0, i = 1, 2, . . . , p

yi =

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, 2, . . . , p

x ∈ D, y ∈ Ω0.

It is easy to know that the feasible region

K =

(x, y, r) ∈ Rn+p+1 | yi − r ≤ 0,

n∑
j=1

dijxj + gi

n∑
j=1

eijxj + hi

− yi = 0, i = 1, . . . , p, x ∈ D, y ∈ Ω0


of the problem (EP) is a nonempty bounded compact set, and the feasible region K ̸= ∅ if
and only if D ̸= ∅.

In the following, for globally solving the problem (MLFP), we can solve its equivalent
problem (EP) instead, and the problems (MLFP) and (EP) have the same global minimum
value.

Since the denominator
n∑

j=1

eijxj + hi ̸= 0, the problem (EP) can be rewritten into the

following equivalent problem (EP1), which has the same global optimal solution and optimal
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value as the problem (EP).

(EP1) :



min r
s.t. yi − r ≤ 0, i = 1, 2, . . . , p

yi

(
n∑

j=1

eijxj + hi

)
=

n∑
j=1

dijxj + gi, i = 1, 2, . . . , p

x ∈ D, y ∈ Ω0.

To globally solve the problem (EP1), we need to construct its linear relaxation program-
ming problem, which can provide a reliable lower bound of the global minimum value of
the problem (EP1) in the branch-and-bound search. The detailed derivation process of the
linear relaxation programming problem is given below.

For any y ∈ Ω = {y ∈ Rp | Li ≤ yi ≤ Ui, i = 1, . . . , p} ⊆ Ω0, we have

yi

 n∑
j=1

eijxj + hi

 ≥
n∑

j=1,eij>0

eijLixj +

n∑
j=1,eij<0

eijUixj + hiyi

and

yi

 n∑
j=1

eijxj + hi

 ≤
n∑

j=1,eij>0

eijUixj +

n∑
j=1,eij<0

eijLixj + hiyi.

Based on the above conclusions, for any Ω ⊆ Ω0, we can construct the linear relaxation
programming problem (LRP) of the problem (EP1) as follows.

(LRP) :



min r

s.t. yi − r ≤ 0, i = 1, 2, . . . , p

n∑
j=1,eij>0

eijLixj +
n∑

j=1,eij<0

eijUixj + hiyi ≤
n∑

j=1

dijxj + gi, i = 1, . . . , p,

n∑
j=1,eij>0

eijUixj +
n∑

j=1,eij<0

eijLixj + hiyi ≥
n∑

j=1

dijxj + gi, i = 1, . . . , p,

x ∈ D, y ∈ Ω.

Through the above derivation process, we know that, for any Ω ⊆ Ω0, all feasible points
of the problem (EP1) over the Ω are feasible to the problem (LRP) over the Ω, and the
optimal value of the problem (LRP) over the Ω is less than or equal to that of the problem
(EP1) over the Ω. Therefore, the optimal value of the problem (LRP) over the Ω can
provide a valid lower bound for the minimum value of the problem (EP1) over the Ω during
the branch-and-bound search.

Next, we will prove that the problem (LRP) will infinitely approximate the problem
(EP1) over Ω as ∥U − L∥ → 0.

Consequently, without loss of generality, for any y ∈ Ω ⊆ Ω0, define the following
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functions for convenience in expression, let

φi(x, yi) = yi

(
n∑

j=1

eijxj + hi

)
=

n∑
j=1

eijyixj + hiyi,

φ
i
(x, yi) =

n∑
j=1,eij>0

eijLixj +
n∑

j=1,eij<0

eijUixj + hiyi,

φi(x, yi) =
n∑

j=1,eij>0

eijUixj +
n∑

j=1,eij<0

eijLixj + hiyi.

Obviously, for any i ∈ {1, 2, . . . , p}, we have φ
i
(x, yi) ≤ φi(x, yi) ≤ φi(x, yi).

Theorem 2.2. For each i ∈ {1, 2, . . . , p}, we have

|φi(x, yi)− φ
i
(x, yi)| → 0 as ∥U − L∥ → 0

and
|φi(x, yi)− φi(x, yi)| → 0 as ∥U − L∥ → 0.

Proof. From the definitions of the functions φ
i
(x, yi), φi(x, yi), and φi(x, yi), for any x ∈

D, yi ∈ [Li, Ui], we have that∣∣∣φi(x, yi)− φ
i
(x, yi)

∣∣∣ =

∣∣∣∣∣yi
(

n∑
j=1

eijxj + gi

)
− [

n∑
j=1,eij>0

eijLixj +
n∑

j=1,eij<0

eijUixj + giyi]

∣∣∣∣∣
=

∣∣∣∣∣ n∑
j=1,eij>0

(yi − Li)eijxj +
n∑

j=1,eij<0

(Ui − yi)eijxj

∣∣∣∣∣
≤ (Ui − Li)×

∣∣∣∣∣ n∑
j=1,eij>0

eijxj +
n∑

j=1,eij<0

eijxj

∣∣∣∣∣
= (Ui − Li)

(
n∑

j=1

eijxj

)
.

Since
n∑

j=1

eijxj is a bounded function, we have that

|φi(x, yi)− φ
i
(x, yi)| → 0 as ∥U − L∥ → 0.

Similarly, we can prove that

|φi(x, yi)− φi(x, yi)| → 0 as ∥U − L∥ → 0,

and the proof of the theorem is finished.

From Theorem 2.2, it follows that the functions φ
i
(x, yi) and φi(x, yi) can infinitely

approximate the function φi(x, yi) as ∥U−L∥ → 0, which guarantees the global convergence
of the branch-and-bound algorithm.

3 Algorithm and Its Convergence Analysis

In this section, we firstly introduce a rectangle branching rule. Next, based the former linear
relaxation programming problem and the branch-and-bound framework, we give an image
space branch-and-bound algorithm for globally solving the problem (MLFP). Meanwhile,
we prove the global convergence of the algorithm and analyse the computational complexity
of the algorithm.



ALGORITHM FOR MINIMAX LINEAR FRACTIONAL PROGRAMS 201

3.1 Branching rule

For each iteration of the algorithm, the branching process will generate more refined par-
titions to find the optimal solution of the problem (EP1). Here, we choose the simplest
standard bisection rule to subdivide the image space Rp of the linear fractional functions

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, . . . , p, over D. This guarantees the global convergence of the proposed

algorithm. For any given image space rectangle

Ω = {y ∈ Rp | Li ≤ yi ≤ Ui, i = 1, . . . , p} ⊆ Ω0

The selected branching rule is given as follows. Let

λ = argmax{Ui − Li, i = 1, 2, . . . , p},

subdivide Ω into the following two sub-rectangles:

Ω̂1 = {y ∈ Rp|Li ≤ yi ≤
Li + Ui

2
, i = λ; Li ≤ yi ≤ Ui, i = 1, 2, . . . , p, i ̸= λ}

and

Ω̂2 = {y ∈ Rp|Li + Ui

2
≤ yi ≤ Ui, i = λ; Li ≤ yi ≤ Ui, i = 1, 2, . . . , p, i ̸= λ}.

As stated in [20], it is clear that, the proposed branching rule is exhaustive, and there
will generate a nested rectangular subsequence {Ωk}.

3.2 Image space branch-and-bound algorithm

In this subsection, we will present an image space branch-and-bound algorithm for globally
solving the problem (MLFP). The basic steps of the proposed image space branch-and-bound
algorithm are given as follows.

Step 1. Given the approximation error ϵ > 0 and the initial rectangle Ω0. By solving
the problem (LRP) over Ω0, we can obtain the optimal solution (x0, ŷ0) and optimal value
r(x0, ŷ0) of the problem (LRP) over Ω0.

Let LB0 = r
(
x0, ŷ0

)
and y0i =

n∑
j=1

dijx
0
j+gi

n∑
j=1

eijx0
j+hi

, i = 1, 2, . . . , p.

Let

UB0 = max


n∑

j=1

d1jx
0
j + g1

n∑
j=1

e1jx0
j + h1

,

n∑
j=1

d2jx
0
j + g2

n∑
j=1

e2jx0
j + h2

, · · · ,

n∑
j=1

dpjx
0
j + gp

n∑
j=1

epjx0
j + hp

 .

If UB0 − LB0 ≤ ϵ, then the algorithm stops, and x0 is a global ϵ-optimal solution for
the problem (MLFP).

Otherwise, denote T 0 =
{(

x0, y0
)}

as the set of feasible points, let k = 0, let C0 =
{
Ω0
}

be the set of all active nodes, and let F = {x0}.
Step 2. Use the proposed branching rule to subdivide Ωk into two sub-rectangles Ωk,1

and Ωk,2, and let H =
{
Ωk,1,Ωk,2

}
.
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Step 3. For each rectangle Ωk,α, α = 1, 2, solve the problem (LRP) over Ωk,α to
obtain its optimal solution (x(Ωk,α)), ŷ(Ωk,α)) and optimal value r(x(Ωk,α)), ŷ(Ωk,α)), and
let LB(Ωk,α) = r(x(Ωk,α)), ŷ(Ωk,α)).

If LB(Ωk,α) > UBk, then let H = H\Ωk,α.
Otherwise, let

UB(Ωk,α)=max


n∑

j=1

d1jx(Ω
k,α))j+g1

n∑
j=1

e1jx(Ωk,α))j+h1

,

n∑
j=1

d2jx(Ω
k,α))j+g2

n∑
j=1

e2jx(Ωk,α))j+h2

, · · · ,

n∑
j=1

dpjx(Ω
k,α))j+gp

n∑
j=1

epjx(Ωk,α))j+hp

 ,

update the upper bound by letting

UBk = min
{
UBk−1, UB(Ωk,α)

}
,

denote xk as the best feasible solution corresponding to the minimum upper bound, and

let yki =

n∑
j=1

dijx
k
j+gi

n∑
j=1

eijxk
j+hi

, i = 1, 2, . . . , p. Obviously, (xk, yk) is the best feasible solution for the

problem (EP1).
Let Ck =

(
Ck\Ωk

)
∪ H, LBk = min {LB(Ω) | Ω ∈ Ck}, T k = T k−1 ∪

{(
xk, yk

)}
, and

F = F ∪ {xk}.
Step 4. Let Ck+1 = {Ω | UB(Ω)− LBk > ϵ,Ω ∈ Ck}.
If Ck+1

.
= ∅, then the algorithm terminates with that xk is a global ϵ-optimal solu-

tion for the problem (MLFP). Otherwise, select the rectangle Ωk+1 such that Ωk+1 =
argminΩ∈Ck+1

LB(Ω), which will be subdivided in next iteration, let k = k + 1, and re-
turn to Step 2.

3.3 Convergence analysis

In the subsection, by using the infinite partition of the image space rectangle of the linear

fractional functions

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, . . . , p, based on the structural characteristics of the

branch-and-bound algorithm framework, combined with the updating method of the upper
and lower bounds and the continuity of objective function, we prove the global convergence
of the image space branch-and-bound algorithm for the first time.

Without losing of generality, we denote r∗ as the global optimization value of the problem
(EP1), denote rk as the objective function value of the problem (EP1) corresponding to
(xk, yk), and define

Ψ(x) = max


n∑

j=1

d1jxj + g1

n∑
j=1

e1jxj + h1

,

n∑
j=1

d2jxj + g2

n∑
j=1

e2jxj + h2

, · · · ,

n∑
j=1

dpjxj + gp

n∑
j=1

epjxj + hp

 ,

the global convergence of the presented image space branch-and-bound algorithm can be
given by the following theorem.

Theorem 3.1. For any given approximation error ϵ, the presented algorithm either finitely
terminates at a global ϵ-optimal solution for the problem (MLFP), or generates an infinite
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solution sequence {xk}, and any of its accumulation point is the global optimal solution for
the problem (MLFP).

Proof. Suppose that the presented algorithm finitely terminates after k iterations, xk and
(xk, yk) are better feasible solutions of the problem (MLFP) and the problem (EP1), re-
spectively. From the termination conditions of the algorithm, the updating methods of the
lower bound and upper bound, and the steps of the branch-and-bound algorithm, we can
obtain that

LBk ≤ r∗, r∗ ≤ r(xk, yk), Ψ(xk) = r(xk, yk) = rk, rk − ϵ ≤ LBk.

Thus, we have

Ψ(xk)− ϵ = r(xk, yk)− ϵ ≤ LBk ≤ r∗ ≤ r(xk, yk) = Ψ(xk).

Therefore, we get that xk is a global ϵ-optimum solution for the problem (MLFP).
Assume that the sequences {xk} and {(xk, yk)} are generated by the algorithm, and

which are the infinite solution sequences of the problem (MLFP) and the problem (EP1),
where

yki =

n∑
j=1

dijx
k
j + gi

n∑
j=1

eijxk
j + hi

, i = 1, . . . , p.

Let x∗ be an accumulation point of the sequence {xk}, without losing generality, suppose
that

lim
k→∞

xk = x∗.

Since the continuity of the linear fractional function

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

,

n∑
j=1

dijx
k
j+gi

n∑
j=1

eijxk
j+hi

= yki ∈

[Lk
i , U

k
i ], i = 1, 2, . . . , p, and the exhaustiveness of the rectangle branching method, we have

the following conclusions:

n∑
j=1

dijx
∗
j + gi

n∑
j=1

eijx∗
j + hi

= lim
k→∞

n∑
j=1

dijx
k
j + gi

n∑
j=1

eijxk
j + hi

= lim
k→∞

yki = lim
k→∞

[Lk
i , U

k
i ] = lim

k→∞

⋂
k

[Lk
i , U

k
i ] = y∗i .

Above that, since (x∗, y∗) is a feasible solution to the problem (EP1) and {LBk} is an
increasing lower bound sequence such that LBk ≤ r∗, we have that

r(x∗, y∗) ≥ r∗ ≥ lim
k→∞

LBk = lim
k→∞

r(xk, yk) = r(x∗, y∗). (3.1)

Hence, from the renewing method of the upper bound and the continuity of the function
Ψ(x), we can get the following conclusions:

lim
k→∞

rk = lim
k→∞

r(xk, yk) = r(x∗, y∗) = Ψ(x∗) = lim
k→∞

Ψ(xk). (3.2)

By combing the above inequalities (3.1) and (3.2), we have that

lim
k→∞

rk = r∗ = Ψ(x∗) = lim
k→∞

Ψ(xk) = r(x∗, y∗) = lim
k→∞

LBk.

Therefore, it is known that any of accumulation point x∗ of the infinite solution sequence
{xk} is a global optimum solution of the problem (MLFP), and the proof is completed.
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4 Computational Complexity Analysis

In this section, by using the maximum edge infinite subdivision of the image space rectangle

of the linear fractional functions

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, . . . , p, and combined with the region

deleting criterion in the steps of the branch-and-bound algorithm, the computational com-
plexity of the image space branch-and-bound algorithm proposed in this paper is analyzed
for the first time, and the maximum number of iterations of the algorithm is deduced in
detail.

First of all, define the size ζ(Ω) of the rectangle Ω = {y ∈ Rp | Li ≤ yi ≤ Ui, i = 1, . . . , p}
as

ζ(Ω) := max{Ui − Li, i = 1, 2, . . . , p}.

Lemma 4.1. For arbitrarily given convergence tolerance ϵ > 0, if a rectangle Ωk is generated
after k iterations, which satisfies that ζ(Ωk) ≤ ϵ, then we get that

UB − LB(Ωk) ≤ ϵ,

where LB(Ωk) is the optimal value of the problem (LRP) over the rectangle Ωk, and UB is
the currently best upper bound of the optimal value for the problem (EP1).

Proof. Without loss of generality, suppose that (xk, ŷk, r̂k) is the optimal solution of the

problem (LRP) over the rectangle Ωk, let yki =

n∑
j=1

dijx
k
j+gi

n∑
j=1

eijxk
j+hi

, i = 1, 2, . . . , p, and let rk =

max{yk1 , yk2 , . . . , ykp}, then (xk, yk, rk) is a feasible solution to the problem (EP1) over the

rectangle Ωk.
From the definitions of UBk and LB(Ωk), we have

r(xk, yk) ≥ UBk ≥ LB(Ωk) = r(xk, ŷk).

Thus, by steps of the proposed image space branch-and-bound algorithm, we can follow that

UBk − LB(Ωk) ≤ r(xk, yk)− r(xk, ŷk) = rk − r̂k ≤ max{Uk
i − Lk

i , i = 1, 2, . . . , p} = ζ(Ωk).

Furthermore, from the above inequalities and ζ(Ωk) ≤ ϵ, we can get that

UBk − LB(Ωk) ≤ ζ(Ωk) ≤ ε,

and the proof of the theorem is completed.

From step 4 of the proposed algorithm and Lemma 4.1, it is easy to know that Ωk will
be deleted if ζ(Ωk) ≤ ϵ. Therefore, the algorithm stops if the sizes of all rectangles Ωk

generated by the algorithm satisfy ζ(Ωk) ≤ ϵ. We can use Lemma 4.1 to estimate the
maximum number of iterations.

Theorem 4.2. Given any convergence tolerance ϵ > 0, the image space branch-and-bound
algorithm finds an ϵ-global optimal solution of the problem (MLFP) in at most

S = 2

p∑
i=1

⌈log2

(U0
i −L0

i )

ϵ ⌉
− 1

iterations, where Ω0 = {y ∈ Rp|L0
i ≤ yi ≤ U0

i , i = 1, . . . , p}.
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Proof. Assume that a rectangle Ω = {y ∈ Rp|Li ≤ yi ≤ Ui, i = 1, . . . , p} ⊆ Ω0 is selected
from the set of the partitioned sub-rectangles of Ω0 for every iteration. Without losing
generality, suppose that, after si iterations, there exists a subinterval Ωsi

i = [Lsi
i , Usi

i ] of the
interval Ω0

i = [L0
i , U

0
i ], which satisfies that, for each i = 1, 2, . . . , p,

Usi
i − Lsi

i ≤ ϵ. (4.1)

By the bisection method of rectangle, for each i = 1, 2, . . . , p, we have

Usi
i − Lsi

i =
1

2si
(U0

i − L0
i ). (4.2)

Consequently, by (4.1) and (4.2), for each i = 1, 2, . . . , p, we can get that

1

2si
(U0

i − L0
i ) ≤ ϵ,

i.e., for each i = 1, 2, . . . , p, we have that

si ≥ log2
(U0

i − L0
i )

ϵ
.

Next, let

s̄i = ⌈log2
(U0

i − L0
i )

ϵ
⌉, i = 1, 2, . . . , p.

Then, after S1 =
p∑

i=1

s̄i iterations, the proposed image space branch-and-bound algorithm

will generate at most S1+1 sub-rectangles, which can be denoted as Ω1,Ω2, . . . ,ΩS1+1, and
which must satisfy

ζ(Ωt) = 2S1−tζ(ΩS1) = 2S1−tζ(ΩS1+1), t = S1, S1 − 1, . . . , 2, 1,

where ζ(ΩS1) = ζ(ΩS1+1) = max{U s̄i
i − Ls̄i

i , i = 1, 2, . . . , p} and

Ω0 =

S1+1⋃
t=1

Ωt.

Meanwhile, put these S1 + 1 rectangles into the set CS1+1, i.e.,

CS1+1 = {Ωt| t = 1, 2, . . . , S1 + 1}.

By (4.1), we have
ζ(ΩS1) = ζ(ΩS1+1) ≤ ϵ. (4.3)

Without losing generality, we denote by ζ̄ = ζ(ΩS1) = ζ(ΩS1+1). Hence, from (4.3), we have

ζ̄ ≤ ϵ.

Thus, by (4.3), Lemma 4.1 and Step 4 of the algorithm, the sub-rectangles ΩS1 and ΩS1+1

have been examined clearly and should be discarded from the partitioning set CS1+1. Now,
the remaining sub-rectangles are put into the set CS1 , where

CS1 = CS1+1 \ {ΩS1 ,ΩS1+1} = {Ωt|t = 1, 2, . . . , S1 − 1},
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and the remaining sub-rectangles Ωt (t = 1, 2, . . . , S1 − 1) will be examined further.

Next, considering the sub-rectangle ΩS1−1, by the rectangular bisection method, we
can subdivide the sub-rectangle ΩS1−1 into two sub-rectangles ΩS1−1,1 and ΩS1−1,2, which
satisfy that

ΩS1−1 = ΩS1−1,1
⋃

ΩS1−1,2

and

ζ(ΩS1−1) = 2ζ(ΩS1−1,1) = 2ζ(ΩS1−1,2) = 2ζ̄.

Thus, after the presented algorithm performed S1 + (21 − 1) iterations, ΩS1−1 has been
examined clearly and should be discarded from the partitioning set CS1 by using (4.3),
Lemma 4.1 and Step 4 of the algorithm. At the same time, the remaining sub-rectangles
will be moved into the set CS1−1, where

CS1−1 = CS1+1 \ {ΩS1−1,ΩS1 ,ΩS1+1} = {Ωt| t = 1, 2, . . . , S1 − 2}.

Similarly, after the proposed algorithm executed S1+(21−1)+(22−1) iterations, the sub-
rectangle ΩS1−2 has been examined clearly and should be discarded from the partitioning
set CS1−1. At the same time, all remaining sub-rectangles will be put into the set CS1−2,
where

CS1−2 = CS1+1 \ {ΩS1−2,ΩS1−1,ΩS1 ,ΩS1+1} = {Ωt| t = 1, 2, . . . , S1 − 3}.

Repeat the above iteration process, until all sub-rectangles Ωt(t = 1, 2, . . . , S1 + 1) are
completely removed from Ω0. Thus, after at most

S = S1 + (21 − 1) + (22 − 1) + (23 − 1) + · · ·+ (2S1−1 − 1) = 2S1 − 1 = 2

p∑
i=1

⌈log2

(U0
i −L0

i )

ϵ ⌉
− 1

iterations, the presented algorithm will stop, and the proof is completed.

Remark 4.3. From Theorem 4.2, we can know that, the running time of the image space
branch-and-bound algorithm is bounded by

(2S + 1)T (m+ 2p, n+ p)

for finding an ϵ-global optimal solution of the problem (MLFP), where T (m + 2p, n + p)
denotes by the time taken to solve a linear programming problem with n+ p variables and
m+ 2p linear constraints.

5 Numerical Experiment

In this section, we numerically compare our algorithm with the software BARON [22] and
the existing branch-and-bound-algorithms presented in Feng et al. [16], Jiao & Liu [21], and
Wang et al. [35]. All used algorithms are coded in MATLAB R2014a, all test problems
are solved on the same microcomputer with Intel(R) Core(TM) i5-7200U CPU @2.50GHz
processor and 16 GB RAM. We set the maximum time limit for all algorithms to 3600
seconds. All test problems and their numerical results are listed as follows.
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Problem 1.

min max


n∑

j=1

d1jxj + g1

n∑
j=1

e1jxj + h1

,

n∑
j=1

d2jxj + g2

n∑
j=1

e2jxj + h2

, . . . ,

n∑
j=1

dpjxj + gp

n∑
j=1

epjxj + hp


s. t.

n∑
j=1

akjxj ≤ bk, k = 1, 2, . . . ,m,

xj ≥ 0, j = 1, 2, . . . , n,

where dij , eij , bk, akj , i = 1, 2, . . . , p, k = 1, 2, . . . ,m, j = 1, 2, . . . , n, are all randomly gen-
erated in the interval [0, 10]; gi and hi, i = 1, 2, . . . , p, are all randomly generated in the
unit interval [0, 1]. What needs to be clearly pointed out is that, test Problem 1 has the
little constant numbers gi and hi at the numerators and denominators of linear fractional
functions.

First of all, for test Problem 1 with small-size variables, with the given approximation
error ϵ = 10−4, numerical comparisons among the algorithms in Feng et al. [16], Jiao & Liu
[21], Wang et al. [35], and our algorithm are listed in Table 1, respectively. Next, for test
Problem 1 with large-size variables, with the given approximation error ϵ = 10−4, numerical
comparisons between our algorithm and BARON are listed in Table 2, respectively. For all
numerical tests, we solved arbitrary ten independently generated test examples and recorded
their best, worst, and average results among these ten test examples, and we highlighted
in bold the winners of average results in their numerical comparisons. What needs to be
pointed out here is that “−” represents that the selected algorithm failed to terminate in
3600s.

From the numerical results for test Problem 1 with small-size variables in Table 1, first
of all, we can observe that, when p ≥ 2,m ≥ 10, and n ≥ 4, the algorithm of Feng et al. [16]
failed to terminate in 3600s for some of arbitrary ten independently generated test examples;
when p ≥ 2,m ≥ 10, and n ≥ 10, the algorithm of Wang et al. [35] failed to terminate in
3600s for some of arbitrary ten independently generated test examples; when p ≥ 4,m ≥ 10,
and n ≥ 10, the algorithm of Jiao & Liu [21] failed to terminate in 3600s for some of
arbitrary ten independently generated test examples; but in all cases, our algorithm can
globally solve all arbitrary ten independently generated test examples. Secondly, in terms
of computational performance, when p ≥ 2,m ≥ 10, and n ≥ 4, in all cases, the algorithms
presented in Feng et al. [16], Jiao & Liu [21] and Wang et al. [35] are more time-consuming
than our algorithm, so that our algorithm outperforms the algorithms presented in Feng et
al. [16], Jiao & Liu [21], and Wang et al. [35].

From the numerical results for test Problem 1 with large-size variables in Table 2, first of
all, we can observe that the software BARON is more time-consuming than our algorithm,
though the number of iterations for the software BARON is smaller than our algorithm.
Secondly, in terms of computational performance of the algorithm, our algorithm outper-
forms the software BARON. Especially, when we fixed m = 100, let p = 2 and n ≥ 8000,
or let p = 3 and n ≥ 7000, the software BARON failed to terminate in 3600s for some of
arbitrary ten independently generated test examples, but in all cases, our algorithm can
globally solve all arbitrary ten independently generated test examples.

In general, from the numerical results in Tables 1 and 2, we can see that, when the scale
of the test Problem 1 is larger, the computational performance of our algorithm is obviously
better than the software BARON and the algorithms presented in Feng et al. [16], Jiao
& Liu [21], and Wang et al. [35]. From the numerical results, we can conclude that our
algorithm can globally solve the large-size test Problem 1 in a reasonable time.
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Table 1: Numerical comparisons between some algorithms and our algorithm on Problem 1.

(p,m, n) algorithms
#iter time(s)

min. ave. max. min. ave. max.

(2,10,2) Feng et al. [16] 392 3496.6 17914 11.42 130.35 723.47
Wang et al. [35] 29 58.5 109 0.78 1.78 3.22
Jiao & Liu [21] 27 47.4 75 0.81 1.45 2.25
Our algorithm 11 150.6 659 0.18 3.88 18.62

(2,10,4) Feng et al. [16] − − − − − −
Wang et al. [35] 51 745.3 2492 2.24 23.00 74.35
Jiao & Liu [21] 60 300.3 835 2.10 9.06 24.50
Our algorithm 15 101 294 0.36 2.95 8.89

(2,10,6) Feng et al. [16] − − − − − −
Wang et al. [35] 142 4677.8 20401 5.09 165.89 754.32
Jiao & Liu [21] 167 1507.6 8543 5.29 51.06 296.86
Our algorithm 40 80.7 161 1.07 2.54 5.34

(2,10,8) Feng et al. [16] − − − − − −
Wang et al. [35] 1489 15624.2 57619 399.81 532.63 2042.29
Jiao & Liu [21] 420 1842.7 6978 13.68 62.72 242.83
Our algorithm 56 221 936 2.10 6.50 25.61

(2,10,10) Feng et al. [16] − − − − − −
Wang et al. [35] − − − − − −
Jiao & Liu [21] 0 3952.1 18813 0 128.66 620.33
Our algorithm 49 91.9 164 1.78 2.85 4.10

(3,10,10) Feng et al. [16] − − − − − −
Wang et al. [35] − − − − − −
Jiao & Liu [21] 2534 14271.3 44772 84.24 508.25 1712.22
Our algorithm 183 555 2129 6.80 20.27 73.72

(4,10,10) Feng et al. [16] − − − − − −
Wang et al. [35] − − − − − −
Jiao & Liu [21] − − − − − −
Our algorithm 671 7489.9 26210 25.81 315.32 1183.59

(5,10,10) Feng et al. [16] − − − − − −
Wang et al. [35] − − − − − −
Jiao & Liu [21] − − − − − −
Our algorithm 2122 9692.4 33056 86.57 409.15 1288.55

6 Conclusion

This paper studies the minimax linear fractional programming problem and presents an im-
age space branch-and-bound algorithm. In this algorithm, we proposed a novel linearizing
technique for constructing the linear relaxation programming problem of the equivalent prob-
lem. In contrast to the existing branch-and-bound algorithms, the branching search takes

place in the image space rectangle of the linear fractional functions

n∑
j=1

dijxj+gi

n∑
j=1

eijxj+hi

, i = 1, . . . , p,

which mitigates the required computational efforts and the computational complexity of
the algorithm. Our algorithm can find a global ε-approximate optimal solution in at most

S = 2

p∑
i=1

⌈log2

(U0
i −L0

i )

ϵ ⌉
− 1 iterations. Numerical results demonstrate the superiority and effi-
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Table 2: Numerical comparisons between BARON and our algorithm on Problem 1.

(p,m, n) algorithms
#iter time(s)

min. ave. max. min. ave. max.

(2,100,1000) BARON 1 1 1 114.19 161.83 198.98
Our algorithm 41 56.2 79 44.65 73.62 107.21

(2,100,2000) BARON 1 1 1 71.19 867.20 2026.48
Our algorithm 41 69.7 182 88.42 182.54 525.55

(2,100,3000) BARON 1 1 1 214.97 2279.31 3162.7
Our algorithm 42 61.6 97 123.10 249.89 343.63

(2,100,4000) BARON 1 1 1 423.69 521.29 704.05
Our algorithm 39 45 112 235.22 201.06 614.96

(2,100,5000) BARON 1 1 1 676.52 1400.99 5305.7
Our algorithm 38 57.2 73 307.30 409.34 599.31

(2,100,6000) BARON 1 1 1 1310.03 1614.77 2130.42
Our algorithm 41 54.3 71 322.08 461.39 635.40

(2,100,7000) BARON 1 1 1 1714.22 2464.83 3218.08
Our algorithm 47 65.1 82 550.85 709.27 981.18

(2,100,8000) BARON 1 1 1 − − −
Our algorithm 46 75.6 204 586.17 1036.01 3171.08

(3,100,1000) BARON 1 1 1 17.86 207.69 310.17
Our algorithm 103 203.9 493 146.04 312.89 744.01

(3,100,2000) BARON 1 1 1 79.53 844.95 2121.8
Our algorithm 98 204.8 426 299.41 718.02 1676.95

(3,100,3000) BARON 1 1 1 312.98 1245.00 3203.69
Our algorithm 118 219.9 398 603.52 1136.81 2220.43

(3,100,4000) BARON 1 1 1 549.14 656.52 796.19
Our algorithm 106 199.4 447 695.33 1402.37 3255.30

(3,100,5000) BARON 1 1 1 1022.33 1233.59 1402.52
Our algorithm 83 169.5 268 619.62 1414.56 2253.12

(3,100,6000) BARON 1 1 1 1667.3 2160.854 2716.88
Our algorithm 103 193.9 318 984.5 1894.83 3148.57

(3,100,7000) BARON − − − − − −
Our algorithm 121 153 200 1381.38 1789.36 2343.83

(3,100,8000) BARON − − − − − −
Our algorithm 115 170.1 249 1740.10 2330.88 3045.42

ciency of our algorithm. In future work, by using robust dual approach in [33], we will extend
and apply the proposed algorithm to solve the uncertain minimax fractional programming
introduced in [23] .
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