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resonance [3], imaging spectral hyper-graph theory [37], automatical control [20–22, 43].
Particularly, the eigenvalue problem of the fourth-order elastic modulus tensor was dealt
with by Love for the isotropic tensor [40] and for the anisotropic tensor [1,44,47,48,56,59,71].
Some effective algorithms for finding eigenvalues and the corresponding eigenvectors have
been implemented [65,66]. However, it is NP-hard to compute all M-eigenvalues exactly for
a given tensor. Thus, some researchers turned to investigate eigenvalue inclusion sets i.e.
intervals including all possible M-eigenvalues [7–10,16,27,38,62,69].

On the other hand, to identify whether the strong ellipticity holds or not for a given
elasticity material is an important problem in mechanics [25]. Fourth-order partially sym-
metric tensors are closely related to the strong ellipticity condition in nonlinear mechanics
which guarantees the existence of solutions of basic boundary-value problems of elastostatics
and thus ensures an elastic material to satisfy some mechanical properties. Knowles and
Sternberg [31, 32] proposed necessary and sufficient conditions for strong ellipticity of the
equations governing finite plane equilibrium deformations of a compressible hyper-elastic
solid. Their works were further extended by Simpson and Spector [57] to the special case
using the representation theorem for copositive matrices. Rosakis [55], Wang and Aron [64]
also established some reformulations. Furthermore, Walton and Wilber [61] provided suffi-
cient conditions for strong ellipticity of a general class of anisotropic hyper-elastic materials,
which require the first partial derivatives of the reduced-stored energy function to satisfy
several simple inequalities and the second partial derivatives to satisfy a convexity condi-
tion. Zubov and Rudev [71] gave sufficient and necessary conditions for the strong ellip-
ticity of certain classes of anisotropic linearly elastic materials. Gourgiotis and Bigoni [24]
investigated the strong ellipticity of materials with extreme mechanical anisotropy. As an
application of tensor eigenvalues, Qi et al. [52] gave a necessary and sufficient condition of
the strong ellipticity by introducing the definition of M-eigenvalue for fourth-order partially
symmetric tensors and it is shown that the strong ellipticity holds if and only if all the
M-eigenvalues of the ellipticity tensor is positive. Therefore, it is important to compute the
extreme M-eigenvalues of a given tensor from practical problems.

In the optimization point of view, a fourth-order partially symmetric tensor corresponds
to a unique bi-quadratic homogeneous polynomial. Then, the problem of computing extreme
M-eigenvalues for a given tensor is equivalent to an bi-quadratic optimization problem with
equality constraints. The state-of-the-art solution methods such as the block coordinate
ascent method and the sequential quadratic programming method (SQP) can be used to
solve the problem [2]. However, due to the specificity of the problem, several other targeted
solution methods are developed. The first one is the sum of squares approach, which is
based on the decomposition of a nonnegative multivariate polynomial into sum of squares
[35, 49, 60]. This method has a strong theoretical appeal as it can theoretically achieve the
global optimizer. Its basic idea is to relax the concerned problem to a hierarchy of semi-
definite programming problems(SDP). However, the scale of the SDP grows exponentially
with that of the problem, and thus the method can only solve small-scaled problems. The
second one is the semi-definite programming relaxation approach [28, 39, 41], where the
concerned problem is approximated by a specially constructed SDP problem. The computing
cost of this method also increases quickly with the scale of the problem. The third one is
the power method, which is originated from the computing of the dominant eigenvalue of
a square matrix [23] and later, it is extended to compute the best rank-1 approximation
to a higher order tensor [15, 33, 51]. It is worthy noted that the advantage of the power
method is its less cost and less memory in computing. Its convergence can be guaranteed
under convexity assumption for the symmetric tensor case [33, 54], and this restrict can be
removed via a shifted technique [34]. Furthermore, the linear convergence rate of Power



FOURTH-ORDER PARTIALLY SYMMETRIC TENSORS: THEORY AND ALGORITHM 235

method is established in [34]. To the best of our knowledge, the power method has became
a powerful and popular solution method in tensor computation and multi-linear algebra [42].
Recently, Wang et al. applied the power method to give a block improvement method (BIM)
for computing the largest M-eigenvalue of fourth-order partially symmetric tensors [66], and
several numerical examples show the efficiency of BIM.

2 Preliminaries

In this section, we recall some symbols and basic facts about tensors. First of all, we briefly
mention the notation that will be used in the sequel. Let Rn be the n dimensional real
Euclidean space and the set of all positive integers is denoted by N. Suppose m,n ∈ N are
two natural number. Denote [n]={1, 2,. . . ,n}. Vectors are denoted by bold lowercase letters
such as x, y, and tensors are written as calligraphic capitals such as A, B. All one tensor
and all one vector are denoted by E and e respectively.

A general fourth-order tensor A = (aijkl) ∈ Rn1×n2×n3×n4 has n1 × n2 × n3 × n4 entries
such that

aijkl ∈ R, ∀i ∈ [n1], ∀j ∈ [n2], ∀k ∈ [n3], ∀l ∈ [n4].

Particularly, when n1 = n3 = m and n2 = n4 = n, the authors of [7, 26, 38, 62] studied the
partially symmetric tensor A = (aijkl) ∈ Rm×n×m×n with the following structure:

aijkl = akjil = ailkj = aklij , ∀i, k ∈ [m], ∀j, l ∈ [n]. (2.1)

It should be noted that any fourth-order partially symmetric tensor as in (2.1) corresponds
to a unique bi-quadratic homogeneous polynomial:

f(x,y) = Axyxy =
∑

i,k∈[m]

∑
j,l∈[n]

aijklxiyjxkyl. (2.2)

In addition, there is another formulation for fourth-order partially symmetric tensor Ā =
(āijkl) ∈ Rm×m×n×n such as

āijkl = ājikl = āijlk = ājilk, ∀i, j ∈ [m], ∀k, l ∈ [n], (2.3)

and the corresponding bi-quadratic polynomial is

f̄(x,y) = Āxxyy =
∑

i,j∈[m]

∑
k,l∈[n]

āijklxixjykyl. (2.4)

Actually, (2.1) and (2.3) are equivalent in the sense that (2.2) and (2.4) are equal. For
example, let B = (bijkl) ∈ Rm×n×m×n be a tensor defined in (2.1). Define B̄ = (b̄ijkl) ∈
Rm×m×n×n with entries satisfying

b̄ijkl =
bikjl + bjkil + biljk + bjlik

4
, i, j ∈ [m], k, l ∈ [n].

Then, it is not difficult to verify that B̄ is a partially symmetric tensor as in (2.3) and
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Bxyxy = B̄xxyy. On the other hand, if B = (bijkl) ∈ Rm×m×n×n be a tensor defined in
(2.3), then define B̄ = (b̄ijkl) ∈ Rm×m×n×n with entries such that

b̄ijkl =
bikjl + bkijl + biklj + bkilj

4
, i, k ∈ [m], j, l ∈ [n].

Thus, B̄ is a partially symmetric tensor as in (2.1) and it still holds thatBxxyy = B̄xyxy.

For the sake of readers convenience, in the following analysis, we always consider the
fourth order tensors with symmetry (2.1) and current conclusions related with (2.3) are
rewritten as the form of (2.1).

Next, we recall the definition of M-eigenvalue and M-eigenvectors for partially symmetric
tensors which is first defined in [52].

Definition 2.1. Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric tensor as in (2.1).
If there are λ ∈ R, x ∈ Rm \ {0}, y ∈ Rn \ {0} such that

A · yxy = λx, Axyx· = λy, x>x = 1, y>y = 1, (2.5)

where A · yxy and Axyx· are vectors with i-th and l-th components such that

(A · yxy)i =

m∑
k=1

n∑
j,l=1

aijklyjxkyl, (Axyx·)l =

m∑
i,k=1

n∑
j=1

aijklxiyjxk,

then λ is called an M-eigenvalue of A and x, y are called left and right M-eigenvectors of
A, respectively, which are associated with the M-eigenvalue λ. The set of all M-eigenvalues
of A is denoted by σ(A).

For M-eigenvalues, the extremal cases are always meaningful. Denote the M-spectral
radius and the lowest M-eigenvalue of A as follows:

ρ(A) = max{|λ| : λ ∈ σ(A)}, τM (A) = min{λ : λ ∈ σ(A)}.

It has been proved as below that each partially symmetric tensor always have M-eigenvalue.

Theorem 2.2 ([52]). Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric tensor as in
(2.1). Then, its M-eigenvalues always exist. If x and y are left and right M-eigenvectors of
A, associated with an M-eigenvalue λ, then λ = Axyxy.

Furthermore, the authors [52] also showed the definition of M-characteristic polynomial
and gave an application for the spectral radius. To make full use of the resultant theory of
homogeneous systems, by (2.5), one can obtain that{

A · yxy = λ(y>y)x,

Axyx· = λ(x>x)y.
(2.6)

According to the algebraic geometry theory [13], the resultant of (2.6) is a one dimensional
polynomial φ with variable λ, and φ(λ) is called the M-characteristic polynomial of A. Then,
Qi et al. have the following results.
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Theorem 2.3 ([52]). Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric tensor as in
(2.1). Then the following results hold.
(1) An M-eigenvalue of A is always a real root of the M-characteristic polynomial φ(λ).
(2) If λ is the spectral radius of A, assume that x and y are corresponding left and right
M-eigenvectors, then λxyxy is the best rank-one approximation of A.

Next, we will show that two orthogonal similar tensors have same M-eigenvalues. To
continue, we first present the definition of orthogonal similar tensors, which was first defined
in [52]. Suppose that A = (aijkl),B = (bijkl) ∈ Rm×n×m×n are two partially symmetric
tensors. If there are orthogonal matrices P = (pii′) ∈ Rm×m and Q = (qjj′) ∈ Rn×n
satisfying that

bijkl =

m∑
i′,k′=1

n∑
j′,l′=1

pii′qjj′pkk′qll′ai′j′k′l′ .

Then A and B are orthogonally similar [52].

Theorem 2.4 ([52]). If fourth-order partially symmetric tensors A and B are orthogonally
similar, then they have the same M-eigenvalues. In particular, if they are orthogonally
similar via orthogonal matrices P and Q as above, and λ is an M-eigenvalue of A with left
and right M-eigenvectors x and y, then λ is also an M-eigenvalue of B with left and right
M-eigenvectors Px and Qy.

To end this section, we present the notion of M-identity tensor and some useful equations
that will be used in the sequel.

The partially symmetric tensor IM ∈ Rm×n×m×n is called an M-identity tensor if its
entries are

(IM )ijkl =

{
1, if i = k, j = l,

0, otherwise,

where i, k ∈ [m], j, l ∈ [n].

3 M-Eigenvalue Inclusion Intervals for Fourth-Order Partially Sym-
metric Tensors

M-eigenvalues of a fourth-order partially symmetric tensor are important in the nonlinear
elastic material analysis and the entanglement problem in quantum physics. Generally
speaking, it is not easy to get all the M-eigenvalues exactly, especially for high dimensional
fourth-order partially symmetric tensors. Hence, researchers want to find a interval as tight
as possible including all M-eigenvalues.

In this section, we recall some current inclusion intervals about M-eigenvalues of fourth-
order partially symmetric tensors, and bounds for the M-spectral radius. To move on, we
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now list several useful equations based on the elements of tensor A = (aijkl) :

Ri(A) =

m∑
k=1

n∑
j,l=1

|aijkl|, Rki (A) =
∑
j,l∈[n]

|aijkl|,

Cl(A) =

m∑
i,k=1

n∑
j=1

|aijkl|, Clj(A) =
∑

i,k∈[m]

|aijkl|,

di(A) =
∑

j,k,l∈[n],j 6=l

|aijkl|, γi =
∑

k∈[n],k 6=i

max
l∈[n]
{|ailkl|},

dii =
∑

j,l∈[n],j 6=l

|aijil|, Di(A) = di(A) + γi,

gl(A) =
∑

i,j,k∈[n],i6=k

|aijkl|, δl =
∑

j∈[n],j 6=l

max
i∈[n]
{|aijil|},

gll =
∑

i,k∈[n],i6=k

|ailkl|, Gl(A) = gl(A) + δl,

Di
i(A) =

∑
j,l∈[n],j 6=l

|aijil|, Gll(A) =
∑

i,k∈[n],i6=k

|ailkl|.

3.1 M-eigenvalue inclusion intervals

For the sake of readers, we do not change the symbols or structures in the following analysis,
and we try to make it consistent with the original literatures.

Theorem 3.1 ([7,38]). Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric tensor as in
(2.1). Let λ be an M-eigenvalue of A, then

(1) λ ∈ Γ(A) =

{
z ∈ R : |z| ≤ min{ max

1≤i≤m
{Ri(A)}, max

1≤l≤n
{Cl(A)}

}
.

(2) λ ∈ Υ(A) =
⋃

i∈[m]

Υi(A), Υi(A) = {z ∈ R : |z| ≤ Ri(A)} .

The inclusion intervals (1) and (2) in Theorem 3.1 were given independently by Li et
al. [38] and Che et al. [7] respectively. Actually, it is not difficult to prove that

σ(A) ⊆ Γ(A) ⊆ Υ(A).

To verify the result above, we give a simple example below.

Example 3.2. Let A = (aijkl) ∈ R2×2×2×2 be a partially symmetric tensor with entries
such that

a1111 = 2, a1211 = 3, a2111 = 6, a1121 = 6, a1112 = 3,

a1212 = 2, a2212 = 3, a1222 = 3, a2222 = 5,

and aijkl = 0 otherwise.
By a direct computing, we obtain that

R1(A) = 19, R2(A) = 14, C1(A) = 17, C2(A) = 16,

which implies that

Γ(A) = {z ∈ R : |z| ≤ 17}, Υ(A) = {z ∈ R : |z| ≤ 19}.
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Therefore, it is obvious that
Γ(A) ⊂ Υ(A).

Furthermore, another two inclusion intervals were presented in the following theorem.

Theorem 3.3 ([7,38]). Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric tensor as in
(2.1). If λ is an M-eigenvalue of A, then
(1) λ ∈ Θ(A) = U(A)

⋂
V (A),

(2) λ ∈ Λ(A) =
⋃

i∈[m]

(
⋂

k∈[m],k 6=i
Λi,k(A)),

where

U(A) =
m⋃

s6=p, s,p=1

{
z ∈ R : (|z| −

n∑
j,l=1

|apjpl|)|z| ≤ (Rp(A)−
n∑

j,l=1

|apjpl|)Rs(A)

}
,

V (A) =
n⋃

t6=q, t,q=1

{
z ∈ R : (|z| −

m∑
i,k=1

|aiqkq|)|z| ≤ (Cq(A)−
m∑

i,k=1

|aiqkq|)Ct(A)

}
,

Λi,k(A) =
{
z ∈ R : (|z| − (Ri(A)−Rki (A)))|z| ≤ Rki (A)Rk(A)

}
.

In Theorem 3.3, it seems that the relationship between intervals Θ(A) and Λ(A) is not
clear. Now, we provide two examples to show that Θ(A) ⊆ Λ(A) in some cases, while
Λ(A) ⊆ Θ(A) in some other cases.

Example 3.4. Let A = (aijkl) ∈ R2×2×2×2 be a partially symmetric tensor with entries
such as

a1111 = 2, a1211 = 0 a2111 = 1, a1121 = 1, a1112 = 0,

a1212 = 1, a2212 = 1, a1222 = 1, a2222 = 1,

and other aijkl = 0. By direct computing, we know that

Θ(A) = {z ∈ R : |z| ≤ 4}, Λ(A) = {z ∈ R : |z| ≤ 3 +
√

33

2
},

thus Θ(A) ⊂ Λ(A).

Example 3.5 ([38]). Let A = (aijkl) ∈ R2×2×2×2 be a partially symmetric tensor with
entries such as

a1111 = 2, a1211 = 3 a2111 = 6, a1121 = 6, a1112 = 3,

a1212 = 2, a2212 = 10, a1222 = 10, a2222 = 5,

and other aijkl = 0. By direct computing, we obtain that

Θ(A) = {z ∈ R : |z| ≤ 24}, Λ(A) = {z ∈ R : |z| ≤ 23}.

It is obvious that Λ(A) ⊂ Θ(A).

The following conclusions will show that the intervals of Theorem 3.3 are tighter than
the intervals in Theorem 3.1.

Theorem 3.6 ([7,38]). Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric tensor as in
(2.1). Then it holds that

σ(A) ⊆ Θ(A) ⊆ Γ(A), σ(A) ⊆ Λ(A) ⊆ Υ(A).

Now we use an example to verify that Θ(A) ⊆ Γ(A) holds.
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Example 3.7. Let A = (aijkl) ∈ R2×2×2×2 be a partially symmetric tensor, whose entries
satisfy example 3.5.

By direct computing, we obtain that

Γ(A) = {z ∈ R : |z| ≤ 26}, Θ(A) = {z ∈ R : |z| ≤ 24}.

It is obvious that Θ(A) ⊆ Γ(A).

By the intervals (2) in Theorem 3.1 and Theorem 3.3, Wang et al. introduced several
new inclusion intervals with a suitable parameter [62].

Theorem 3.8 ([62]). Let A = (aijkl) be a partially symmetric tensor as in Theorem 3.1
and IM be an M-identity tensor. For any α = (α1, α2, · · · , αm)T ∈ Rm, then

σ(A) ⊆ G (A, α) =
⋃
i∈[m]

Gi(A, α), σ(A) ⊆ K (A, α) =
⋃
i∈[m]

(
⋂

v 6=i, v∈[m]

Ki,v(A, α)),

where

Gi(A, α) = {z ∈ R : |z − αi| ≤ Ri(A, αi)} , Ri(A, αi) =
∑

k∈[m] j,l∈[n]

|aijkl − αi(IM )ijkl|,

Rvi (A, αi) =
∑
j,l∈[n]

|aijvl − αi(IM )ijvl|,

and

Ki,v(A, α) = {z ∈ R : [|z − αi| − (Ri(A, αi)−Rvi (A, αi))] · |z − αv| ≤ Rvi (A, αi)Rv(A, αv)}.

Furthermore, by the arbitrary of α, it follows that

σ(A) ⊆
⋂

α∈Rm

G (A, α), σ(A) ⊆
⋂

α∈Rm

K (A, α).

Remark 3.9. Noted that, if α = 0 in Theorem 3.8, the intervals G (A, α) and K (A, α)
reduces to Υ(A) in Theorem 3.1 and Λ(A) in Theorem 3.3 respectively. Moreover, it is
proved in [62] that

σ(A) ⊆ K (A, α) ⊆ G (A, α).

In what follows, for given M-eigenvalue λ ∈ σ(A) with left M-eigenvector x, let xs
denote the component of x with the second largest modulus. Then Che et al. [7] obtained
the following technical results for σ(A).

Theorem 3.10 ([7]). Suppose A = (aijkl) is a partially symmetric tensor as in (2.1) with
i, k ∈ [m], j, l ∈ [n]. Then, it holds that
(1) σ(A) ⊆M (A) =

⋃
i,k∈[m],k 6=i

(Mi,k(A)
⋃

Hi,k(A)),

(2) σ(A) ⊆ N (A) =
⋃

i,k∈[m],k 6=i
Ni,k(A),

where
Mi,k(A) =

{
z ∈ R : (|z| − (Ri(A)−Rki (A)))(|z| −Rkk(A)) ≤ Rki (A)(Rk(A)−Rkk(A))

}
,

Hi,k(A) =
{
z ∈ R : |z| − (Ri(A)−Rki (A)) ≤ 0, |z| −Rkk(A) < 0

}
,

Ni,k(A) =
{
z ∈ R : (|λ| −Rii(A))|λ| ≤ (Ri(A)−Rii(A))Rk(A)

}
.
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In [62], Wang et al. proved that the intervals G (A, α) and K (A, α) are tighter than the
intervals showed in Theorems 3.1, 3.3, 3.10. The following example exhibits the superiority
of the intervals G (A, α) and K (A, α).

Example 3.11 ([62]). Let A = (aijkl) ∈ R2×2×2×2 be a partially symmetric tensor, whose
entries are

a1111 = 20, a1122 = a1221 = 1, a1212 = 8, a2222 = 10, a2112 = a2211 = 1, a2121 = 7

and other aijkl = 0. Set α = (14, 8.5)T . For this tensor, the bounds via different estimations
given in this literature are shown in Table 1.

Table 1: Number results of Example 3.11
References Inclusion interval
Theorem 3.1(1) Γ(A) = [−29, 29]
Theorem 3.1(2) Υ(A) = [−30, 30]
Theorem 3.3(1) Θ(A) = [−28.4081, 28.4081]
Theorem 3.3(2) Λ(A) = [−29.2971, 29.2971]
Theorem 3.8(1) M (A) = [−28.3523, 28.3523]
Theorem 3.8(2) N (A) = [−29.2971, 29.2971]
Theorem 3.6(1) G (A, (14, 8.5)) = [0, 28]
Theorem 3.6(2) K (A, (14, 8.5)) = [0.7154, 26.5539]

By Theorems 3.1 and 3.10, Che et al. have the following results.

Theorem 3.12 ([7]). Suppose A = (aijkl) is a partially symmetric tensor as in Theorem
3.10. Then it holds that

σ(A) ⊆M (A) ⊆ Υ(A), σ(A) ⊆ N (A) ⊆ Υ(A).

In the following, an example is given to illustrate the relationship between Υ(A), Λ(A)
M (A), N (A). Figure 1 presents the comparisons of these intervals.

Example 3.13 ([7]). Let A = (aijkl) ∈ R2×2×2×2 be a partially symmetric tensor, whose
entries are

a1111 = −1, a1112 = 2, a1131 = 3, a1121 = −1, a1211 = 2, a1221 = 1, a1122 = 1, a2111 = −1,

a2211 = 1, a2112 = 1, a2131 = −2, a2222 = 2, a3111 = 3, a3232 = −1, a3131 = −2,

and aijkl = 0 otherwise. By computation, we obtain that
Υ(A) =

⋃
i∈[m]

Υi(A) = {λ ∈ R : |λ| ≤ 11},

Λ(A) =
⋃

i∈[m]

(
⋂

k∈[m],k 6=i
Λi,k(A)) = {λ ∈ R : |λ| ≤ 4 +

√
34},

M (A) =
⋃

i,k∈[m],k 6=i
(Mi,k(A)

⋃
Hi,k(A)) = {λ ∈ R : |λ| ≤ 5 + 2

√
6},

N (A) =
⋃

i,k∈[m],k 6=i
(Ni,k) = {λ ∈ R : |λ| ≤ 5+

√
193

2 }.

The M-eigenvalue inclusion sets Υ(A), Λ(A), M (A) and N (A) of example 3.13 are
drawn in Figure 1, where Υ(A), Λ(A), M (A) and N (A) are represented by red, blue,
green and black boundary, respectively, and the exact eigenvalues is plotted by ∗. From
Figure 1, the example shows that the M-eigenvalue inclusion sets Υ(A), Λ(A), M (A) and
N (A) are different.
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Figure 1: The comparisons of Υ(A), Λ(A), M (A), N (A).

Theorem 3.14 ([27]). Let A = (aijkl) ∈ Rn×n×n×n as in (2.1). Let λ be an M-eigenvalue
of A. Then He et al. have the following results.
(1) If ai1i1 = · · · = ainin = αi, i ∈ [n], it holds that

λ ∈ U1(A) =
⋃
i∈[n]

{z ∈ R : z ∈ [αi −Di(A), αi +Di(A)]} .

(2) If a1l1l = · · · = anlnl = βl, l ∈ [n], it holds that

λ ∈ U2(A) =
⋃
l∈[n]

{z ∈ R : z ∈ [βl −Gl(A), βl +Gl(A)]}.

(3) If ai1i1 = · · · = ainin = αi = a1i1i = · · · = anini, i ∈ [n]. If λ is an M-eigenvalue of A,
then it holds that

λ ∈ U (A) =
⋃
i∈[n]

{z ∈ R : z ∈ [αi −min{Di(A), Gi(A)}, αi + min{Di(A), Gi(A)}]}.

Theorem 3.15 ([10]). Let A = (aijkl) ∈ Rn×n×n×n as in (2.1). Let λ be an M-eigenvalue
of A. Then Che et al. have the following results.
(1) If ai1i1 = · · · = ainin = αi, i ∈ [n], it holds that

λ ∈ Ω(A)

=
⋃

p,s∈[n],p6=s

{
z ∈ R : (|z − αp| −Dp

p(A)− γp)(|z − αs|) ≤ (Dp(A)−Dp
p(A)− γp)Ds(A)

}
.

(2) If a1l1l = · · · = anlnl = βl, l ∈ [n], it holds that

λ ∈ Φ(A)

=
⋃

q,t∈[n],q 6=t

{
z ∈ R : (|z − βq| −Gqq(A)− δq)(|z − βt|) ≤ (Gq(A)−Gqq(A)− δq)Gt(A)

}
.

(3) If ai1i1 = · · · = ainin = αi = a1i1i = · · · = anini, i ∈ [n], it holds that

λ ∈ (Ω(A) ∩ Φ(A))
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By Theorems 3.14 and 3.15, Che et al. have the following results.

Theorem 3.16 ([10]). Let A = (aijkl) ∈ Rn×n×n×n as in (2.1). If ai1i1 = · · · = ainin =
αi = a1i1i = · · · = anini, i ∈ [n]. Then, it follows that

Ω(A) ∩ Φ(A) ⊆ U1(A) ∩U2(A).

In what follows, an example is given to reveal Ω(A) ∩ Φ(A) ⊆ U1(A) ∩U2(A).

Example 3.17 ([10]). Let A = (aijkl) ∈ Rn×n×n×n as in (2.1), whose entries are

a1111 = a1212 = a2121 = a2222 = 4, a1122 = 1, a2112 = 1,

a1211 = 2, a2122 = 3, a1222 = 5, a2111 = 4.

By computation, we have

Ω(A) ∩ Φ(A) =
{
λ ∈ R : |λ− 4| ≤ 8 + 4

√
6
}
⊆ U1(A) ∩U2(A) = {λ ∈ R : |λ− 4| ≤ 18} .

3.2 Bound estimations on the M-Spectral radius

In several cases, the researchers pay more attention to the M-spectral radius than all M-
eigenvalues of nonnegative tensors. Therefore, it is interesting to find tight estimations or
bounds for the M-spectral radius. In this section, we conclude some theorems about bound
estimations on the M-spectral radius of nonnegative partially symmetric tensors [7,16,38,62].

Theorem 3.18 ([16]). Let A = (aijkl) ∈ Rn×n×n×n be a partially symmetric nonnegative
tensor as in (2.1). Then, the M-spectral radius of A is exactly its greatest M-eigenvalue.
Furthermore, there is a pair of nonnegative M-eigenvectors corresponding to the M-spectral
radius.

Theorem 3.18 tells us that the M-spectral radius ρ(A) of a nonnegative fourth-order
partially symmetric tensor A is exactly an M-eigenvalue of A. This result is very similar to
the Perron-Frobenius theorem for nonnegative matrixs and nonnegative tensors [18, 45, 67,
68].

Several sharp upper bounds on the largest M-eigenvalue for nonnegative fourth-order par-
tially symmetric tensors were presented by Che et al. [7], which improved the corresponding
results in [6, 58].

Theorem 3.19 ([38]). Let A = (aijkl) ∈ Rm×n×m×n be a fourth-order partially symmetric
tensor as in (2.1). Then

(1) ρ(A) ≤ t1, where t1 = min

{
max

1≤i≤m
Ri(A), max

1≤l≤n
Cl(A)

}
,

(2) ρ(A) ≤ t2, where t2 = min {P1(A), P2(A)},

P1(A) = max
s6=p,1≤s,p≤m

1
2

{
n∑

j,l=1

|apjpl|+
√

(
n∑

j,l=1

|apjpl|)2 + 4(Rp(A)−
n∑

j,l=1

|apjpl|)Rs(A)

}
,

P2(A) = max
t6=q,1≤t,q≤n

1
2

{
m∑

i,k=1

|aiqkq|+
√

(
m∑

i,k=1

|aiqik|)2 + 4(Cq(A)−
m∑

i,k=1

|aiqkq|)Ct(A)

}
.
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Theorem 3.20 ( [7]). Suppose A = (aijkl) ∈ Rm×n×m×n is a nonnegative fourth-order
partially symmetric tensor as in (2.1). Then, Che et al. have the following results:

(1) ρ(A) ≤ max
i∈[m]

min
k∈[m], k 6=i

1
2

{
Ri(A)−Rki (A) +

√
(Ri(A)−Rki (A))2 + 4Rki (A)Rk(A)

}
,

(2) ρ(A) ≤ max
i,k∈[m] k 6=i

{
1
2 (Ri(A)−Rki (A) +Rkk(A) + δki ), Ri(A)−Rki (A), Rkk(A)

}
, where

δki =
√

(Ri(A)−Rki (A) +Rkk(A))2 − 4(Rkk(A)Ri(A)−Rki (A)Rk(A)),

(3) ρ(A) ≤ max
i,k∈[m] k 6=i

{
1
2 (Rii(A) +

√
(Rii(A))2 + 4(Ri(A)−Rii(A))Rk(A))

}
.

Based on Theorem 3.8, Wang et al. [62] presented another bound estimations on M-
spectral radius of fourth-order partially symmetric nonnegative tensors, which improved the
corresponding results in [7,38]. What’s more, a lower bound estimation on M-spectral radius
of fourth-order partially symmetric nonnegative tensors is also presented in [62].

Theorem 3.21 ([62]). Let A = (aijkl) ∈ Rm×n×m×n be a partially symmetric nonnegative
tensor and IM be an M-identity tensor. For vector α = (α1, α2, · · · , αm)> ∈ Rm with
αi ≤ max

i∈[m],j∈[n]
{aijij}, then

(1) ρ(A) ≤ max
i∈[m]
{αi +Ri(A, αi)},

(2) ρ(A) ≤ max
i∈[m]

min
v 6=i, v∈[m]

1
2 (αi+αv+[(Ri(A, αi)−Rvi (A, αi))]+∆

1
2
i,v(A)), where ∆i,v(A) =

(αi − αv + [(Ri(A, αi)−Rvi (A, αi))])2 + 4(Rvi (A, αi)Rv(A, αv)).

Lemma 3.22 ([62]). Let A = (aijkl) ∈ Rm×n×m×n be a nonnegative fourth-order partially
symmetric tensor as in (2.1), then

ρ(A) ≥ max

{
max

i∈[m],j∈[n]
aijij ,

∑
i∈[m]Ri(A)

mn

}
.

In the following, we use Example 3.5 to show the superiority of the results in Theorem
3.21. In fact, σ(A) = {−7.6841, 13.8616,−4.2541, 6.6751}. From Lemma 3.22, we compute
11.75 ≤ ρ(A). Set α = (2, 5)>. For this tensor, the bounds via different estimations given
in the literature are shown in Table 2.

Table 2: Number results of Example 3.5
References Inclusion interval
Theorem 3.18(1) ρ(A) ≤ 24
Theorem 3.18(2) ρ(A) ≤ 24
Theorem 3.18(3) ρ(A) ≤ 24
Theorem 3.17(1) ρ(A) ≤ 26
Theorem 3.17(2) ρ(A) ≤ 24
Theorem 3.19(1) and Lemma 3.20 11.75 ≤ ρ(A) ≤ 24
Theorem 3.19(2) and Lemma 3.20 11.75 ≤ ρ(A) ≤ 23.6941

3.3 The M-eigenvalue inclusion sets for fourth-order Cauchy tensors

Cauchy tensor is a kind of important structured tensors, which is a natural extension from
Cauchy matrices [11]. In the fourth-order case, Che et al. [8] established several M-eigenvalue
inclusion theorems for fourth-order partially symmetric Cauchy tensors. To continue, we first
list the corresponding notions below.
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Definition 3.23 ([11]). Let c = (c1, c2, · · · , cn) ∈ Rn be a given vector. Suppose that a
real tensor C = (ci1i2···im) is defined by

ci1i2···im =
1

ci1 + ci2 + · · ·+ cim
, ij ∈ [n], j ∈ [m].

Then C is called an order m dimension n symmetric Cauchy tensor and the vector c ∈ Rn
is called the generating vector of C.

Following the ideas of Cauchy matrix [50] and Cauchy tensor [11], Che et al. [8] introduced
the definition of fourth-order Cauchy tensors.

Definition 3.24 ([8]). Suppose that a = (a1, a2, · · · , am) ∈ Rm and b = (b1, b2, · · · , bn) ∈
Rn are two given vectors. The fourth-order partially symmetric Cauchy tensor C = (cijkl)
is defined as follows:

cijkl =
1

ai + bj + ak + bl
, i, k ∈ [m], j, l ∈ [n],

where vectors a ∈ Rm,b ∈ Rn are called generating vectors of C.

Obviously, the fourth-order Cauchy tensor has the following partially symmetric prop-
erty:

cijkl = ckjil = cilkj = cklij =
1

ai + bj + ak + bl
, i, k ∈ [m], j, l ∈ [n].

Furthermore, if a = b and m = n, then the fourth-order partially symmetric Cauchy
tensor reduces to the fourth-order symmetric Cauchy tensor. In [8], the authors gave the
following two inclusion sets for M-eigenvalues.

Theorem 3.25 ([8]). Suppose that the tensor C is a fourth-order Cauchy tensor with gen-
erating vectors a ∈ Rm,b ∈ Rn. Then

σ(C) ⊆ C (C) =
⋃
i∈[m]

Ci(C),

where Ci(C) =

{
z ∈ R : |z| ≤

∑
k∈[m],j,l∈[n]

1
|ai+bj+ak+bl|

}
.

Theorem 3.26 ([8]). Suppose that the tensor C is a fourth-order Cauchy tensor with gen-
erating vectors a ∈ Rm,b ∈ Rn. If there exists an index i ∈ [m] such that ci1i1 = ci2i2 =
· · · = cinin = d, then

σ(C) ⊆J (C) =
⋃
i∈[m]

Ji(C),

where Ji(C) =

{
z ∈ R : |z − d| ≤

∑
j,l∈[n], j 6=l

1
|ai+bj+ak+bl| +

∑
k∈[m], j,l∈[n], k 6=i

1
|ai+bj+ak+bl|

}
.

3.4 Inclusion sets for elasticity M-tensors

In this section, we study bounds for the minimum M-eigenvalue of another kind of fourth-
order partially symmetric tensors i.e. elasticity M-tensors. The elasticity tensor has partially
symmetric structure as in (2.1). To move on, we first give some useful descriptions.
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Let A = (aijkl) ∈ Rn×n×n×n be a partially symmetric tensor as in (2.1). The entries
ailil, i, l = 1, 2, · · · , n, are called diagonal entries and other entries are called off-diagonal
entries of A. A fourth-order partially symmetric tensor is called an elasticity Z-tensor, if all
its off-diagonal entries are non-positive [16]. Noted that the elasticity Z-tensor can always
be written as A = sIM −B, where B is a nonnegative partially symmetric tensor and IM is
the identity tensor as defined in Section 2.

Definition 3.27 ( [9, 16, 69]). A fourth-order partially symmetric tensor A is called an
elasticity M-tensor if there exists a nonnegative partially symmetric tensor B and a real
number s ≥ ρ(B) such that A = sIM − B, where ρ(B) is the M-spectral radius of B.
Furthermore, if s > ρ(B), then A is called a nonsingular elasticity M-tensor.

By Definitions 3.27, Ding et al. have the following conclusions.

Theorem 3.28 ([16]). Let A = (aijkl) ∈ Rn×n×n×n be an elasticity Z-tensor. Then A is a
nonsingular elasticity M-tensor if and only if α > ρ(αIM −A), where α = max{ailil : i, l =
1, 2, · · · , n}.

Theorem 3.29 ([16]). Let A = (aijkl) ∈ Rn×n×n×n be an elasticity Z-tensor. The following
conditions are equivalent:
(1) A is a nonsingular elasticity M-tensor;
(2) For each x ≥ 0, x 6= 0, there exists y > 0 such that Axyx· > 0;
(3) For each x ≥ 0, x 6= 0, there exists y ≥ 0, y 6= 0, such that Axyx· > 0;
(4) For each y ≥ 0, y 6= 0, there exists x > 0 such that A · yxy > 0;
(5) For each y ≥ 0, y 6= 0, there exists x ≥ 0, x 6= 0, such that A · yxy > 0.

Motivated by Corollary 3.16, Che et al. obtained the following conclusions [9]. To
continue, the following definitions of reducible tensors and irreducible tensors are needed.

Definition 3.30 ([19]). A tensor A = (ai1i2···im) with order m and dimension n is called
reducible if there exists a nonempty proper index subset J ⊆ {1, 2, · · · , n} = [n] such that

ai1i2···im = 0, ∀i1 ∈ J, ∀i2 · · · im /∈ J.

If A is not reducible, then A is called irreducible.

Theorem 3.31 ([9]). Let A = (aijkl) ∈ Rn×n×n×n be an irreducible elasticity M-tensor.
Let τM (A) be the minimum M-eigenvalue of A. Then it holds that
(1)

τM (A) ≥ max

{
min

i,k∈[n],i6=k
{η1(A)}, min

j,l∈[n],j 6=l
{η2(A)}

}
≥ max

{
min
i∈[n]
{αi −Di(A)},min

l∈[n]
{βl −Gl(A)}

}
(2)

τM (A) ≥ max

{
min

i,k∈[n],i6=k
{ϕ1(A), αi − dii(A), αk − dkk(A)},

min
j,l∈[n],j 6=l

{ϕ2(A), βj − gjj (A), βl − gll(A)}
}

≥ max

{
min
i∈[n]
{αi −Di(A)},min

l∈[n]
{βl −Gl(A)}

}
,
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where

η1(A) =
αi − dii(A) + αk − θ

1
2

i,k

2
, η2(A) =

βj − gjj (A) + βl − ω
1
2

j,l

2
,

θi,k = (αi − dii(A)− αk)2 + 4(di(A)− dii(A) + γi)Dk(A),

ωj,l = (βj − gjj (A)− βl)2 + 4(gj(A)− gjj (A) + δj)Gl(A),

ϕ1(A) =
(αi − dii(A)) + (αk − dkk(A))−V

1
2
i,j

2
, ϕ2(A) =

(βj − gjj (A)) + (βl − dll(A))−Y
1
2

j,l

2
,

Vi,k = (αi − dii(A)− (αk − dkk(A)))2 + 4(Di(A)− dii(A))(Dk(A)− dkk(A)),

Yj,l = (βj − gjj (A)− (βl − gll(A)))2 + 4(Gj(A)− gjj (A))(Gl(A)− gll(A)).

By Theorem 3.31, the conclusion below summarizes bounds for the minimum M-
eigenvalue without irreducible conditions.

Theorem 3.32 ([69]). Let A = (aijkl) ∈ Rn×n×n×n be an elasticity M-tensor. Then

(1) τM (A) ≤ min

{
min
i,l∈[n]

ailil,
∑

i∈[n] Si(A)

n2

}
,

(2) τM (A) ≥ max

{
min
i∈[n]
{αi −Bi(A)},min

l∈[n]
{βl −Ml(A)}

}
,

(3) τM (A) ≥ max {ζ1(A), ζ2(A)} ,
where

Si(A) =
∑

j,k,l∈[n]

aijkl, ri(A) =

n∑
j,k,l=1,j 6=l

aijkl, cl(A) =

n∑
i,j,k=1,i6=k

aijkl,

Bi(A) = κi(A)− 1

2
ri(A), αi = min

l∈[n]
{ailil}, κi(A) = max

l∈[n]
(αi − ailil −

n∑
k=1,k 6=i

ailkl),

Ml(A) = ml(A)− 1

2
cl(A), βl = min

i∈[n]
{ailil}, ml(A) = max

i∈[n]
(βl − ailil −

n∑
j=1,j 6=l

aijil),

ζ1(A) = min
i,v∈[n],v 6=i

{
1

2
{αi +

1

2
ri(A) + αv − ξiv(A)− χ

1
2
i,v(A)}, αi +

1

2
ri(A), αv − ξiv(A)

}
,

ζ2(A) = min
u,l∈[n],u6=l

{
1

2
{βl +

1

2
cl(A) + βu −ml

u(A)− ϑ
1
2

l,u(A)}, βl +
1

2
cl(A), βu −ml

u(A)

}
,

χi,v(A) = (αi +
1

2
ri(A)− αv + ξiv(A))2 + 4ξi(A)(εiv(A)− 1

2
rv(A)),

ιi,v(A) = (βl +
1

2
cl(A)− βu +ml

u(A))2 + 4ml(A)(εlu(A)− 1

2
cu(A)),

εiv(A) = max
l∈[n]

(−avlil), ξiv(A) = max
l∈[n]

(αv − avlvl −
n∑

k=1, k 6=v,i

avlkl),

εlu(A) = max
i∈[n]

(−ailiu), ml
u(A) = max

i∈[n]
(βu − aiuiu −

n∑
j=1, j 6=u,l

aijil).
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4 Applications of Fourth-Order Partially Symmetric Tensors

The strong ellipticity condition plays an important role in nonlinear elasticity materials.
Elasticity tensors are fourth-order partially symmetric tensors. In this section, we con-
clude some necessary or sufficient conditions for the strong ellipticity condition, M-positive
definiteness and rank-one positive definiteness of fourth-order partially symmetric tensors.

4.1 M-positive definiteness and M-positive semi-definiteness

In applications, suppose that the potential elasticity tensor A = (aijkl) ∈ Rm×n×m×n is a
partially symmetric tensor as in (2.1). Noted that the strong ellipticity condition is stated
by

f(x,y) = Axyxy =
∑

i,k∈[m]

∑
j,l∈[n]

aijklxiyjxkyl > 0, (4.1)

for any nonzero x ∈ Rm,y ∈ Rn [16]. If the above inequality holds with equality i.e.∑
i,k∈[m]

∑
j,l∈[n]

aijklxiyjxkyl ≥ 0,

for all x ∈ Rm,y ∈ Rn, then the tensor A satisfies the ordinary ellipticity condition. A tensor
A satisfying the strong ellipticity condition is M-positive definite(M-PD) and a tensor A is
said to be M-positive semi-definite(M-PSD) if the ordinary ellipticity condition holds.

Theorem 4.1 ([16]). The given tensor A = (aijkl) ∈ Rn×n×n×n is M-positive definite if
and only if all of its M-eigenvalues are positive, and A is M-positive semi-definite if and
only if all of its M-eigenvalues are nonnegative.

To verify the M-positive definiteness or M-positive semi-definiteness of partially symmet-
ric tensors A = (aijkl) ∈ Rn×n×n×n, the following symbols are needed.

Ax =


A

(1,1)
x A

(1,2)
x · · · A

(1,n)
x

A
(2,1)
x A

(2,2)
x · · · A

(2,n)
x

...
...

. . .
...

A
(n,1)
x A

(n,2)
x · · · A

(n,n)
x

 , Ay =


A

(1,1)
y A

(1,2)
y · · · A

(1,n)
y

A
(2,1)
y A

(2,2)
y · · · A

(2,n)
y

...
...

. . .
...

A
(n,1)
y A

(n,2)
y · · · A

(n,n)
y

 ,

where A
(j,l)
x := A(:, j, :, l), j, l = 1, · · · , n and A

(i,k)
y := A(i, :, k, :), i, k = 1, · · · , n.

In [16], Ding et al. defined two matrices Ax2 ∈ Rn×n and Ay2 ∈ Rn×n such that

(Ax2)jl :=

n∑
i,k=1

aijklxixk, j, l = 1, 2, · · · , n,

(Ay2)ik :=

n∑
j,l=1

aijklyjyl, i, k = 1, 2, · · · , n.

Note that

Ax2 =


x>A

(1,1)
x x x>A

(1,2)
x x · · · x>A

(1,n)
x x

x>A
(2,1)
x x xTA

(2,2)
x x · · · x>A

(2,n)
x x

...
...

. . .
...

x>A
(n,1)
x x x>A

(n,2)
x x · · · x>A

(n,n)
x x

 ,
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and

Ay2 =


y>A

(1,1)
y y y>A

(1,2)
y y · · · y>A

(1,n)
y y

y>A
(2,1)
y y y>A

(2,2)
y y · · · y>A

(2,n)
y y

...
...

. . .
...

y>A
(n,1)
y y y>A

(n,2)
y y · · · y>A

(n,n)
y y

 .
Furthermore, it is straightforward to verify that

Axyxy = y>(Ax2)y = x>(Ay2)x, Ax2y = (Ax2)y, Axy2 = (Ay2)x. (4.2)

It should be noted that the symmetries of A implies that both Ax2 andAy2 are symmetric
matrices [16].

Note that Ax and Ay are permutation similar to each other i.e. there is a permutation
matrix P such that Ax = P>AyP . Then A is M-PD or M-PSD if Ax (or equivalently Ay)
is PD or PSD, respectively. This can be proved by noticing that

Axyxy = (y ⊗ x)>Ax(y ⊗ x) = (x⊗ y)>Ay(x⊗ y),

where ⊗ denotes the Kronecker product. Thus A is S-positive (semi)definite if Ax or Ay is
positive (semi)definite, and call the eigenvalues of Ax or Ay the S-eigenvalues of A. The S-
positive definiteness is a sufficient condition for the M-positive definiteness, but the converse
is not true.

The symmetries in A imply that both Ax2 and Ay2 are symmetric matrix. According
to Eq.(4.2), one can prove the following necessary and sufficient condition for the M-positive
(semi)definiteness.

Proposition 4.2 ([16]). Let A = (aijkl) ∈ Rn×n×n×n. Then A is M-PD or M-PSD if and
only if the matrix Ax2 (Ay2) is PD or PSD for each nonzero x ∈ Rn (y ∈ Rn), respectively.

Given a fourth-order tensor A = (aijkl) ∈ Rn×n×n×n, denote

TA := {J = (tijkl) : tijkl = tklij , tijkl + tklij = 2aijkl}.

Denote the set of all fourth-order S-PSD tensors as

S := {J : tijkl = tklij , J is S-PSD}.

Note that both TA and S are closed convex sets, where TA is a linear subspace of the
whole space of all the fourth-order n dimensional tensor with tijkl = tklij and S is isomorphic
with the nine-by-nine symmetric PSD matrix cone. Furthermore, Ding et al. [16] proved the
following sufficient condition for a tensor to be M-PD or M-PSD.

Theorem 4.3 ([16]). Let A = (aijkl) ∈ Rn×n×n×n. If TA ∩ S 6= ∅, then A is M-PSD; If
TA ∩ (S\∂S) 6= ∅, then A is M-PD.

Next, we recall an alternating projection method, which was provided by Ding et al.
in [16]. The projection onto convex sets(POCS) is often employed to check whether the
intersection of two closed convex sets is empty or not. Assume P1 and P2 are the projection
operators onto TA and S, respectively such that

B(t+1) = P2(A(t)), A(t+1) = P1(B(t+1)), t = 0, 1, 2, · · · .

Based the projection technique above, Ding et al. [16] provided the following iterative
scheme:
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Step 0. Give the eigenvalue decomposition of matrix A(t) such that

A(t) = V(t)D(t)(V(t))>;

Step 1. let B(t+1) = V(t)D
(t)
+ (V(t))>, where D

(t)
+ = diag(max{d(t)

ii , 0});
Step 2. set

a
(t+1)
ijil = aijil for i, j, l = 1, 2, 3, a

(t+1)
ijkj = aijkj for i, j, k = 1, 2, 3;

a
(t+1)
ijkl = aijkl +

1

2
(b

(t+1)
ijkl − b

(t+1)
kjil ) for i 6= k, j 6= l;

Step 3. take t = t+ 1 and return to Step 0.
Here, A(0) = A, A(t) and B(t) are the unfolding matrices of A(t) and B(t) respectively.

Noteworthy that the convergence of the alternating projection method between two
closed convex sets has been known for a long time [12].

Theorem 4.4 ([16]). Let A = (aijkl) ∈ Rn×n×n×n. If TA ∩ S 6= ∅, then the sequences
{A(t)} and {B(t)} produced by the above algorithm both converge to a point A∗ ∈ TA ∩ S.

Because the convergence of POCS requires the involved convex sets to be closed. The
above algorithm is only suitable for identifying the M-positive semi-definiteness. If one
want to check the M-positive definiteness, then some modifications are needed. Note that
IMxyxy = (x>x)(y>y). Hence IM is M-PD, which implies that A is M-PD if and only if
A − εIM is M-PSD for some sufficiently small ε > 0. From such observation, Ding et al.
applyed POCS to A− εIM with a very small ε. If the iteration converges and both {A(t)}
and {B(t)} converge to the same tensor, then they concluded that A is M-PD i.e. the strong
ellipticity holds.

Lemma 4.5 ([27]). Let A = (aijkl) ∈ Rn×n×n×n be M-positive definite. Then ailil > 0,
i, l ∈ [n].

Lemma 4.5 provides a necessary condition for the M-positive definiteness, also the strong
ellipticity condition. Several more sufficient conditions are listed below.

Theorem 4.6 ([10,27]). Let A = (aijkl) ∈ Rn×n×n×n be a given tensor.
(1) With ai1i1 = · · · = ainin = αi > 0, i ∈ [n]. If for all i ∈ [n], αi > Di(A), then A is
M-positive definite.
(2) With ai1i1 = · · · = ainin = αi > 0 for i ∈ [n]. If for all p 6= s ∈ [n], the following
statement hold

(αp −Dp
p(A)− γp)αs > (Dp(A)−Dp

p(A)− γp)Ds(A), (4.3)

then A is M-positive definite.
(3) With a1l1l = · · · = anlnl = βl > 0, l ∈ [n]. If for all l ∈ [n], βl > Gl(A), then A is
M-positive definite.
(4) With a1l1l = · · · = anlnl = βl > 0 for l ∈ [n]. If for all q 6= t ∈ [n], the following
statement hold

(βq −Gqq(A)− δq)βt > (Gq(A)−Gqq(A)− δq)Gt(A), (4.4)

then A is M-positive definite.
(5) With ai1i1 = · · · = ainin = αi = a1i1i = · · · = anini, i ∈ [n]. If for all i ∈ [n], αi >
min{Di(A), Gi(A)}, then A is M-positive definite.
(6) With ai1i1 = · · · = ainin = αi = a1i1i = · · · = anini for i ∈ [n]. If for all q 6= t ∈ [n], p 6=
s ∈ [n], (4.3) and (4.4) hold, then A is M-positive definite.
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Theorem 4.6 provides several checkable sufficient conditions for the strong ellipticity con-
dition of three classes of structured positive semi-definite tensors. Later, He et al. [27] and
Che et al. [10] extended these conditions to general positive semi-definite tensors indepen-
dently.

Theorem 4.7 ([10, 27]). Let A = (aijkl) ∈ Rn×n×n×n be a given tensor with ailil > 0,
i, l ∈ [n] and mini∈[n]{ai1i1, · · · , ainin} = αi, minl∈[n]{a1l1l, · · · , anlnl} = βl.
(1) If for all i, l ∈ [n], αi > Di(A) or βl > Gl(A), then A is M-positive definite.
(2) If for all q 6= t ∈ [n], p 6= s ∈ [n], (4.3) or (4.4) holds, then A is M-positive definite.

4.2 Strong ellipticity, rank-one positive definiteness

The strong ellipticity is related to another kind of positive definiteness of A [52] named
rank-one positive definiteness.

The tensor A = (aijkl) ∈ Rn×n×n×n is called rank-one positive definite if for all x ∈
Rn,x 6= 0,

f(x,x) = Ax4 = Axxxx =

n∑
i,j,k,l=1

aijklxixjxkxl > 0. (4.5)

Clearly, if the strong ellipticity holds, then A is rank-one positive definite but not vice versa.
It is also easy to see that the rank-one positivity condition (4.5) holds if and only if the

optimal value of the following global polynomial optimization problem is positive

min f(x,x) = Ax4 =
n∑

ijkl=1

aijklxixjxkxl

s.t. x>x = 1.
(4.6)

The KKT-condition for (4.6) is: {
Ax3 = λx,

x>x = 1.
(4.7)

whereAx3 = A·xxx = Axxx·. In [51], Qi et al. first defined that if λ ∈ R and x ∈ Rn satisfy
(4.7), λ is called a Z-eigenvalue of A, and x is called the Z-eigenvector of A, associated with
the Z-eigenvalue λ. Thus, if the smallest Z-eigenvalue of A is positive, then A is rank-one
positive.

By (4.7) and the definition of M-eigenvalue, it is easy to see that a Z-eigenvalue ia an
M-eigenvalue. However, an M-eigenvalue is not necessarily a Z-eigenvalue.

Theorem 4.8 ([52]). For the given partially symmetric tensor A = (aijkl) ∈ Rn×n×n×n.
The strong ellipticity condition holds if and only if the smallest M-eigenvalue of A is posi-
tive. Furthermore, A is rank-one positive definite if and only if its smallest Z-eigenvalue is
positive.

In some cases, it is possible that all the M-eigenvalues are Z-eigenvalues. If, furthermore,
for all i, j, k, l, aijkl = aπ(ijkl), where π(ijkl) is any permutation of i, j, k, l. Then A is a
symmetric tensor. In this case, Qi et al. [52] denoted

Axy = A · ·xy =

 n∑
k,l

aijklxkyl

 ,

which is a symmetric matrix. Then, they gave the following theorem.
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Theorem 4.9 ([52]). Suppose A = (aijkl) ∈ Rn×n×n×n with n = 2 and A is symmetric.
Then all the M-eigenvalues of A are Z-eigenvalues if there are no x,y ∈ R2, satisfying the
following three conditions:
(1) x>x = 1, y>y = 1;
(2) x and y are linearly independent;
(3) (Axy)2 = λ2I, where I is the 2× 2 unit matrix.

Theorem 4.9 implies that when A is symmetric and n = 2, it is very possible that all
the M-eigenvalues are Z-eigenvalues. Combining this with Theorem 4.8, it forms several
checkable conditions for the strong ellipticity of a given tensor A with n = 2. Next we study
the case of partially symmetric tensor with n = 3.

Suppose that A = (aijkl) ∈ R3×3×3×3 is a partially symmetric tensor. Let Q(x) = (qjl)
denote a symmetric matrix such that

qjl =

3∑
i,k=1

aijklxixk.

Then the strong ellipticity of A is equivalent to the positive definiteness of Q(x) for all unit
vector x. Furthermore, several new matrices and tensors related with A are needed.

M1 =

a1111 a1121 a1131

a1121 a2121 a2131

a1131 a2131 a3131

 , M2 =

a1212 a1222 a1232

a1222 a2222 a2232

a1232 a2232 a3232

 , M3 =

a1313 a1323 a1333

a1323 a2323 a2333

a1333 a2333 a3333


Let T 1, T 2 and T 3 be the fourth-order three-dimensional tensors, W be the sixth-order
three-dimensional tensor, such that

T 1x4 =

3∑
i,j,k,l=1

t1ijklxixjxkxl = q11q22 − q2
12, T 2x4 =

3∑
i,j,k,l=1

t2ijklxixjxkxl = q11q33 − q2
13,

T 3x4 =

3∑
i,j,k,l=1

t3ijklxixjxkxl = q22q33 − q2
23, Wx6 =

3∑
i1,··· ,i6=1

wi1···i6xi1xi2 · · ·xi6 = detQ(x).

Theorem 4.10 ( [26]). The partially symmetric tensor A satisfies the strong ellipticity
condition if and only if the following conditions hold
(1) The matrices M1,M2 and M3 are positive definite;
(2) The fourth-order tensors T 1, T 2 and T 3 are rank-one positive;
(3) The sixth-order tensor W is rank-one positive.

To end this section, we recall the strong ellipticity condition of a partially symmetric
tensor from a practical problem. In [26], Han et al. discussed the strong ellipticity condition
for the rhombic system, where the partially symmetric tensor A with entries such that:

a1123 = a1131 = a1112 = a2223 = a2231 = a2212 = 0,

a3323 = a3331 = a3312 = a2331 = a2312 = a3112 = 0.
(4.8)

For the sake of simplicity, nonzero components of the tensor A are denoted as follows

a11 = a1111, a22 = a2222, a33 = a3333, a12 = a1122, a23 = a2233,

a31 = a3311, a44 = a2323, a55 = a1313, a66 = a1212.

Then, they gave the following result.
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Theorem 4.11 ([26]). Let A be an tensor as in (4.8). Then A satisfies the strong ellipticity
condition if and only if the following conditions hold.
(1) a11 > 0, a22 > 0, a33 > 0, a44 > 0, a55 > 0, a66 > 0.
(2) The matrices P 1, P 2 and P 3 defined in (4.9) are copositive.
(3) The sixth-order tensor W is rank-one positive, where

P 1 =

 a11a66
(a11a22+a266−4a212)

2
(a11a44+a55a66)

2
(a11a22+a266−4a212)

2 a22a66
(a44a66+a22a55)

2
(a11a44+a55a66)

2
(a44a66+a22a55)

2 a44a55

 ,

P 2 =

 a11a55
(a11a44+a55a66)

2
(a11a33+a255−4a231)

2
(a11a44+a55a66)

2 a44a66
(a33a66+a44a55)

2
(a11a33+a255−4a231)

2
(a33a66+a44a55)

2 a33a55

 ,

P 3 =

 a55a66
(a44a66+a22a55)

2
(a33a66+a44a55)

2
(a44a66+a22a55)

2 a22a44
(a22a33+a244−4a223)

2
(a33a66+a44a55)

2
(a22a33+a244−4a223)

2 a33a44

 .

(4.9)

4.3 The M-positive definiteness and the strong ellipticity condition of fourth-
order Cauchy tensors

In this section, we are interested in necessary and sufficient conditions for the M-positive
semi-definiteness and M-positive definiteness of fourth-order Cauchy tensors as defined in
Definition 3.23. Moreover, the necessary and sufficient conditions of the strong ellipticity
conditions for fourth-order Cauchy tensors are obtained. Furthermore, fourth-order Cauchy
tensors are M-positive semi-definite if and only if the homogeneous polynomial for fourth-
order Cauchy tensors is monotonically increasing.

Theorem 4.12 ([8]). Let vectors a ∈ Rm, b ∈ Rn be generating vectors of the fourth-order
Cauchy tensor C. Then the following conclusions hold.
(1) The tensor C is M-positive semi-definite if and only if ai+bj > 0 for all i ∈ [m], j ∈ [n].
(2) The tensor C is M-positive definite and the strong ellipticity condition of this tensor holds
if and only if ai + bj > 0 for all i ∈ [m], j ∈ [n], and the elements of generating vectors a,b
are mutually distinct, respectively.
(3) For all i ∈ [m], j ∈ [n] such that ai + bj > 0, the tensor C is M-positive definite if and
only if its M-eigenvalues are positive.

From Theorem 4.12, the following corollary holds directly.

Corollary 4.13. Assume that tensor C is defined as in Theorem 4.12. Then it follows that
(1) it is M-negative semi-definite if and only if ai + bj < 0 for all i ∈ [m], j ∈ [n];
(2) it is not M-positive semi-definite if and only if there exist at least i ∈ [m], j ∈ [n], ai+bj <
0 holds.

In [8], the following conclusions presented by Che et al. reveal the relationship between
M-positive semi-definiteness of a fourth-order Cauchy tensor and the monotonicity of a
homogeneous polynomial with respect to the proposed Cauchy tensor. To continue, the
definition of monotonicity for the corresponding function f(x,y) = Cxyxy is needed.

For any x, x̄ ∈ Rm and y, ȳ ∈ Rn, if f(x,y) ≥ f(x̄, ȳ) when x ≥ x̄ and y ≥ ȳ,
(x ≤ x̄ and y ≤ ȳ), then f(x,y) is called monotonically increasing (monotonically decreasing
respectively). If f(x,y) > f(x̄, ȳ) when x ≥ x̄, x 6= x̄ and y ≥ ȳ, y 6= ȳ (x ≤ x̄, x 6= x̄
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and y ≤ ȳ, y 6= ȳ), then f(x,y) is called strictly monotone increasing (strictly monotone
decreasing respectively).

Theorem 4.14 ([8]). Let C be a fourth-order Cauchy tensor with generating vectors a ∈ Rm
and b ∈ Rn. Then the tensor C is M-positive semi-definite if and only if the homogeneous
polynomial f(x, y) in (2.2) is monotonically increasing in Rm+ × Rn+; if the tensor C is M-
positive definite, then f(x, y) is strictly monotone increasing in Rm+ × Rn+.

To end this section, we recall the necessary and sufficient conditions for the strong
ellipticity condition of fourth-order Cauchy tensors.

Theorem 4.15 ( [8]). Let vectors a ∈ Rn,b ∈ Rn be generating vectors of the fourth-
order Cauchy tensor C. The strong ellipticity condition holds if and only if the smallest
M-eigenvalue of C is positive.

4.4 The positive definiteness and the strong ellipticity condition of elasticity
M-tensors

In this section, based on the results of Theorem 3.31, we study several sufficient conditions
for the strong ellipticity and positive definiteness of elasticity M-tensors.

Theorem 4.16 ([9]). Let A = (aijkl) ∈ Rn×n×n×n be an irreducible elasticity M-tensor. If

max

{
min

i,j∈[n],i6=j
{η1(A)}, min

k,l∈[n],k 6=l
{η2(A)}

}
> 0,

or

max

{
min

i,j∈[n],i6=j
{ϕ1(A), αi − dii(A), αj − djj(A)},

min
k,l∈[n],k 6=l

{ϕ2(A), βk − gkk(A), βl − gll(A)}
}
> 0,

then A is positive definite, and the strong ellipticity condition holds.

Theorem 4.17 ([16]). Let A = (aijkl) ∈ Rn×n×n×n be an elasticity Z-tensor. Then A is a
nonsingular elasticity M-tensor if and only if A is M-positive definite; and A is an elasticity
M-tensor if and only if A is M-positive semi-definite.

5 Algorithm for Computing the Largest M-Eigenvalue of a Fourth-
Order Partially Symmetric Tensor

Although it is NP-hard to compute all M-eigenvalues of a fourth-order partially symmetric
tensor, it is possible to compute or obtain an approximate value for the largest M-eigenvalue
in some cases. In this section, we recall two algorithms to compute the largest M-eigenvalue.

By the definition of M-eigenvalue in (2.5), the problem above can be transformed equiv-
alently as follows:max f(x,y) = Axyxy =

∑
i,k∈[m]

∑
j,l∈[n]

aijklxiyjxkyl

s.t. x>x = 1, y>y = 1, x ∈ Rm,y ∈ Rn.
(5.1)
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Noted that this problem has been shown to be NP-hard [39] since neither equation of system
(2.5) is linear. In [66], Wang et al. proposed a practical method to compute the largest M-
eigenvalue of tensor A based on the power method which is well known to compute the
largest eigenvalue in magnitude of a matrix [23]. Compared with the alternating eigenvalue
maximization method for solving (5.1) proposed by Dahl et al. [14], the computation cost
of this method is less.

The power method was successfully extended to compute the best rank-1 approximations
of higher-order tensors [15, 33] i.e. the largest Z-eigenvalue in magnitude of higher-order
tensors [51]. Motivated by this, Wang et al. [66] proposed this modified power method.

The theoretical analysis of the method was given by Wang et al. [66]. For the objective
function f(x, y), from (2.5), we know that it is a bi-quadratic function with respect to x,y,
respectively. That is, the function can be written as

f(x,y) = Axyxy = x>B(y)x = y>C(x)y

where B(y) and C(x) are, respectively, symmetric matrices in Rm×m and Rn×n with entries

Bik(y) =

n∑
j,l=1

Aijklyjyl, Cjl(x) =

m∑
i,k=1

Aijklxixk

Now, we present the modified power method in Algorithm 5.1.

Algorithm 5.1: A modified power method
Initial step:
Input A and unfold it to obtain matrix A.
Substep 1:
Take τ =

∑
1≤i≤j≤mn

|Aij |, set Ā = τIM +A and unfold Ā to matrix Ā.

Substep 2:
Compute the eigenvector w of matrix Ā associated with the largest eigenvalue and fold it
into the matrix W .
Substep 3:
Compute the singular vectors u1 and v1 corresponding to the largest singular value of the
matrix W .
Substep 4:
Take x0 = u1,y0 = v1, and let k = 0.
Iterative step:
Execute the following procedures alternatively until certain convergence criterion is
satisfied and output x∗,y∗ :

x̄k+1 = Ā · ykxkyk, xk+1 = x̄k+1

‖x̄k+1‖
ȳk+1 = Ā · xk+1ykxk+1, yk+1 = ȳk+1

‖ȳk+1‖
k = k + 1.

Final step:
Output the largest M-eigenvalue of tensor A : λ = f(x∗,y∗)− τ , and the associated
M-eigenvectors: x∗,y∗.

Certainly, the algorithm contains two parts: the initial step and the iterative step. In
fact, the initial step i.e. computing the largest eigenvalue and the corresponding eigenvector
of a matrix, is also an iterative scheme [23]. For Algorithm 5.1, the computation complexity
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at each iterative step is of order O(m2n+mn2). Thus, if the largest eigenvalue of tensor A
can be generated within few steps, this algorithm can be said to be practical. To check the
efficiency of the algorithm, Wang et al. [66] provided several numerical experiments on two
fourth-order three-dimensional partially symmetric tensors, and the global optimal values
were obtained with the help of the uniform grid method in high-order accuracy.

To give the numerical experiments, we first introduce the following results.

Theorem 5.1 ([66]). Suppose that for any x ∈ Rm,y ∈ Rn, the matrices B(y) and C(x)
are both positive definite. Then the generated sequence {f(xk,yk)} by Algorithm 5.1 is
nondecreasing.

Example 5.2. Consider the tensor whose entries are uniformly generated in (−1, 1) :

A(:, :, 1, 1) =

−0.9727 0.3169 −0.3437
−0.6332 −0.7866 0.4257
−0.3350 −0.9896 −0.4323

 , A(:, :, 2, 1) =

−0.6332 −0.7866 0.4257
0.7387 0.6873 −0.3248
−0.7986 −0.5988 −0.9485

 ,
A(:, :, 3, 1) =

−0.3350 −0.9896 −0.4323
−0.7986 −0.5988 −0.9485
0.5853 0.5921 0.6301

 , A(:, :, 1, 2) =

 0.3169 0.6158 −0.0184
−0.7866 0.0160 0.0085
−0.98966 −0.6663 0.2559

 ,
A(:, :, 2, 2) =

−0.7866 0.0160 0.0085
0.6873 0.5160 −0.0216
−0.5988 0.0411 0.9857

 , A(:, :, 3, 2) =

−0.9896 −0.6663 0.2559
−0.5988 0.0411 0.9857
0.5921 −0.2907 −0.3881

 ,
A(:, :, 1, 3) =

−0.3437 −0.0184 0.5649
0.4257 0.0085 −0.1439
−0.4323 0.2559 0.6162

 , A(:, :, 2, 3) =

 0.4257 0.0085 −0.1439
−0.3248 −0.0216 −0.0037
−0.9485 0.9857 −0.7734

 ,
A(:, :, 3, 3) =

−0.4323 0.2559 0.6162
−0.9485 0.9857 −0.7734
0.6301 −0.3881 −0.8526

 .
The variation of the objective function value corresponding to this tensor during the

interation can be seen in Figure 2. For this tensor, its largest M-eigenvalue is 2.3227, which
is marked in Figure 2 by the horizontal line.

Example 5.3. Consider the tensor whose entries are uniformly generated in (0, 5) :

A(:, :, 1, 1) =

1.9832 1.0023 4.2525
2.6721 3.2123 2.8761
4.6384 2.9484 4.0319

 , A(:, :, 2, 1) =

2.6721 3.2123 2.8761
3.0871 0.1393 4.4704
1.7450 3.0394 4.6836

 ,
A(:, :, 3, 1) =

4.6384 2.9484 4.0319
1.7450 3.0394 4.6836
0.3741 1.6947 2.7677

 , A(:, :, 1, 2) =

1.0023 4.9748 2.3701
3.2123 1.3024 3.2064
2.9484 4.9946 3.8951

 ,
A(:, :, 2, 2) =

3.2123 1.3024 3.2064
0.1393 4.9456 2.9980
3.0394 4.3263 0.5925

 , A(:, :, 3, 2) =

2.9484 4.9946 3.8951
3.0394 4.3263 0.5925
1.6947 4.2633 0.1524

 ,
A(:, :, 1, 3) =

4.2525 2.3701 2.4709
2.8761 3.2064 3.4492
4.0319 3.8951 0.6581

 , A(:, :, 2, 3) =

2.8761 3.2064 3.4492
4.4704 2.9980 0.4337
4.6836 0.5925 4.3514

 ,
A(:, :, 3, 3) =

4.0319 3.8951 0.6581
4.6836 0.5925 4.3514
2.7677 0.1524 2.2336

 .
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Figure 2: Numerical result of Example 5.2 Figure 3: Numerical result of Example 5.3

The variation of the objective function value corresponding to this tensor during the
iteration can be seen in Figure 3. For this tensor, its largest M-eigenvalue is 26.1187, which
is marked in Figure 3 by the horizontal line.

From Figures 2 and 3, we can see that the largest M-eigenvalue can be highly approx-
imated within few steps especially for the second example. Recently, a modified version
named the block improvement method (BIM) was given in [65]. Different to the Algorithm
5.1, the convergence detail of BIM was established for the bi-quadratic polynomial opti-
mization problem over unit spheres. It was proved that the global convergence of BIM hold.
Furthermore, its linear convergence rate was given under second-order sufficient conditions.

Algorithm 5.2: Block improvement method
Initial step:
Input the fourth-order partially symmetric tensor A. Take shift parameter τ > 0, initial
points x0,y0 such that ‖x0‖ = 1, ‖y0‖ = 1, and tolerance ε ≥ 0, set k = 0. Compute

λk = Axkykxkyk + τIMxkykxkyk.
Iterative step:
For k = 0, 1, 2, · · · , do

x̄k+1 = A · ykxkyk + τIM · ykxkyk, if ‖x̄k+1‖ ≤ ε, then xk+1 = xk;

otherwise, xk+1 = x̄k+1

‖x̄k+1‖ .

ȳk+1 = Axk+1 · xk+1yk + τIMxk+1 · xk+1yk, if ‖ȳk+1‖ ≤ ε, then yk+1 = yk;

otherwise, yk+1 = ȳk+1

‖ȳk+1‖ .

λk+1 = Axk+1yk+1xk+1yk+1 + τIMxk+1yk+1xk+1yk+1.
If |λk+1 − λk| ≤ ε, terminate; otherwise let k := k + 1. End if.
Output:
Dominant singular eigenpair of tensor A : λ = f(x,y)− τ(x,y).
End for.

A few remarks on the algorithm are as follows.

x̄k+1 = A · ykxkyk + τIM · ykxkyk =
1

2
∇xgτ (xk,yk),

and

ȳk+1 = Axk+1 · xk+1yk + τIMxk+1 · xk+1yk =
1

2
∇ygτ (xk+1,yk).
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Because the generated sequence of the BIM lies on the unit sphere, so an alternative
choice of the shifted term is αx>x + βy>y, where α, β > 0 are shift parameters.

The convergence of the algorithm is considered in the following theorem.

Theorem 5.4 ([65]). For Algorithm 5.2 with ε = 0, if τ ≥ 0 such that

gτ (x,y) = Axyxy + τIMxyxy

is convex w.r.t. x (respectively y) for any fixed y ∈ Rn (respectively x ∈ Rm), then
(1) the generated sequence {gτ (xk,yk)} is strictly increasing.

(2) if the algorithm terminates in finite steps, then the final point is a KKT point of problem
(5.1), and if the algorithm generates an infinite sequence {(xk,yk)}, then its any accumula-
tion point is a KKT point of the problem.

(3) if function gτ (x,y) is strictly convex w.r.t. x (respectively y) for any fixed y (respectively
x), then

lim
k→∞

‖(xk+1,yk+1)− (xk,yk)‖ = 0.

To test the effect of the shifted parameter on the behavior of Algorithm 5.2 and then test
the efficiency of the method by giving a numerical comparison with some state-of-the-art
solution methods, Wang et al. still consider examples 5.2 and 5.3.

For the tensor in Example 5.2, the numerical results of Algorithm 5.2 on four different
shift parameters τ = ρ(A), 5ρ(A), 10ρ(A), 20ρ(A) are shown in Figure 4, and then the
numerical results of Example 5.3 are shown in Figure 5.

From Figures 4 and 5, we can see that the numerical efficiency of Algorithm 5.2 is
seriously affected by the shift parameter τ : provided that the shifted tensor is positive
definite, Algorithm 5.2 is more efficient for smaller shift parameter and it is less efficient for
larger shift parameter. This means that, for Algorithm 5.2, as far as the shifted function is
convex, the smaller the shifted parameter is, the better behavior the algorithm has. To test

Figure 4: Numerical result of Example 5.2 Figure 5: Numerical result of Example 5.3

the efficiency of Algorithm 5.2, the comparison with the GSM method and the SQP method
is given in Table 5 [65].
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Table 3: Numerical comparisons of BIM, BGM, GSM and SQP

GSM GSM BIM BIM BGM BGM SQP SQP

Dimension vf rt vf rt vf rt vf rt

8.92 0.016 9.42 0.0001 9.42 0.015 5.32 0.26
8.84 0.033 9.36 0.0150 9.37 0.016 7.31 0.18

m=6 7.54 0.016 7.54 0.0160 7.54 0.016 - 0.15
n=8 8.40 0.016 9.21 0.0001 9.21 0.015 2.49 0.61

9.69 0.016 9.69 0.0001 9.69 0.013 6.37 0.12
8.35 0.032 8.34 0.0001 8.35 0.015 - 0.33

20.65 0.81 21.66 0.08 21.69 0.34 - 222.37
20.91 2.36 21.90 0.03 22.05 1.62 - 37.28

m=30 20.41 1.28 18.55 0.06 20.41 1.45 - 13.64
n=20 21.29 0.58 20.45 0.06 21.19 0.43 - 17.46

18.15 0.51 20.15 0.05 20.66 0.62 - 20.12
20.97 0.72 19.60 0.06 19.85 0.72 - 38.48

34.05 61.86 31.40 1.56 34.63 79.28 - 1559
34.22 20.44 31.13 1.51 33.63 71.11 - 530

m=50 32.01 65.89 32.56 1.63 33.52 52.92 - 510
n=60 33.68 59.92 31.10 1.09 34.14 61.72 - 164

33.84 45.84 30.95 1.53 34.07 105.62 - 278
33.32 96.72 29.47 1.53 33.73 38.37 - 596

6 Conclusions

In this survey, we have provided an overview from several aspects of fourth-order par-
tially symmetric tensors. We mainly focus on M-eigenvalue inclusion intervals, M-positive
(semi)definiteness of fourth-order partially symmetric tensors, necessary and sufficient con-
ditions for strong ellipticity condition of tensors from elasticity materials and algorithms to
compute the largest M-eigenvalue.

However, there are still some interesting questions need to be considered in the future.
As we know that there are many kinds of eigenvalues for high-order tenors such as H-
eigenvalue, Z-eigenvalue, C-eigenvalue and D-eigenvalue. Thus, what are the relationships
between eigenvalues above and M-eigenvalues here? On the other hand, from the numerical
comparison between the BIM method and the GSM method, we know that the BIM method
is not much superior, because the BIM method is established on the first-order approximation
of the objective function. Now, a question is raised naturally: Can the efficiency of the
method be improved if we use the second-order approximation of the objective function?
These questions will be discussed in our future research.
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