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includes semidefinite programming (SDP) [5, 8, 36], polarization [1], alternating minimiza-
tion [29], gradient methods, such as the Wirtinger flow method [7], trust region [35], etc. In
many applications, the signals are naturally sparse. For example, astronomical imaging deals
with the locations of stars in the sky [22], optics imaging [33], user requirement survey and
so on. Recently, many methods are explored to solve sparse phase retrieval problem, which
can be mainly categorized as convex and nonconvex ones. The convex methods either rely
on semidefinite relaxation based methods [23,24], or use basis pursuit methods [15,20]. The
nonconvex methods include sparse Fienup method [27], greedy method [32], Wirtinger Flow
variants [4, 25,34,43], and Lp(0 ≤ p ≤ 1) regularization methods [10,16,17,31,38].

In recent years, Lp(0 ≤ p ≤ 1) regularization methods have a good performance in deal-
ing with the sparse phase retrieval, which don’t need support set information and can get
a sparse solution. To get the sparsest solution, one naturally proposes to use L0 regulariza-
tion [16]. However, the corresponding optimization is generally NP hard (see [28]). In order
to overcome such difficulty, researchers proposed many relevant relaxation methods, such
as, L1 regularization [10, 31, 38] and Lq(0 < q < 1) regularization [17]. Although L1 reg-
ularization is convenient to be calculated, it may yield inconsistent selections in variable
selection and cannot recover a signal with the least measurements [41]. Compared to L1 reg-
ularization, Lq regularization always uses less measurements and can generate sparser so-
lution in compressed sensing [11]. Specially, in phase diagram study, [42] shows the fol-
lowing results: 1)As the value of q decreases, the Lq regularization generates sparser so-
lution. 2)When 1/2 ≤ q < 1, L1/2 regularization always yields the sparsest solution and
when 0 < q < 1/2, the performance of the Lq regularization takes no significant differ-
ence. Accordingly, it is concluded that L1/2 regularization can be taken as a representative
of Lq(0 < q < 1) regularizations.

Regarding phase retrieval with asymmetrical noise or outliers, some stability results have
been established. For example, [46] developed for minimizing the least squares empirical loss
and designed a two stages algorithm, which starts with a weighted maximal correlation ini-
tialization and then follows by the reweighted gradient iterations. [12] and [45] used mean
truncation and median truncation rule to weaken the influence of arbitrary outliers, re-
spectively. [47] proposed the median-MRAF algorithm which combined median truncation
rule and reweighted method. Different from these literatures, [40] took Least absolute de-
viation(LAD) criterion for phase retrieval to enhance the robustness against outliers. For
sparse case, [16, 38] respectively used L0 regularized and L1 regularized LAD method, and
employed alternating direction method of multipliers(ADMM) [3] to solve corresponding
optimization problem.

From the studies above, the special importance of L1/2 regularization is highlighted. Mo-
tivated by [41], we present a new L1/2 regularized phase retrieval method to get a sparse
solution and enhance the robustness, we call our method L1/2 regularized Least absolute
deviation phase retrieval(L1/2LAD PR). Since the L1/2 regularization problem is noncon-
vex, nonsmooth, and non-Lipschitz, it is hard to solve. Inspired by [16], we consider efficient
algorithm based on ADMM method. Fortunately, all subproblems have closed-form solu-
tions and convergence can be guaranteed. Numerical experiments show that our method
can recover sparse signal with less measurements and is robust to asymmetrical distribution
noise, such as dense bounded noise and Laplace noise.

The remainder of the paper is organized as follows. In Section 2, we formulate the prob-
lem, describe our proposed method in detail and establish its convergence. Extensive numer-
ical experiments illustrating the effectiveness and robustness of our algorithm are presented
in Section 3. Conclusion and future work are given in Section 4.
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2 Optimization Algorithm

A. The problem formulation

The optimization problem that we consider is minimizing the problem as follow:

min
x∈Cp

1
n∥ | Ax |2 −y∥1 + λ∥x∥1/21/2, (2.1)

where x, y, A, n have been described in (1.1), (·)T represents the transpose, A =
[a1, a2, . . . , an]

T , ai ∈ Cp, i = 1, 2, . . . , n, ai are Gaussian random vectors, the regularization
penalty parameter λ > 0 controls the tradeoff between the sparsity and data fidelity. Un-

less otherwise stated, for any vector V , Vi is its i-th element. ∥x∥1/21/2 =
p∑

i=1

| xi |1/2, x =

(x1, x2, ..., xp)
T .

We should establish the existence of solution to problem (2.1). For the convenience of

following description, we introduce g(x) = 1
n∥ | Ax |2 −y∥1 + λ∥x∥1/21/2. Apparently, the

second part of g(x) is coercive, the first part of g(x) is non-negative, then we can readily
derive that g(x) is coercive. Finally, we obtain the existence of solution to (2.1).

For the convenience of following calculation, we give two lemmas.

Lemma 2.1 (see [41,44]). Let b∗ be the global solution of following problem

arg min
b∈C

| b− y0 |2 +λ | b |1/2,

where y0 ∈ C, the constant λ > 0. It can be specified by

b∗ =

{
fλ,1/2(y0), | y0 |>

3√54
4 (λ)2/3,

0, otherwise,

with

fλ,1/2(y0) =
2
3y0

(
1 + cos

(
2π
3 − 2

3φλ(y0)
))
,

φλ(y0) = arccos

(
λ
8

(
|y0|
3

)− 3
2

)
.

Lemma 2.2. The global solution v̂ of following problem has analytic expression,

v̂ = arg min
v∈R

t
2 (v − y1)

2+ | v2 − y2 |,

where y1, y2 ∈ R, t > 0 is a constant. It can be derived

v̂ = ht(y1, y2),

when 0 < t ≤ 2,

ht(y1, y2) =


y1

1+ 2
t

, if y2 ≤ 0 or y2 > 0 and | y1 |> √
y2(1 +

2
t ),

√
y2, if y2 > 0 and 0 < y1 ≤ √

y2(1 +
2
t ),

−√
y2, if y2 > 0 and −√

y2(1 +
2
t ) ≤ y1 ≤ 0,
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when t > 2,

ht(y1, y2) =



y1

1+ 2
t

, if y2 ≤ 0 or y2 > 0 and | y1 |> √
y2(1 +

2
t ),

y1

1− 2
t

, if y2 > 0 and | y1 |< √
y2(1− 2

t ),
√
y2, if y2 > 0 and

√
y2(1− 2

t ) ≤ y1 ≤ √
y2(1 +

2
t ),

−√
y2, if y2 > 0 and −√

y2(1 +
2
t ) ≤ y1 ≤ −√

y2(1− 2
t ).

Proof. We discuss the minimizer of the problem in two cases as follows.
1) If y2 ≤ 0, the problem can be written as

v̂ = arg min
v∈R

t

2
(v − y1)

2 + v2 − y2

= arg min
v∈R

(
t

2
+ 1

)
v2 − ty1v +

t

2
y21 − y2.

It is clear that v̂ = y1

1+ 2
t

.

2) If y2 > 0, let

h(v) =

{
h1(v), if | v |≥ √

y2,

h2(v), otherwise,

where h1(v) =
t
2 (v − y1)

2 + v2 − y2 and h2(v) =
t
2 (v − y1)

2 − v2 + y2.
The derivative and second derivative of the functions h1(v), h2(v) are computed as follows,

h′
1(v) = (t+ 2)v − ty1,

h
′′

1 (v) = t+ 2 > 0,

and
h′
2(v) = (t− 2)v − ty1,

h
′′

2 (v) = t− 2.

For the convenience of following analysis, we define ℓ∗1 = y1

1+ 2
t

and ℓ∗2 = y1

1− 2
t

(when t ̸= 2).

Next, we discuss the global minimization v̂ of h(v). When 0 < t ≤ 2, we can get h
′′

2 (v) =
t − 2 ≤ 0. Then h2(v) is concave when | v |< √

y2. By analyzing the second derivative of
function h(v), the position relations of ℓ∗1, ℓ

∗
2 and ±√

y2, we have the global minimization

v̂ =


ℓ∗1, | ℓ∗1 |> √

y2,

−√
y2, −√

y2 ≤ ℓ∗1 ≤ 0,
√
y2, 0 < ℓ∗1 ≤ √

y2.

When t > 2, we obtain h
′′

2 (v) = t − 2 > 0. Hence h2(v) is convex when | v |< √
y2. Notice

that

| ℓ∗1 |=
∣∣∣∣ y1

1 + 2
t

∣∣∣∣ < ∣∣∣∣ y1

1− 2
t

∣∣∣∣ =| ℓ∗2 | .

A similar analysis of the above case shows that the global minimization can be obtained by

v̂ =



ℓ∗1, | ℓ∗1 |> √
y2 ,

ℓ∗2, {−√
y2 ≤ ℓ∗1 ≤ 0 and −√

y2 < ℓ∗2 ≤ 0} or
{0 < ℓ∗1 ≤ √

y2 and 0 < ℓ∗2 <
√
y2},√

y2, 0 < ℓ∗1 ≤ √
y2 and ℓ∗2 ≥ √

y2,

−√
y2, −√

y2 ≤ ℓ∗1 ≤ 0 and ℓ∗2 ≤ −√
y2.
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To sum up, we can get the solution v̂.

Further, for the convenience of description in the following, we define an operator Ht(c, w)
for any c = (c1, c2, . . . , cp)

T , w = (w1, w2, . . . , wp)
T ∈ Rp, where

Ht(c, w) = (ht(c1, w1), ht(c2, w2), . . . , ht(cp, wp))
T .

B. Solving the objective with ADMM

We apply the ADMM algorithm [3] to solve the proposed model (2.1), which is equivalent
to

min
x,q,z

1
n

∥∥| z |2 −y
∥∥
1
+ λ∥q∥1/21/2

s.t.

(
A
I

)
x−

(
z
q

)
= 0,

(2.2)

where z ∈ Cn, q ∈ Cp, I is the p × p identity matrix. Then, the augmented Lagrangian
Lr(x, q, z; Λ) is introduced in order to settle the following saddle-point problem

max
Λ

min
x,q,z

Lr(x, q, z; Λ) =
1
n

∥∥| z |2 −y
∥∥
1
+ λ∥q∥1/21/2+

R

(〈
Λ,

(
A
I

)
x−

(
z
q

)〉)
+ r

2

∥∥∥∥(AI
)
x−

(
z
q

)∥∥∥∥2
2

,
(2.3)

where Λ ∈ Cn+p is Lagrangian multiplier, r > 0 is augmented Lagrangian penalty param-
eter, ⟨·, ·⟩ denotes the complex inner product of two vectors, R(·) is the real part. For the
convenience of following calculation, we rewrite (2.3) to its equivalent form:

max
Λ1,Λ2

min
x,q,z

Lr(x, q, z; Λ1,Λ2) =
1

n

∥∥| z |2 −y
∥∥
1
+ λ∥q∥1/21/2 +R (⟨Λ2, x− q⟩)+

r

2
∥x− q∥22 +R (⟨Λ1, Ax− z⟩) + r

2
∥Ax− z∥22,

(2.4)

where Λ1 ∈ Cn, Λ2 ∈ Cp are Lagrangian multipliers.
We invoke ADMM to solve (2.4), which is sketched as Algorithm 1.

xj+1 = arg min
x

Lr(x, q
j , zj ; Λj

1,Λ
j
2),

qj+1 = arg min
q

Lr(x
j+1, q, zj ; Λj

1,Λ
j
2),

zj+1 = arg min
z

Lr(x
j+1, qj+1, z; Λj

1,Λ
j
2),

Λj+1
1 = Λj

1 + r(Axj+1 − zj+1),

Λj+1
2 = Λj

2 + r(xj+1 − qj+1).

In the following, we discuss the solution to each sub-minimization problem with respect
to(w.r.t.) x, q, z.
1) x-subproblem. The x-subproblem is

min
x∈Cp

R (⟨Λ1, Ax⟩) +R (⟨Λ2, x⟩) + r
2 ∥Ax− z∥22 +

r
2 ∥x− q∥22 . (2.5)

We compute the first order optimality condition for (2.5) w.r.t. the complex-valued vari-
able x by separating the real and complex parts. Detailed derivation is given in the fol-
lowing, where the sign re(or Re) stands for the real part, im(or Im) for the imaginary
part, (·)H represents the complex conjugate transpose, i =

√
−1 is the imaginary unit.
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We denote

x = xre + ixim; q = qre + iqim; z = zre + izim;

A = Are + iAim; Λ1 = Λre
1 + iΛim

1 ; Λ2 = Λre
2 + iΛim

2 .

Further, we can get

Ax = (Are + iAim)(xre + ixim) = (Arex
re −Aimxim) + i(Arex

im +Aimxre),

⟨Λ1, Ax⟩ = ⟨Λre
1 + iΛim

1 , (Arex
re −Aimxim) + i(Arex

im +Aimxre)⟩
= (Λre

1 + iΛim
1 )H [(Arex

re −Aimxim) + i(Arex
im +Aimxre)]

= [(Λre
1 )T (Arex

re −Aimxim) + (Λim
1 )T (Arex

im +Aimxre)]+

i[−(Λim
1 )T (Arex

re −Aimxim) + (Λre
1 )T (Arex

im +Aimxre)],

⟨Λ2, x⟩ = ⟨Λre
2 + iΛim

2 , xre + ixim⟩
= (Λre

2 + iΛim
2 )H(xre + ixim)

= [(Λre
2 )Txre + (Λim

2 )Txim] + i[(Λre
2 )Txim − (Λim

2 )Txre],

∥Ax− z∥22 = ∥(Arex
re −Aimxim − zre) + i(Arex

im +Aimxre − zim)∥22
= ∥Arex

re −Aimxim − zre∥22 + ∥Arex
im +Aimxre − zim∥22,

∥x− q∥22 = ∥(xre − qre) + i(xim − qim)∥22 = ∥xre − qre∥22 + ∥xim − qim∥22.

Let

D(x) = R (⟨Λ1, Ax⟩) +R (⟨Λ2, x⟩) + r
2 ∥Ax− z∥22 +

r
2 ∥x− q∥22 . (2.6)

Take the derivations above into (2.6),

D(xre, xim) = (Λre
1 )T (Arex

re −Aimxim) + (Λim
1 )T (Arex

im +Aimxre) + (Λre
2 )Txre

+ (Λim
2 )Txim +

r

2

(
∥Arex

re −Aimxim − zre∥22 + ∥Arex
im +Aimxre − zim∥22

)
+

r

2

(
∥xre − qre∥22 + ∥xim − qim∥22

)
.

(2.7)
Compute the partial derivatives w.r.t. xre, xim and let them be equal to 0. By the first
order optimality condition, we can get the optimal solution,

∂D
∂xre = AT

reΛ
re
1 +AT

imΛim
1 + Λre

2 + r[AT
re(Arex

re −Aimxim − zre)
+AT

im(Arex
im +Aimxre − zim)] + r(xre − qre) = 0,

(2.8)

∂D
∂xim = −AT

imΛre
1 +AT

reΛ
im
1 + Λim

2 + r[−AT
im(Arex

re −Aimxim − zre)
+AT

re(Arex
im +Aimxre − zim)] + r(xim − qim) = 0.

(2.9)

For the convenience of observation, we rewrite (2.8) and (2.9),

r(AT
reAre +AT

imAim + I)xre + r(−AT
reAim +AT

imAre)x
im+

r(−AT
rez

re −AT
imzim − qre) +AT

reΛ
re
1 +AT

imΛim
1 + Λre

2 = 0,
(2.10)

r(−AT
imAre +AT

reAim)xre + r(AT
reAre +AT

imAim + I)xim+

r(AT
imzre −AT

rez
im − qim)−AT

imΛre
1 +AT

reΛ
im
1 + Λim

2 = 0.
(2.11)
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Since
AT

reAre +AT
imAim = Re(AHA),

AT
reAim −AT

imAre = Im(AHA),

then (2.10) and (2.11) can be further simplified,

r[(Re(AHA) + I)xre − Im(AHA)xim]

= rqre − (AT
reΛ

re
1 +AT

imΛim
1 ) + r(AT

rez
re +AT

imzim)− Λre
2 , (2.12)

r[Im(AHA)xre + (Re(AHA) + I)xim]

= rqim + (AT
imΛre

1 −AT
reΛ

im
1 ) + r(−AT

imzre +AT
rez

im)− Λim
2 . (2.13)

By analysis and comparison, (2.12) and (2.13) are the real part and the imaginary part of
following equation, respectively,

r(I +AHA)x = rq −AHΛ1 + rAHz − Λ2. (2.14)

So we can calculate the x-subproblem directly by (2.14).
2) q-subproblem. The q-subproblem can be written as

min
q∈Cp

λ∥q∥1/21/2 +
r
2

∥∥q − x− Λ2

r

∥∥2
2
. (2.15)

The minimization w.r.t. q is a variable-splitting problem, updating the auxiliary vector q can
be performed element-by-element. We just need to consider the minimization problem
w.r.t. qd, d = 1, 2, . . . , p,

q∗d = arg min
qd∈C

2λ
r | qd |1/2 +

∣∣qd − (x+ Λ2

r

)
d

∣∣2 , (2.16)

where q∗ is the optimal solution of q-subproblem (2.15).
The minimization problem (2.16) can be solved by Lemma 2.1. Let ud =

(
x+ Λ2

r

)
d
, the

optimal solution is

q∗d =

{
f2λ/r,1/2(ud), | ud |>

3√54
4

(
2λ
r

)2/3
,

0, otherwise.
(2.17)

3) z-subproblem. The z-subproblem is given as follow

min
z∈Cn

1
n

∥∥| z |2 −y
∥∥
1
+ r

2

∥∥z − (Ax+ Λ1

r

)∥∥2
2
. (2.18)

For convenience, let W = Ax+ Λ1

r ∈ Cn.
The z-subproblem is also variable-separable, the minimization problem w.r.t. zm is

min
zm∈C

1
n

∣∣| zm |2 −ym
∣∣+ r

2 | zm −Wm |2, (2.19)

where m = 1, 2, . . . , n. Inspired by [16], by a geometric interpretation, let zm = k ·Wm, k ≥
0 ∈ R. We transform the complex field minimization problem about variable zm into the
real field problem about k and consider the following equivalent problem

arg min
k∈R

nr
2 (k − 1)

2
+
∣∣∣k2 − ym

|Wm|2

∣∣∣ .
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The problem above can be solved by Lemma 2.2, hence the optimal solution z∗ of prob-
lem (2.18) is

z∗m = hnr

(
1,

ym
| Wm |2

)
·Wm, m = 1, 2, . . . , n.

That is,

z∗ = Hnr

(
1, y/ | W |2

)
⊙W, (2.20)

where 1 = (1, 1, . . . , 1)T ∈ Rn, / and ⊙ denote the componentwise division and multiplica-
tion, respectively.

Algorithm 1 L1/2LAD PR: ADMM method for solving (2.4)

Input: Parameters r = 10−2, iter = 300, ϵADMM = 10−4, λ = 10−4.
A spectral initialization q0, z0 = Aq0, Λ0

1 = 0, Λ0
2 = 0.

Output: The iterative sparse solution q.
for j = 0 : iter do

xj+1 =
1

r
(I +AHA)−1(rqj −AHΛj

1 + rAHzj − Λj
2).

for d = 1 : p do

qj+1
d =

{
f2λ/r,1/2(ud), | ud |>

3√54
4

( 2λ
r
)2/3,

0, otherwise,
(2.21)

with ud =

(
xj+1 +

Λ
j
2
r

)
d

.

end for

zj+1 = Hnr
(
1, y/ | W |2

)
⊙W, (2.22)

with W =

(
Axj+1 +

Λ
j
1
r

)
.

Update multipliers

Λj+1
1 = Λj

1 + r(Axj+1 − zj+1),

Λj+1
2 = Λj

2 + r(xj+1 − qj+1).
(2.23)

if ∥xj+1 − xj∥ < ϵADMM then
break;

end if
end for

C. Convergence Analysis

For the convenience of analysis, we introduce the following definition. Considering q-sub-
problem

min
q∈Cp

λ∥q∥1/21/2 +
r
2∥q − u∥22, (2.24)

where u = x + Λ2

r . According to [26], the first-order stationary point definition of (2.24) is
given as follow.

Definition 2.3. Let q̂ be a vector in Cp and Q = Diag(q̂). q̂ is a first-order stationary
point of (2.24) if

rQ(q̂ − u) + λ
2 | q̂ |1/2= 0,

where Diag(q̂) denotes a p× p diagonal matrix whose diagonal is formed by the vector q̂, |
q̂ |1/2 denotes a p-dimensional vector whose dth component is | q̂d |1/2.
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The convergence proof is inspired by [10]. We show that our proposed algorithm con-
verges to a saddle point by satisfying Karush-Kuhn-Tucker(KKT) conditions, which is a typi-
cal method for nonconvex problems. The KKT conditions of the Lagrangian Lr(x, q, z; Λ1,Λ2)
in (2.4) are defined as follows:

∂xLr(x̃, q̃, z̃; Λ̃1, Λ̃2) = 0,

rQ̃(q̃ − x̃− Λ̃2

r ) + λ
2 | q̃ |1/2= 0,

∂zLr(x̃, q̃, z̃; Λ̃1, Λ̃2) = 0,

∂Λ1
Lr(x̃, q̃, z̃; Λ̃1, Λ̃2) = 0,

∂Λ2Lr(x̃, q̃, z̃; Λ̃1, Λ̃2) = 0,

(2.25)

where (x̃, q̃, z̃; Λ̃1, Λ̃2) is a saddle point, ∂ represents the partial derivative, Q̃ = Diag(q̃), q̃ is
a first-order stationary point of q-subproblem (2.15).

Remark 2.4. Specially, for complex variable z, the first-order optimality condition asso-
ciated with the z-subproblem (2.18) is

0 ∈ 1
n∂z∥ | z |2 −y∥1 − Λ1 − r(Ax− z).

By reference [39](Lemma 4.1), for variable z̄ ∈ C,

∂ | z̄ |=
{ z̄

|z̄| , If z̄ ̸= 0,

{e|e ∈ C, | e |≤ 1}, otherwise.

Combining the two equations above, we obtain the first-order optimality condition of z-
subproblem

0 ∈
(

2

nr
sign

(
| zm |2 −ym

)
+ 1

)
zm −

(
Λ1

r
+Ax

)
m

, m = 1, 2, . . . , n,

where, for any x̄ ∈ R,

sign(x̄) =

 1, x̄ > 0,
−1, x̄ < 0,
0, x̄ = 0.

Now, we detail the KKT conditions corresponding to the three variables x, q, z :

AHΛ̃1 + Λ̃2 = 0, (2.26)

λ
2 | q̃ |1/2 −Q̃Λ̃2 = 0, (2.27)(

2

nr
sign

(
| z̃m |2 −ym

)
+ 1

)
z̃m −

(
Λ̃1

r
+Ax̃

)
m

∋ 0, m = 1, 2, . . . , n, (2.28)

z̃ = Ax̃, (2.29)

x̃ = q̃. (2.30)

Theorem 2.5. Assuming that the successive differences of the two multipliers {Λj
1−Λj−1

1 },
{Λj

2 − Λj−1
2 } converge to zero and {xj} is bounded, then there exists a subsequence of iter-

ative sequence of Algorithm 1 converging to an accumulation point that satisfies the KKT
conditions of the saddle point problem (2.4).
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Proof. We complete the proof in two steps. First, we show the boundedness of all vari-
ables. Because of the update of two multipliers (2.23) and the assumption that their succes-
sive differences converge, we can derive that

lim
j→∞

Axj − zj = 0, lim
j→∞

xj − qj = 0, (2.31)

with the assumption that {xj} is bounded, which implies the boundedness of {zj} and {qj}.
By the iterative expressions (2.21) and (2.22), which demonstrate the {Λj

1} and {Λj
2} is

bounded, respectively.
The boundedness of all variables guarantees that there is a subsequence {(xjt , qjt , zjt ;

Λjt
1 ,Λjt

2 )} ⊂ {(xj , qj , zj ; Λj
1,Λ

j
2)} and (x̃, q̃, z̃; Λ̃1, Λ̃2), such that

lim
jt→∞

(xjt , qjt , zjt ; Λjt
1 ,Λjt

2 ) = (x̃, q̃, z̃; Λ̃1, Λ̃2). (2.32)

We then prove that the accumulation point (x̃, q̃, z̃; Λ̃1, Λ̃2) satisfies the KKT condi-
tions. It follows from (2.31) that the KKT conditions w.r.t. z and q, i.e., (2.29) and (2.30) are
satisfied. Since A is a linear operator in a finite-dimensional space, (2.26) is satisfied. We
can verify that the KKT condition (2.28) of z is equivalent to (2.22) when z = z̃ and W =

Ax̃+ Λ̃1

r . Finally, we can obtain that

q̃d =

{
f2λ/r, 1/2(ũd), | ũd |>

3√54
4 ( 2λr )2/3,

0, otherwise,
(2.33)

where ũd =
(
x̃+ Λ̃2

r

)
d
, d = 1, 2, . . . , p, which is just the solution of (2.27) by Theorem 1

in [41]. Hence the proof is completed.

Although the assumption for the convergence of successive difference of multipliers in
Theorem 2.5 seems strong, we observe through our numerical results that the proposed
algorithm is always convergent.

3 Numerical Experiments

All simulations were performed on a 64-bit laptop computer running Windows 7 system
with an AMD A8-6410 APU and 4GB of RAM.

A. Experimental parameters and Initialization

We take p = 128 in all experiments, generating the true signal as Gaussian random sparse

vector. The measurements matrix A satisfies ai
i.i.d.∼ N (0, I/2) + iN (0, I/2). The choice of

parameters in our model is quite easy. The regularization parameter λ > 0 controls the level
of sparsity in the reconstructed signal, by manual tuning, λ is given by fixed 10−4. The
penalty parameter r impacts the convergence rate, we take 10−2.

For nonconvex problems, ADMM can converge to different (and in particular, nonop-
timal) points, depending on the initial values and the penalty parameter [3]. We take
Wirtinger flow [7] initial q0, which obeys dist(q0, x) ≤ 1

8∥x∥, where dist(q, x) = min
ϕ∈[0,2π]

∥q−

eiϕx∥2. Hence the algorithm proposed converges from the neighborhood of the global mini-
mizer.
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Since phase retrieval is nonconvex, like many phase retrieval methods, we also employ
multiple initializations to realize a better recovery. To control the tradeoff between the
successful recovery and computation complexity, we take at most 10 initializations in the
following trials.

Table 1: Comparison of reconstruction methods

Method Implementation
Measurements

matrix
Robustness

Sparse

solution

L0L1PR [16] ADMM
Fourier

related
noise ✓

LAD-ADMM [40] ADMM Gaussian
Gaussian

mixture noises

Median-RWF [45]
gradient

descent
Gaussian

noise

outliers

Median-MRAF [47]
gradient

descent
Gaussian

noise

outliers

L1/2LAD PR ADMM Gaussian
noise

outliers
✓

B. Monte Carlo Comparisons (1D)

In this section, we report numerical simulation results to demonstrate how the peak-signal-to-
error ratio (PSER) which is used in [38] depends on the measurements ratio n/p = 2 : 6 and
the sparsity s = 3 : 8 via 50-trial Monte Carlo simulations. Define PSER= −10log10(median
squared error), where median squared error is the median of the squared errors relative to
the true signal over the set of trials. In our phase retrieval algorithms study, we find some
Fourier phase retrieval methods can’t solve the Gaussian phase retrieval problem directly, like
[38], and vice-versa, such as [45]. Since L0L1PR [16] listed in Table 1 applies to the Fourier
related phase retrieval in complex case and the running time of LAD-ADMM [40] is too
long. Moreover, median-MRAF [47] is the development of median-RWF [45], so we only
compare with the latest method median-MRAF in real case and complex case in Figure
1, respectively.

For the convenience of comparison, we limit the range of PSER value in [0,100] as fol-
low. As is shown in Figure 1, the darker the color, which means PSER value is smaller and
the error is larger; the lighter the color, the recovery is more successful. It is observed that
the required number of measurements and the median squared errors of L1/2LAD PR are sig-
nificantly better than median-MRAF in both cases. It is known that in real case x ∈ Rp, we
need at least n ≥ 2p− 1 measurements to have the phase retrieval property [2], in complex
case x ∈ Cp, the same question result is n ≥ 4p − 4 in [13], so the proposed L1/2LAD PR
algorithm accords with the theoretical sample complexity.

PSER =

 0, PSER < 0,
100, PSER > 100,

PSER, otherwise.
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Figure 1: The PSER of 50 trials reconstructed using Median-MRAF, L1/2LAD PR for a
range of measurement (n/p) and sparsity fractions (s/p) in the complex case and real case.

In the following sections, we fix the sparsity as s = 8 and reconstruct the signal corrupted
by noise or outliers using L1/2LAD PR and competing algorithms listed in Table 1. Both
LAD-ADMM and L0L1PR use L1 norm loss function, and L0L1PR adds a L0 regulariza-
tion. Median-RWF and Median-MRAF which use L2 norm loss function are highly robust to
outliers by heuristic truncated rules. We compare the relative errors with respect to the itera-

tion count t at different measurement fractions (n/p), where relative error is min
|c|=1

∥cx−x(t)∥2

∥x∥2
, x

is the true signal, x(t) is the tth iteration point.

Remark 3.1. We take n = 2p, 3p, 4p, 6p in real case and n = 4p, 5p, 6p, 8p in complex
case. In details, n = 2p and n = 4p is the approximate theoretical sample complexity. n =
8p is the number of measurements used for LAD-ADMM in [40], we take n = 6p in real case
when LAD-ADMM has a stable recovery.

C. Exact Recovery for Noise-Free Data

In the noise-free case, Figure 2 shows in real case, when n = 2p, only L0L1PR and L1/2LAD
PR have good recovery performance. When n = 3p, 4p, 6p, L1/2LAD PR is slightly bet-
ter than other 4 algorithms. In Figure 3, it shows in complex case, when n = 4p, Median-
RWF, Median-MRAF and L1/2LAD PR can recover the signal. When n = 5p, 6p, 8p, L1/2LAD
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PR has similar performance as compared methods, and LAD-ADMM is slightly better than
other 3 algorithms.

Figure 2: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L0L1PR, L1/2LAD PR with noise-free data in real case.

Figure 3: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L1/2LAD PR with noise-free data in complex case.

D. Stable Recovery With Sparse Outliers

We next examine the performance of L1/2LAD PR in presence of sparse outliers. The outlier
value is generated from a uniform distribution U(0, ωmax), where ωmax = 0.1ymax, ymax

is the largest measurement in y. The entries of the sparse outliers are generated from
Bernoulli(0.1) or Bernoulli(0.2). It can be seen from Figure 4, L0L1PR is not robust to
outliers in real case. Combining with Figure 5, When n ≥ 3p, Median-RWF and Median-
MRAF can realize exact recovery with sparse outliers both in real and complex cases. When
n ≥ 4p in real case and n ≥ 5p in complex case, the relative error of L1/2LAD PR can
decrease to about 5 × 10−4, which shows that L1/2LAD PR has certain robustness to out-
liers. When n ≥ 5p, LAD-ADMM has a satisfactory recovery. We also find that the outliers
ratio(0.1 or 0.2) has little effect on the experiments.
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Figure 4: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L0L1PR, L1/2LAD PR with sparse outliers in real case. (ω = ωmax

ymax
=

0.1, outliers ratio δ = 0.1, 0.2. )

Figure 5: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L1/2LAD PR with sparse outliers in complex case. (ω = ωmax

ymax
=

0.1, outliers ratio δ = 0.1, 0.2.)
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E. Stable Recovery With Dense Bounded Noise

Now, we consider the existence of dense bounded noise. The entries of the dense bounded
noise are generated independently from U(0, ηmax), where ηmax/∥x∥2 = 0.001, 0.01. It can
be seen from Figure 6 and 7, L1/2LAD PR shows great robustness to dense bounded noise in
all cases, while L0L1PR shows poor performance. Median-RWF and Median-MRAF have
similar performance when n ≥ 3p both in complex and real cases. LAD-ADMM is also robust
with noise when the number of measurements satisfies n = 6p in real case and n = 8p in
complex case. Another reasonable observation, we find the relative reconstruction error has
10 times increase as η shrinks by a factor of 10 for all algorithms .

Figure 6: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L0L1PR, L1/2LAD PR with dense bounded noise in real case. (η =
ηmax

∥x∥2 = 0.001, 0.01.)

Figure 7: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L1/2LAD PR with dense bounded noise in complex case. (η = ηmax

∥x∥2 =

0.001, 0.01.)
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F. Stable Recovery With Laplace Noise

Finally, we consider the presence of Laplace noise, the entries of Laplace noise are generated
from Laplace (0, µmax/

√
2), where µmax

∥y∥2/
√
n
= 0.001, 0.01. As can be observed in Figure 8

and 9, surprisingly, L1/2LAD PR is very robust to Laplace noise, especially in real case, no
matter when n = 2p, 3p, 4p, 6p. However, other methods show poor performance, even
when n = 6p, L0L1PR, Median-RWF, Median-MRAF don’t have satisfactory recovery. In
complex case, L1/2LAD PR, Median-RWF, Median-MRAF have similar performance, but
the performance of LAD-ADMM is not stable. Another logical observation, we find the
relative reconstruction error has 10 times increase as µmax shrinks by a factor of 10 for all
algorithms.

Figure 8: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L0L1PR, L1/2LAD PR with Laplace noise in real case. (µ =

µmax

∥y∥2/
√
n
= 0.001, 0.01.)

Figure 9: The relative error with respect to the iteration count for LAD-ADMM, median-
RWF, median-MRAF, L1/2LAD PR with Laplace noise in complex case. (µ =

µmax

∥y∥2/
√
n
= 0.001, 0.01.)

Our simulation illustrates that, with the robust L1 norm loss function and L1/2 regular-
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ization, L1/2LAD PR algorithm has two significant advantages over competing methods. One
is its ability to recover the signal with less measurements, the other is its robustness to asym-
metrical distribution noise, such as dense bounded noise and Laplace noise.

4 Conclusion

We propose and demonstrate L1/2LAD PR algorithm for recovering a sparse signal vec-
tor from its Gaussian measurements. We show via extensive experiments that L1/2LAD
PR outperforms the comparative phase retrieval approaches in terms of the number of re-
quired measurements and robustness to dense bounded noise, Laplace noise. As the reader
may notice, our algorithm is applicable to both the complex case and the real case, which is
general. One interesting future study direction is to consider the non-i.i.d. measurement vec-
tors like the Fourier basis measurements which are in the application of the coded diffraction
patterns [6].
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