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learning [15, 4], data-model reduction [56, 10, 47], model prediction [16], movie recom-
mendation [61], and videos analysis [35, 59], numerical PDE [58]. Most of above-stated
tensor-formulated methodologies depend on the solution to the following tensor equation
(a.k.a. multilinear system of equations [27, 43, 13, 14]):

A ⋆N X = B, (1.1)

where A,B are tensors of appropriate size and ⋆N denotes the Einstein product with order
N [57]. Basically, there are two main approaches to solve the unknown tensor X . The
first approach is to solve the Eq. (1.1) iteratively. Three primary iterative algorithms are
Jacobi method, Gauss-Seidel method, and Successive Over-Relaxation (SOR) method [54].
Nonetheless, in order to make these iterative algorithms converge, one has to provide some
constraints during the tensor update at each iteration. For example, the updated tensor
is required to be positive-definite and/or diagonally dominant [38, 11, 52, 51]. When the
tensor A becomes a special type of tensor, namely M-tensors, the Eq. (1.1) becomes a M-
equation. Ding and Wei [19] prove that a nonsingular M-equation with a positive B always
has a unique positive solution, present some generalized iterative algorithms to solve the
M-equations, which are in turn applied in the solution to nonlinear differential equations.

We have to note that if we have A ∈ C

m terms︷ ︸︸ ︷
n× · · · × n, X ∈ C

m−1 terms︷ ︸︸ ︷
n× · · · × n, and B ∈ Cn, then

Eq. (1.1) can be formulated as A ⋆m−1 xm−1 = b discussed in [19]. In [64], the authors
proposed the rank-1 approximation to the coefficient tensor A which is combinsed with
iterative tensor method to solve symmetric M-equations. This method is shown by some
numerical examples more effective than the traditional Newton method.

Sometimes, it is difficult to set a proper value of the underlying parameter (such as
step size) in the solution-update equation to accelerate the convergence speed, while people
often apply heuristics to determine such a parameter case by case. The other approach
is to solve the unknown tensor X at the Eq. (1.1) through the tensor inversion. Brazell
et al. [2] proposed the concept of the inverse of an even-order square tensor by adopting
Einstein product, which provides a new direction to study tensors and tensor equations that
model many phenomena in engineering and science [34]. In [3], the authors give some basic
properties for the left (right) inverse, rank and product of tensors. The existence of order 2
left (right) inverses of tensors is also characterized and several tensor properties, e.g., some
equalities and inequalities on the tensor rank, independence between the rank of a uniform
hypergraph and the ordering of its vertices, rank characteristics of the Laplacian tensor, are
established through inverses of tensors. Since the key step in solving the Eq. (1.1) is to
characterize the inverse of the tensor A, Sun et al. in [57] define different types of inverse,
namely, i-inverse (i = 1, 2, 5) and group inverse of tensors based on a general product of
tensors. They explore properties of the generalized inverses of tensors on solving tensor
equations and computing formulas of block tensors. The representations for the 1-inverse
and group inverse of some block tensors are also established. They then use the 1-inverse
of tensors to give the solutions of a multilinear system represented by tensors. The authors
in [57] also proved that, for a tensor equation with invertible tensor A, the solution is
unique and can be expressed by the inverse of the tensor A. For more related works about
tensors/matrices inversion can be found at [63].

However, the coefficient tensor A in the Eq. (1.1) is not always invertible, for example,
when the tensor A is not square. Sun et al. [55] extend the tensor inverse proposed by Brazell
et al. [2] to the Moore-Penrose inverse via Einstein product, and a concrete representation
for the Moore-Penrose inverse can be obtained by utilzing the singular value decomposition
(SVD) of the tensor. An important application of the Moore-Penrose inverse is the tensor
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nearness problem associated with tensor equation with Einstein product, which can be
expressed as follows [39]. Let X0 be a given tensor, find the tensor X̂ ∈ Ω such that∥∥∥X̂ − X0

∥∥∥ = min
X∈Ω

∥X − X0∥ , (1.2)

where ∥·∥ is the Frobenius norm, and Ω is the solution set of tensor equation shown by
Eq. (1.1).

The tensor nearness problem is a generalization of the matrix nearness problem that are
studied in many areas of applied matrix computations [17, 21]. The tensor X0 in Eq. (1.2)
may be obtained by experimental or statistical distribution information, but it may not
satisfy the desired form and the minimum error requirement, while the optimal estimation
X̂ is the tensor that not only satisfies these restrictions but also best approximates X0. Under
certain conditions, it will be proved that the solution to the tensor nearness problem (1.2)
is unique, and can be represented by means of the Moore-Penrose inverses [5]. Another
situation to apply the Moore-Penrose inverse is that the the given tensor equation in Eq. (1.1)
has a non-cubic coefficient tensor A. The associated least-squares problem for the solution
in Eq. (1.1) can be obtained by using the Moore-Penrose inverse of tensor A [2]. Some
work involving the contribution and applications of the Moore-Penrose inverse to build
necessary and sufficient conditions for the existence of the solution to Eq. (1.1) can be found
at [26, 25, 5].

In matrix theory, the Sherman-Morrison-Woodbury (SMW) identity says that the inverse
of a rank-k correction of a matrix A can be obtained by computing a rank-k correction to
the inverse of A. For rank-1 example, given A ∈ Rn×n be symmetric, u ∈ Rn and b ∈ R be
a scaler, then the SMW identity becomes

(A+ uuT ) = A−1 − αxxT , (1.3)

where x is the solution to the equation Ax = u and α
def
= 1

1+uTx
. This is exactly the

expression for the inverse of the rank-1 perturbation to an invertible symmetric matrix A,
which can be extended iteratively to a general rank-k perturbation shown by the following
SMW as:

(A+UBV)−1 = A−1 −A−1U(B−1 +VA−1U)−1VA−1, (1.4)

where A is a n×n matrix, U is a n×k matrix, B is a k×k matrix, and V is a k×n matrix.
This identity is useful in numerical computations when A−1 has already been computed but
the goal is to compute (A+UBV)−1. With the inverse of A available, it is only necessary
to find the inverse of B−1 +VA−1U in order to obtain the result using the right-hand side
of the identity. If the matrix B has a much smaller dimension than A, this is much easier
than inverting A+UBV directly. A common application is finding the inverse of a low-rank
update A +UBV of A when U only has a few columns and V also has only a few rows,
or finding an approximation of the inverse of the matrix A+C where the matrix C can be
approximated by a low-rank matrix UBV via the singular value decomposition (SVD). The
Sherman-Morrison-Woodbury identity involving singular matrices is discussed at [22, 53].

Analogously, we expect to have the Sherman-Morrison-Woodbury identity for tensors to
facilitate the tensor inversion computation with those benefits in the matrix inversion com-
putation when the correction of the original tensors is required. The Sherman-Morrison-
Woodbury identity for tensors can be applied at various engineering and scientific areas,
e.g., the tensor Kalman filter and recursive least squares methods [6]. This identity can
significantly speed up the real time calculations of the tensor filter update because each new



30 S.Y. CHANG AND Y. WEI

observation, which can be described with much lower dimension, can be treated as perturba-
tion of the original covariance tensor. Similar to sensitivity analysis for linear systems [18],
if we wish to consider how the solution is affected by the perturbed of coefficients in the
tensor A in Eq. (1.1), we need to understand the relationship between the original tensor
inverse and the perturbed tensor inverse. Although the work in [42] tries to study pertur-
bation theory for Moore-Penrose inverse of tensor under Einstein product, our perturbation
analysis takes different approach by utilizing the Sherman-Morrison-Woodbury identity for
tensors. The benefits of this Sherman-Morrison-Woodbury identity based method is that we
can have more relax requirements for the perturbed tensors during perturbation analysis.
The Sherman-Morrison-Woodbury identity helps us to quantify the difference between the
original solution and the perturbed solution of Eq. (1.1). The application of perturbation
analysis for linear systems involving tensor equations in data sceince can be found at [14].
The contribution of this work can be summarized as follows.

1. We establish Sherman-Morrison-Woodbury identity for invertible tensors.

2. Because not every tensors are invertible, we generalize the Sherman-Morrison-Woodbury
identity for tensors with Moore-Penrose inverse.

3. The sensitivity analysis is provided to the solution of a multilinear system when coef-
ficient tensors are perturbed.

The paper is organized as follows. Preliminaries of tensors are given in Section 2. In
Section 3, we will derive the Sherman-Morrison-Woodbury identity for invertible tensors. In
Section 4, the Sherman-Morrison-Woodbury identity is generalized for Moore-Penrose tensor
inverse, and two illustrative examples about applying this identity are also presented. We
apply Sherman-Morrison-Woodbury identity to analyze the sensitivity of perturbed multi-
plinear systems in Section 5. Finally, the conclusions are given in Section 6.

2 Preliminaries of Tensors

In this work, we denote scalars by lower-case letters (e.g., d, e, f), vectors by boldface lower-
case letters (e.g., d, e, f), matrices by boldface capital letters (e.g., D,E,F), and tensors by
calligraphic letters (e.g., D, E ,F), respectively. Tensors are multiarray of values which are
higher-dimensional generlization of vectors and matrices. Given a positive integer N , let
[N ] = 1, · · · , N . An order N tensor A = (ai1,··· ,iN ), where 1 ≤ ij ≤ Ij for j ∈ [N ], is a
multidimensional array with I1× I2×· · ·× IN entries. Let CI1×···×IN and RI1×···×IN be the
sets of the order N dimension I1 × · · · × IN tensors over the complex field C and the real
field R, respectively. For example, A ∈ CI1×···×IN is a multiway array with N -th order and
I1, I2, · · · , IN dimension in the first, second, . . ., Nth direction, respectively. Each entry of
A is represented by ai1,··· ,iN . For N = 4, A ∈ CI1×I2×I3×I4 is a fourth order tensor with
entries as ai1,i2,i3,i4 .

For tensors A ∈ CI1×···×IM×J1×···×JN and B ∈ CI1×···×IM×J1×···×JN , the tensor addition
is defined as

(A+ B)i1,··· ,iM ,j1,··· ,jN = ai1,··· ,iM ,j1,··· ,jN + bi1,··· ,iM ,j1,··· ,jN . (2.1)

If M = N for the tensor A ∈ CI1×···×IM×J1×···×JN , the tensor A is named as a square tensor.
For tensors A ∈ CI1×···×IM×J1×···×JN and B ∈ CJ1×···×JN×K1×···×KL , the Einstein prod-

uct with order N A ⋆N B ∈ CI1×···×IM×K1×···×KL is defined as

(A ⋆N B)i1,··· ,iM ,k1,··· ,kL
=

∑
j1,··· ,jN

ai1,··· ,iM ,j1,··· ,jN bj1,··· ,jN ,k1,··· ,kL
. (2.2)
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This tensor product reduces to the standard matrix multiplication when we have L = M =
N = 1, which is just the standard matrix-matrix multiplication. We need following defini-
tions about tensors.

The identity tensor is defined as following:

Definition 2.1. An identity tensor I ∈ CI1×···×IN×J1×···×JN is defined as

(I)i1×···×iN×j1×···×jN =

N∏
k=1

δik,jk , (2.3)

where δik,jk = 1 if ik = jk, otherwise δik,jk = 0.

In order to define a Hermitian tensor, we need following conjugate transpose operation
of a tensor.

Definition 2.2. Let A ∈ CI1×···×IM×J1×···×JN be a given tensor, then its conjugate trans-
pose, denoted as AH , is defined as

(AH)j1,··· ,jN ,i1,··· ,iM = ai1,··· ,iM ,j1,··· ,jN , (2.4)

where the over line indicates the complex conjugate of the complex number ai1,··· ,iM ,j1,··· ,jN .
If a tenser with the property AH = A, this tensor is named as Hermitian tensor.

The inverse of a tensor here i sdefined as:

Definition 2.3. For a square tensor A ∈ CI1×···×IM×I1×···×IM , if there exists X ∈
CI1×···×IM×I1×···×IM such that

A ⋆M X = X ⋆M A = I, (2.5)

then such X is called as the inverse of the tensor A, represented by A−1.

Definition 2.4. Given a tensor A ∈ CI1×···×IM×J1×···×JN . The tensor X ∈
CJ1×···×JN×I1×···×IM , satisfying the following tensor equations:

(1)A ⋆N X ⋆M A = A, (2)X ⋆M A ⋆N X = X ,

(3)(A ⋆N X )H = A ⋆M X , (4)(X ⋆M A)H = X ⋆M A, (2.6)

is called the Moore-Penrose inverse of the tensor A, denoted as A†.

The partial trace of a tensor is defined as the summation of all the diagonal entries as

Tr(A) =
∑

1≤ij≤Ij ,j∈[N ]

Ai1,··· ,iM ,i1,··· ,iM . (2.7)

Then, we can define the inner product of two tensors A,B ∈ CI1×···×IM×J1×···×JN as

⟨A,B⟩ = Tr(AH ⋆M B). (2.8)

From the definition of tensor inner product, the Frobenius norm of a tensor A can be defined
as

∥A∥ =
√

⟨A,A⟩. (2.9)
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An unfolded tensor is a matrix obtained by reorganizing the entries of a tensor into
a two-dimensional array. For the tensor space CI1×···×IM×J1×···×JN and the matrix space
C(I1···IM )×(J1···JN ), we define a map φ as follows:

φ : CI1×···×IM×J1×···×JN → C(I1···IM )×(J1···JN )

A = (ai1,··· ,iM ,j1,··· ,jN ) → (Aϕ(i,I),ϕ(j,J)), (2.10)

where ϕ is an index mapping function from tensor indices to matrix indices with arguments
of row subscripts i = {i1, · · · , iM} and row dimensions of A, denoted as I = {I1, · · · , IM}.
The relation ϕ(i, I) can be expressed as

ϕ(i, I) = i1 +

M∑
m=2

(im − 1)

m−1∏
u=1

Iu. (2.11)

Similarly, ϕ(j, J) is an index mapping relation for column dimensions of A which can be
expressed as

ϕ(j, J) = j1 +

N∑
n=2

(jn − 1)

n−1∏
v=1

Jv, (2.12)

where j = {j1, · · · , jN} and column dimensions of A, denoted as J = {J1, · · · , JN}. We
will use this unfolding mapping φ to build the condition of the existence of an inverse of a
tensor.

Following definition, which is based on the tensor unfolding map introduced by the
Eq. (2.10), is required to determine when a given square tensor is invertible.

Definition 2.5. For a tensor A ∈ CI1×···×IM×J1×···×JN , and the map φ defined by the
Eq. (2.10), the unfolding rank of a tensor A is defined as the rank of the mapped matrix
φ(A). If we have φ(A) = I1 · · · IM (the multiplication of all integers I1, · · · , IM together),
we say that A is full row rank. On ther other hand, if we have φ(A) = J1 · · · JN (the
multiplication of all integers J1, · · · , JN together), we say that A is full column rank.

Now we are able to present the sufficient and the necessary conditions for the existence
of a given tensor. Following Lemma 2.6 can be deduced from Section 2.2 in [39] since, for
an invertible square tensor, the image under the map φ must be a nonsingular matrix.

Lemma 2.6. A tensor A ∈ CI1×···×IM×I1×···×IM is invertible if and only if the matrix
A = φ(A) is a full rank, i.e., rank(A) = I1 · · · IM .

The concepts such as “identity tensor”, “Hermitian tensor”, and “tensor (pseudo) in-
verse” under the Einstein product can also be found at [39] and references therein.

Remark: A tensor that all its entries are zero is called zero tensor, denoted as O.

3 Identity for Invertible Tensors

The purpose of this section is to prove Sherman-Morrison-Woodbury identity for invertible
tensors.

Theorem 3.1 (Sherman-Morrison-Woodbury identity for invertible tensors.). Given in-
vertible tensors A ∈ CI1×···×IM×I1×···×IM and B ∈ CI1×···×IK×I1×···×IK , and tensors U ∈
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CI1×···×IM×I1×···×IK and V ∈ CI1×···×IK×I1×···×IM , if the tensor (B−1 +V ⋆M A−1 ⋆M U) is
invertible, we have following identiy:

(A+ U ⋆K B ⋆K V)−1 = A−1 −
A−1 ⋆M U ⋆K (B−1 + V ⋆M A−1 ⋆M U)−1 ⋆K V ⋆M A−1. (3.1)

Proof. The identiy can be proven by checking that (A+ U ⋆K B ⋆K V) multiplies its alleged
inverse on the right side of the Sherman-Morrison-Woodbury identity gives the identity
matrix (To save space, we omit Einstein product symbol, ⋆, between two tensors):

(A+ UBV)[A−1 −A−1U(B−1 + VA−1U)−1VA−1]

= I + UBVA−1 − U(B−1 + VA−1U)−1VA−1 − UBVA−1U(B−1 + VA−1U)−1VA−1

= (I + UBVA−1)−
[
U(B−1 + VA−1U)−1VA−1 + UBVA−1U(B−1 + VA−1U)−1VA−1

]
= I + UBVA−1 − (U + UBVA−1U)(B−1 + VA−1U)−1VA−1

= I + UBVA−1 − (UB(B−1 + VA−1U)(B−1 + VA−1U)−1VA−1

= I + UBVA−1 − UBVA−1 = I (3.2)

Similar steps can be applied to prove this identity by multiplying the alleged inverse
from the left side of (A+ UBV):

[A−1 −A−1U(B−1 + VA−1U)−1VA−1](A+ UBV)
= I +A−1U(B−1 + VA−1U)−1)−1V +A−1UBV −

A−1U(B−1 + VA−1U)−1)−1VA−1UBV
= (I +A−1UBV)−A−1U(B−1 + VA−1U)−1(V + VA−1UBV)
= (I +A−1UBV)−A−1U(B−1 + VA−1U)−1(B−1 + VA−1U)BV
= (I +A−1UBV)−A−1UBV = I (3.3)

Therefore, the identiy is established.

4 Identity for Tensors with Moore-Penrose Inverse

In this section, we will extend our tensor inverse result from previous section to the Sherman-
Morrison- Woodbury identity for Moore-Penrose inverse in section 4.1. Two illustrative
examples for the Sherman-Morrison-Woodbury identity for Moore-Penrose inverse will be
provided in section 4.2.

4.1 Identity for Moore-Penrose Inverse Tensors

The goal of this subsection is to establish our main result: the Sherman-Morrison-Woodbury
identity for Moore-Penrose inverse. We begin with the definitions about row space and

column space of a given tensor. Let us define two symbols IM
def
= 1× · · · × 1︸ ︷︷ ︸

M

and IN
def
=

1× · · · × 1︸ ︷︷ ︸
N

.

We define row-tensors of a tensor A = (ai1,··· ,iM ,j1,··· ,jN ) ∈ CI1×···×IM×J1×···×JN as
subtensors aRi1,··· ,iM where 1 ≤ ik ≤ Ik for k ∈ [M ]. The entries in the row-tensor aRi1,··· ,iM
are entries ai1,··· ,iM ,j1··· ,jN where 1 ≤ jk ≤ Jk for k ∈ [N ] but fix the indices of i1, · · · , iM .
Similarly, column-tensors of a tensor A are subtensors aCj1,··· ,jN where 1 ≤ jk ≤ Jk for k ∈
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[N ]. The entries in the column-tensor aCj1,··· ,jN are entries ai1,··· ,iM ,j1··· ,jN where 1 ≤ ik ≤ Ik
for k ∈ [M ] but fix the indices of j1, · · · , jN .

Let the tensor A ∈ CI1×···×IM×J1×···×JN . The right null space is defined as

NR(A)
def
=

{
z ∈ CJ1×···×JN×IM : A ⋆N z = O

}
(4.1)

Then the row space of A is defined as

R(A)
def
=

{
y ∈ CJ1×···×JN×IM : y =

∑
i1,··· ,iM

aRi1,··· ,iMxi1,··· ,iM ,

where xi1,··· ,iM ∈ C and aRi1,··· ,iM ∈ CJ1×···×JN×IM .

}
(4.2)

Now from the definition of right null space we have (aRi1,··· ,iM )Hz = O, where H is the

Hermitian operator and (aRi1,··· ,iM )H ∈ CIM×J1×···×JN . If we take any tensor y ∈ R(A),

then y =
∑

i1,··· ,iM
aRi1,··· ,iMxi1,··· ,iM , where xi1,··· ,iM ∈ C. Hence,

yHz = (
∑

i1,··· ,iM

aRi1,··· ,iMxi1,··· ,iM )Hz

= (
∑

i1,··· ,iM

xi1,··· ,iM (aRi1,··· ,iM )H)z

=
∑

i1,··· ,iM

xi1,··· ,iM ((aRi1,··· ,iM )Hz) = O (4.3)

This shows that row space is orthogonal to the right null space.
Following this right null space approach, we also can define the left null space as

NL(A)
def
=

{
z ∈ CI1×···×IM×IN : zH ⋆M A = O

}
(4.4)

Then the column space of A is defined as

C(A)
def
=

{
y ∈ CI1×···×IM×IN : y =

∑
j1,··· ,jN

aCj1,··· ,jNxj1,··· ,jN ,

where xj1,··· ,jN ∈ C and aCj1,··· ,jN ∈ CI1×···×IM×IN .

}
(4.5)

From the definition of left null space we have zHaCj1,··· ,jN = O, where H is the Her-

mitian operator and zH ∈ CIN×I1×···×IM . By taking any tensor y ∈ C(A), then y =∑
j1,··· ,jN

aCj1,··· ,jNxj1,··· ,jN , where xj1,··· ,jN ∈ C. We have,

zHy = zH(
∑

j1,··· ,jN

aCj1,··· ,jNxj1,··· ,jN )

= (
∑

j1,··· ,jN

zHaCj1,··· ,jNxj1,··· ,jN )

=
∑

j1,··· ,jN

xi1,··· ,iM (zTaCj1,··· ,jN ) = O (4.6)
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This shows that column space is orthogonal to the left null space.
Given following tensor relation:

S = A+ UBV , (4.7)

the goal is to expresse the Moore-Penrose inverse of S in terms of tensors related toA,U ,B,V.
From the definition of column space, we can decompose the tensor U into X1 + Y1, wherer
the column-tensors of X1 are contained in the clumn space of A, denoted as C(A), and the
column-tensors of Y1 are contained in the left null space of A. Correspondingly, we also can
decompose the tensor VH into X2 + Y2, wherer the column-tensors of X2 are contained in
the clumn space of AH , denoted as C(AH), and the column-tensors of Y2 are contained in

the left null space of AH . Define tensors Ei as Ei
def
= Yi(YH

i Yi)
† for i = 1, 2. We are ready to

present the following theorem about the identity for tensors with Moore-Penrose inverse.

Theorem 4.1 (Sherman-Morrison-Woodbury identity for Moore-Penrose inverse). Given
tensors A ∈ CI1×···×IM×I1×···×IN , B ∈ CI1×···×IK×I1×···×IK ,
U ∈ CI1×···×IM×I1×···×IK and V ∈ CI1×···×IK×I1×···×IN , if following conditions are satisfied:

1. U = X1 + Y1, where X1 ∈ C(A) and Y1 is orthgonal to C(A);

2. VH = X2 + Y2, where X2 ∈ C(AH) and Y2 is orthgonal to C(AH);

3. (1) E2B†EH
1 Y1B = E2, (2) X1EH

1 Y1B = X1B, (3) Y1EH
1 Y1 = Y1;

4. (1) BYH
2 E2B†EH

1 = EH
1 , (2) BYH

2 E2XH
2 = BXH

2 , (3) E2YH
2 E2 = E2.

Then the tensor

S = A+ U ⋆K B ⋆K V
= A+ (X1 + Y1) ⋆K B ⋆K (X2 + Y2)

H , (4.7)

has the following Moore-Penrose generalized inverse identiy:

S† = A† − E2 ⋆K XH
2 ⋆N A† −A† ⋆M X1 ⋆K EH

1

+E2 ⋆K (B† + XH
2 ⋆N A† ⋆M X1) ⋆K EH

1 , (4.7)

where Ei
def
= Yi(YH

i Yi)
† for i = 1, 2.

Proof. From the definition 2.4, the identity is established by direct computation (To save
space, we also omit ⋆ product symbol between two tensors in this proof) to verify following
four rules:

(1)SS†S = S, (2)S†SS† = S†,

(3)(SS†)H = SS†, (4)(S†S)H = S†S. (4.8)

Verify : (SS†)H = SS†

By expansion of SS†, we have

SS† = AA† −AE2XH
2 A† −AA†X1EH

1 +AE2(B† + XH
2 A†X1)EH

1 +

(X1 + Y1)B(X2 + Y2)
HA† − (X1 + Y1)B(X2 + Y2)

HE2XH
2 A† −

(X1 + Y1)B(X2 + Y2)
HA†X1EH

1 + (X1 + Y1)B(X2 + Y2)
HE2XH

2 A†X1EH
1 +

(X1 + Y1)B(X2 + Y2)
HE2B†EH

1 , (4.9)



36 S.Y. CHANG AND Y. WEI

and, since column-tensors of Y2 are orthgonal to C(AH), we also have AY2 = O, YH
2 A† = O,

and XH
2 Y2 = O. From these relations, the Eq. (4.9) can be simplfies as

SS† = AA† −AA†X1EH
1 +

(X1 + Y1)BXH
2 A† − (X1 + Y1)BYH

2 E2XH
2 A† −

(X1 + Y1)BXH
2 A†X1EH

1 + (X1 + Y1)BYH
2 E2XH

2 A†X1EH
1 +

(X1 + Y1)BYH
2 E2B†EH

1 , (4.10)

and from the fourth condition at this Theorem 4.1, i.e., BYH
2 E2B†EH

1 = EH
1 , and BYH

2 E2XH
2 =

BXH
2 and AA†X1 = X1, we can further simplify the Eq. (4.10) as :

SS† = AA† + Y1EH
1 . (4.11)

Then,

(SS†)H = (AA† + Y1EH
1 )H

= (AA†)H + (Y1EH
1 )H

= AA† + Y1EH
1 = SS† (4.12)

the third requirement of the definition 2.4 is valid from the Eq. (4.12).
Verify : (S†S)H = S†S
By expansion S†S as the Eq. (4.9), we can simplify such expansion with following re-

lations A†Y1 = O, YH
1 A = O and XH

1 Y1 = O due to column-tensors of Y1 are orthgonal
to C(A), X2A†A = X2 (from the definition of Moore-Penrose inverse of A), and the third
condition at this Theorem 4.1, i.e., E2B†EH

1 Y1B = E2, and X1EH
1 Y1B = X1B, then we have

S†S = A†A+ E2YH
2 . (4.13)

Hence, the fourth requirement of the definition 2.4 is valid from the Eq. (4.13).
Verify : SS†S = S
Since, we have

SS†S = (AA† + Y1EH
1 )(A+ (X1 + Y1)B(X2 + Y2)

H)

= AA†A+ Y1EH
1 A+AA†(X1 + Y1)B(X2 + Y2)

H +

Y1EH
1 (X1 + Y1)B(X2 + Y2)

H

= A+ Y1EH
1 A+AA†X1B(X2 + Y2)

H +AA†Y1B(X2 + Y2)
H +

Y1EH
1 X1B(X2 + Y2)

H + Y1EH
1 Y1B(X2 + Y2)

H

1
= A+ X1B(X2 + Y2)

H + Y1B(X2 + Y2)
H

= A+ (X1 + Y1)B(X2 + Y2)
H = S (4.14)

where we apply AA†X1 = X1, A†Y1 = O, YH
1 A = O, YH

1 X1 = O and (3) of the third

condition at this Theorem 4.1, i.e., Y1EH
1 Y1 = Y1 at the equality

1
= in simplification.

Verify : S†SS† = S†

Since, we have

S†SS† = (A†A+ E2YH
2 )(A† − E2XH

2 A† −A†X1EH
1 + E2(B† + XH

2 A†X1)EH
1 )

= A†AA† + E2YH
2 A† −A†AE2XHAH − E2YH

2 E2XHAH −A†AA†X1EH
1 −

EYH
2 A†X1EH

1 +A†AE2(B† + XH
2 A†X1)EH

1 + E2YH
2 E2(B† + XH

2 A†X1)EH
1

2
= A† − E2XH

2 A† −A†X1EH
1 + E2(B† + XH

2 A†X1)EH
1 = S† (4.15)
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where we apply AA†X1 = X1, AY2 = O, YH
2 A† = O and (3) of the fourth condition at this

Theorem 4.1, i.e., E2YH
2 E2 = E2 at the equality

2
= in simplification.

Since all the requireents in the definition of Moore-Penrose inverse are shown to be
satisfied, we complete the prrof of the teorem.

If tensors B and (YH
i Yi) for i = 1, 2 are invertible, then the constraints in Theorem 4.1

can be relazed, as in the following.

Corollary 4.2. Given tensors A ∈ CI1×···×IM×I1×···×IN , and the invertible tensor B ∈
CI1×···×IK×I1×···×IK , U ∈ CI1×···×IM×I1×···×IK and V ∈ CI1×···×IK×I1×···×IN , if following
conditions are valid :

1. U = X1 + Y1, where X1 ∈ C(A) and Y1 is orthgonal to C(A);

2. VH = X2 + Y2, where X2 ∈ C(AH) and Y2 is orthgonal to C(AH);

3. tensors (YH
i Yi) for i = 1, 2 are invertible.

Then the tensor

S = A+ U ⋆K B ⋆K V
= A+ (X1 + Y1) ⋆K B ⋆K (X2 + Y2)

H , (4.16)

has the following Moore-Penrose generalized inverse identiy:

S† = A† − E2 ⋆K XH
2 ⋆N A† −A† ⋆M X1 ⋆K EH

1

+E2 ⋆K (B† + XH
2 ⋆N A† ⋆M X1) ⋆K EH

1 , (4.17)

where Ei
def
= Yi(YH

i Yi)
−1 for i = 1, 2.

Proof. Because (YH
i Yi) for i = 1, 2 are invertible, then

E2B†EH
1 Y1B = E2B−1

[
Y1(YH

1 Y1)
−1
]H Y1B = E2. (4.18)

By similar arguments, all following conditions are valid:

• X1EH
1 Y1B = X1B,

• Y1EH
1 Y1 = Y1,

• BYH
2 E2B−1EH

1 = EH
1 ,

• BYH
2 E2XH

2 = BXH
2 ,

• E2YH
2 E2 = E2.

Therefore, this corollary is proved from Theorem 4.1 because all conditions required at
Theorem 4.1 are satisfied.

When the column space projections of the tensors U and V are zero, i.e., X1 = O and
X2 = O. Theorem 4.1 can be simplfied as following corollary.

Corollary 4.3. Given tensors A ∈ CI1×···×IM×I1×···×IN ,
B ∈ CI1×···×IK×I1×···×IK , U ∈ CI1×···×IM×I1×···×IK and V ∈ CI1×···×IK×I1×···×IN , and
suppose the following items hold:
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1. U = Y1, where Y1 is orthgonal to C(A);

2. VH = Y2, where Y2 is orthgonal to C(AH);

3. (1) E2B†EH
1 Y1B = E2, (2) Y1EH

1 Y1 = Y1;

4. (1) BYH
2 E2B†EH

1 = EH
1 , (2) E2YH

2 E2 = E2.

Then the tensor

S = A+ U ⋆K B ⋆K V
= A+ Y1 ⋆K B ⋆K YH

2 , (4.19)

has the following Moore-Penrose generalized inverse identiy:

S† = A† + E2 ⋆K B† ⋆K EH
1 , (4.20)

where Ei
def
= Yi(YH

i Yi)
† for i = 1, 2.

Proof. The proof can be obtained by replacing tensors X1 and X2 as zero tensor O in the
proof of Theorem 4.1.

If the tensor A is a Hermitian tensor, we can have following corollary.

Corollary 4.4. Given tensors A ∈ CI1×···×IM×I1×···×IM ,
B ∈ CI1×···×IK×I1×···×IK , U ∈ CI1×···×IM×I1×···×IK and V ∈ CI1×···×IK×I1×···×IM , and
suppose the following items hold:

1. AH = A, and UH = V.

2. U = X + Y, where X ∈ C(A) and Y is orthgonal to C(A);

3. (1) EB†EHYB = E, (2) XEHYB = XB, (3) YEHY = Y;

4. (1) BYHEB†EH = EH , (2) BYHEXH = BXH , (3) EYHE = E.

Then the tensor

S = A+ U ⋆K B ⋆K V
= A+ (X + Y) ⋆K B ⋆K (X + Y)H , (4.21)

has the following Moore-Penrose generalized inverse identiy:

S† = A† − E ⋆K XH ⋆N A† −A† ⋆M X ⋆K EH

+E ⋆K (B† + XH ⋆N A† ⋆M X ) ⋆K EH , (4.22)

where E def
= Y(YHY)†.

Proof. Because AH = A, and UH = V, the proof from Theorem 4.1 can be applied here by
removing those subscript indices, 1 and 2.
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4.2 Illustrative Examples

In this section, we will provide two examples to demonstarte the validity of Theorem 4.1
and Corollary 4.3. We have to use following tensor equation in this section.

A ⋆N Z ⋆M B = (A⊗ BH) ⋆(N+M) Z, (4.23)

where ⊗ is the Kronecker product of tensors [55].

Following example is provided to verify Corollary 4.3.

Example 1. Given tensor A ∈ R2×2×2×2

A =


a11,11 a12,11 a11,12 a12,12
a21,11 a22,11 a21,12 a22,12
a11,21 a12,21 a11,22 a12,22
a21,21 a22,21 a11,22 a22,22

 =


1 −1 0 0
0 0 −1 0
0 1 0 0
0 0 1 0

 (4.24)

Then, the column tensor a11 of tensor A is

[
1 −1
0 0

]
, the column tensor a12 of tensor A

is

[
0 0
−1 0

]
, the column tensor a21 of tensor A is

[
0 1
0 0

]
, and the column tensor a22 of

tensor A is

[
0 0
1 0

]
.

If we take Hermition for the tensor A, we have

AH =


a11,11 a11,12 a12,11 a12,12
a11,21 a11,22 a12,21 a12,22
a21,11 a21,12 a22,11 a22,12
a21,21 a21,22 a22,21 a22,22

 =


1 0 −1 0
0 0 1 0
0 −1 0 0
0 1 0 0

 (4.25)

Then, the column tensor a11 of tensor AH is

[
1 0
0 0

]
, the column tensor a12 of tensor AH

is

[
−1 0
1 0

]
, the column tensor a21 of tensor AH is

[
0 −1
0 1

]
, and the column tensor a22

of tensor AH is

[
0 0
0 0

]
.

The tensor B ∈ R1×1×1×1 has only one entry with value 1, the value in this tensor B is
denoted as 1 ∈ R1×1×1×1 . The tensor U ∈ R2×2×1×1 is

U =

[
0 0
0 1

]
, (4.26)

and the tensor V ∈ R1×1×2×2 is

V =

[
0 1
0 1

]
. (4.27)



40 S.Y. CHANG AND Y. WEI

Then, we have the tensor S expressed as

S = A+ UBV

=


1 −1 0 0
0 0 −1 0
0 1 0 0
0 0 1 0

+ U ⊗ VH ⋆4 B

=


1 −1 0 0
0 0 −1 0
0 1 0 0
0 0 1 0

+


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 1

 =


1 −1 0 0
0 0 −1 1
0 1 0 0
0 0 1 1

 . (4.28)

The goal is to verify Sherman-Morrison-Woodbury identiy for the inverse of the tensor S.
Because the tensor A is not invertible, the Moore-Penrose inverse of the tensor A becomes

A† =


1 0 0 0
1 0 1 0
0 − 1

2 0 0
0 1

2 0 0

 . (4.29)

Before applying Theorem 4.1, we have to decompose the tensors U and VH according to
the column-tensor spaces C(A) and C(AH). They are decomposed as following:

U = Y1

=

[
0 0
0 1

]
; (4.30)

and

V = YH
2

=

[
0 1
0 1

]
. (4.31)

Therefore, the tensors U and V are in orthogonal spaces of C(A) and C(AH), respectively.

Since we define Ei
def
= Yi(YH

i Yi)
† for i = 1, 2, the tensors Ei can be evaluated as

E1 = Y1(YH
1 Y1)

†

=

[
0 0
0 1

]
⋆2 (1 ∈ R1×1×1×1)

=

[
0 0
0 1

]
∈ R2×2×1×1; (4.32)

and

E2 = Y2(YH
2 Y2)

†

=

[
0 1
0 1

]
⋆2 (

1

2
∈ R1×1×1×1)

=

[
0 1

2
0 1

2

]
∈ R2×2×1×1, (4.33)
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where 1
2 ∈ R1×1×1×1 is a single entry tensor with value 1

2 with tensor dimension 1×1×1×1
(order 4).

We are ready to evalute following terms EXH
2 A†, A†X1EH

1 , and
E2(B† + XH

2 A†X1)EH
1 . But tensors EXH

2 A† and A†X1EH
1 are zero tensors since X1 and X2

are zero tensors. Because we also have following:

XH
2 A†X1 = 0 ∈ R1×1×1×1, (4.34)

we have

E2(B† + XH
2 A†X1)EH

1 = E2 ⋆2 (1 ∈ R1×1×1×1) ⋆2 EH
1

=


0 0 0 0
0 0 0 0
0 0 0 1

2
0 0 0 1

2

 (4.35)

Finally, from the Eq. (4.35), we have

S† = A† + E2(B† + XH
2 A†X1)EH

1

=


1 0 0 0
1 0 1 0
0 − 1

2 0 1
2

0 1
2 0 1

2

 , (4.36)

which is the inverse of the tensor S.

The following example, which is more complicated. See Theorem 4.1.

Example 2. Given same tensors A ∈ R2×2×2×2 and B ∈ R1×1×1×1 as ExampleF 1, the
tensor U ∈ R2×2×1×1 is

U =

[
0 1
0 1

]
, (4.37)

and the tensor V ∈ R1×1×2×2 is

V =

[
0 0
0 2

]
. (4.38)

Then, we have the tensor S expressed as

S = A+ UBV

=


1 −1 0 0
0 0 −1 0
0 1 0 0
0 0 1 0

+ U ⊗ VH ⋆4 B

=


1 −1 0 0
0 0 −1 0
0 1 0 0
0 0 1 0

+


0 0 0 0
0 0 0 0
0 0 0 2
0 0 0 2

 =


1 −1 0 0
0 0 −1 0
0 1 0 2
0 0 1 2

 . (4.39)

We wish to show Sherman-Morrison-Woodbury identiy for the inverse of the tensor S.
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Before applying Theorem 4.1, we have to decompose the tensors U and VH according to
the column-tensor spaces C(A) and C(AH). They are decomposed as following:

U = X1 + Y1

=

[
0 1
0 0

]
+

[
0 0
0 1

]
, (4.40)

and

V = XH
2 + YH

2

=

[
0 −1
0 1

]
+

[
0 1
0 1

]
. (4.41)

Under this decomposition, the subtensors X1 and X2 are in the column-tensor spaces C(A)
and C(AH), respectively. Moreover, the subtensors Y1 and Y2 are orthgonal to the column-

tensor spaces C(A) and C(AH), respectively. Since we define Ei
def
= Yi(YH

i Yi)
† for i = 1, 2,

the tensors Ei are evaluated at Eqs. (4.32) and (4.33) since Yi are same with the previous
example.

We are ready to evalute following terms EXH
2 A†, A†X1EH

1 , and
E2(B† + XH

2 A†X1)EH
1 .

A†X1EH
1 =


1 0 0 0
1 0 1 0
0 − 1

2 0 0
0 1

2 0 0

 ⋆2

[
0 1
0 0

]
⊗
[

0 0
0 1

]

=


1 0 0 0
1 0 1 0
0 − 1

2 0 0
0 1

2 0 0

 ⋆2


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 . (4.42)

E2XH
2 A† =

[
0 1

2
0 1

2

]
⊗
[

0 −1
0 1

]
⋆2


1 0 0 0
1 0 1 0
0 − 1

2 0 0
0 1

2 0 0



=


0 0 0 − 1

2
0 0 0 − 1

2

0 0 0 1
2

0 0 0 1
2

 ⋆2


1 0 0 0
1 0 1 0
0 − 1

2 0 0
0 1

2 0 0

 =


0 0 0 0
0 0 0 0
0 1

2 0 0
0 1

2 0 0

 . (4.43)

Since we have following:

XH
2 A†X1 =

[
0 −1
0 1

]
⋆2


1 0 0 0
1 0 1 0
0 − 1

2 0 0
0 1

2 0 0

 ⋆2

[
0 1
0 0

]

=

[
0 −1
0 1

]
⋆2

[
0 0
1 0

]
= 0 ∈ R1×1×1×1, (4.44)
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we have

E2(B† + XH
2 A†X1)EH

1 = E2 ⋆2 (1 ∈ R1×1×1×1) ⋆2 EH
1

=


0 0 0 0
0 0 0 0
0 0 0 1

2
0 0 0 1

2

 (4.45)

Finally, from the Eqs. (4.42), (4.43), (4.45), we have

S† = A† −A†X1EH
1 − E2XH

2 A† + E2(B† + XH
2 A†X1)EH

1

=


1 0 0 0
1 0 1 0
0 −1 0 1

2
0 0 −1 1

2

 , (4.46)

which is the inverse of the tensor S.

5 Application: Sensitivity Analysis for Multilinear Systems

In this section, we will apply the results obtained in Section 4 to perform sensitivity analysis
for a multilinear system of equations, i.e. A ⋆ X = D, by deriving the normalized upper
bound for the error in the solution when coefficient tensors are perturbed in Section 5.1.
In Section 5.2, we investigate the effects of perturbation values ϵA, ϵD to the normalized

solution error ∥Y−X∥
∥X∥ , denoted as En. All norms discussed in this paper are based on the

Frobenius norm definition.

5.1 Sensitivity Analysis

Serveral preparation lemmas will be given before presenting our results asscoaited to sensi-
tivity analysis for multilinear systems.

Lemma 5.1. Let A ∈ CI1×···×IM×J1×···×JN and B ∈ CJ1×···×JN×K1×···×KL , we have fol-
lowing inequality for Frobenius norm of tensors:

∥A ⋆N B∥ ≤ ∥A∥ ∥B∥ . (5.1)
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Proof. Because

∥A ⋆N B∥2 =
∑

i1,··· ,iM ,k1×···×kL

|
∑

j1,··· ,jN

ai1,··· ,iM ,j1,··· ,jN bj1,··· ,jN ,k1,··· ,kL
|2

≤
∑

i1,··· ,iM ,k1×···×kL

 ∑
j1,··· ,jN

|ai1,··· ,iM ,j1,··· ,jN |2
 ×

 ∑
j1,··· ,jN

|bj1,··· ,jN ,k1,··· ,kL
|2


=

 ∑
i1,··· ,iM

 ∑
j1,··· ,jN

|ai1,··· ,iM ,j1,··· ,jN |2
×

 ∑
j1,··· ,jN

( ∑
k1×···×kL

|bj1,··· ,jN ,k1,··· ,kL
|2
) = ∥A∥2 ∥B∥2 (5.2)

where the inequality is based on Cauchy-Schwarz inequality. By taking square root of both
sides, the lemma is established.

Lemma 5.2. Let A ∈ CI1×···×IM×J1×···×JN and B ∈ CI1×···×IM×J1×···×JN , we have follow-
ing inequality for Frobenius norm of tensors:

∥A+ B∥ ≤ ∥A∥+ ∥B∥ . (5.3)

Proof. Because

∥A+ B∥2 ≤ ∥A∥2 + ∥B∥2 + 2
∑

i1,··· ,iM ,j1,··· ,jN

|ai1,··· ,iM ,j1,··· ,jN ||bi1,··· ,iM ,j1,··· ,jN |

1
≤ ∥A∥2 + ∥B∥2 + 2 ∥A∥ ∥B∥
= (∥A∥+ ∥B∥)2 (5.4)

where the ineqsuality
1
≤ is based on Cauchy-Schwarz inequality. By taking square root of

both sides, the lemma is established.

Given a multilinear system of equations, the exact solution expressed by tensor inverse
or Moore-Penrose inverse is given by following Theorem. The proof can be found at [5].

Theorem 5.3. For given tensors A ∈ CK1×···×KP×I1×···×IM ,
D ∈ CK1×···×KP×L1×···×LQ , the tensor equation

A ⋆M X = D, (5.5)

has a solution if and only if A ⋆M A† ⋆P D = D. The solution can be expressed as

X = A† ⋆P D + (I − A† ⋆P A) ⋆M U , (5.6)

where I is the identiy tensor in CI1×···×IM×I1×···×IM and U is an arbitrary tensor in
CI1×···×IM×L1×···×LQ .

If the tensor A is invertible, then the Eq. (5.6) can be further reduced as

X = A−1 ⋆P D. (5.7)
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We are ready to present our theorem about sensitvity analysis for solution of a multilinear
system.

Theorem 5.4. The original multilinear system of equations is

A ⋆M X = D (5.8)

where A ∈ CK1×···×KP×I1×···×IM , D ∈ CK1×···×KP×L1×···×LQ , and
O ̸= D ∈ CK1×···×KP×L1×···×LQ . The perturbed system can be expressed as

(A+ δA) ⋆M Y = (D + δD), (5.9)

where δA ∈ CK1×···×KP×I1×···×IM and δD ∈ CK1×···×KP×L1×···×LQ . If the tensor δA is
decomposed as (for example, by SVD decomposition when δA is a square tensor, see [55])

δA = U ⋆P B ⋆M V
= (X1 + Y1) ⋆P B ⋆M (X2 + Y2)

H , (5.10)

where X1 ∈ C(A), Y1 is orthgonal to C(A), X2 ∈ C(AH) and Y2 is orthgonal to C(AH).

We further assume that ∥Xi∥ ≤ ϵA ∥A∥ for 1 ≤ i ≤ 2, ∥Ei∥ ≤ ϵA ∥A∥ for 1 ≤ i ≤ 2

(Recall Ei
def
= Yi(YH

i Yi)
†) and ∥δD∥ ≤ ϵD ∥B∥, then

∥Y − X∥
∥X∥

≤ (1 + ϵD) ∥A∥3 (2ϵ2A
∥∥A†∥∥+ ϵ3A ∥A∥+ ϵ4A ∥A∥2

∥∥A†∥∥) +
ϵD ∥A∥

∥∥A†∥∥ . (5.11)

Proof. From Theorem 5.3 and the Eq. 5.6, the solution for the Eq. (5.8) is

X = A† ⋆P D + (I − A† ⋆P A) ⋆M U , (5.12)

and, similarly, the solution for the Eq. (5.9) is

Y = (A+ δA)† ⋆P (D + δD) + (I − (A+ δA)† ⋆P (A+ δA) ⋆M U . (5.13)

Since the tensor U can be chosen arbitraryly, we can set U as zero tensor and we have

Y − X = (A+ δA)† ⋆P (D + δD)−A† ⋆P D

=
[
A+ (X1 + Y1) ⋆P B ⋆M (X2 + Y2)

H
]†

⋆P (D + δD)−A† ⋆P D
1
=

(
A† − E2 ⋆M XH

2 ⋆M A† −A† ⋆P X1 ⋆P EH
1

+E2 ⋆M (B† + XH
2 ⋆M A† ⋆P X1) ⋆P EH

1

)
⋆P (D + δD)−A† ⋆P D

= E2 ⋆M XH
2 ⋆M A† ⋆P D −A† ⋆P X1 ⋆P EH

1 ⋆P D
+E2 ⋆M (B† + XH

2 ⋆M A† ⋆P X1) ⋆P EH
1 ⋆P D +A† ⋆P δD

−E2 ⋆M XH
2 ⋆M A† ⋆P δD −A† ⋆P X1 ⋆P EH

1 ⋆P δD
+E2 ⋆M (B† + XH

2 ⋆M A† ⋆P X1) ⋆P EH
1 ⋆P δD, (5.14)

where we apply Theorem 4.1 at
1
=. If we take Frobenius norm at both sides of Eq. (5.14),
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we get

∥Y − X∥ =
∥∥E2 ⋆M XH

2 ⋆M A† ⋆P D −A† ⋆P X1 ⋆P EH
1 ⋆P D

+E2 ⋆M (B† + XH
2 ⋆M A† ⋆P X1) ⋆P EH

1 D +A† ⋆P δD
−E2 ⋆M XH

2 ⋆M A† ⋆P δD −A† ⋆P X1 ⋆P EH
1 ⋆P δD

+E2 ⋆M (B† + XH
2 ⋆M A† ⋆P X1) ⋆P EH

1 ⋆P δD
∥∥

2
≤ ∥E2∥

∥∥XH
2

∥∥ ∥∥A†∥∥ ∥D∥+
∥∥A†∥∥ ∥X1∥

∥∥EH
1

∥∥ ∥D∥+ ∥E2∥
∥∥B†∥∥ ∥∥EH

1

∥∥ ∥D∥+∥∥XH
2

∥∥ ∥∥A†∥∥ ∥X1∥
∥∥EH

1

∥∥ ∥D∥+
∥∥A†∥∥ ∥δD∥+ ∥E2∥

∥∥XH
2

∥∥ ∥∥A†∥∥ ∥δD∥+∥∥A†∥∥ ∥X1∥
∥∥EH

1

∥∥ ∥δD∥+ ∥E2∥
∥∥B†∥∥ ∥∥EH

1

∥∥ ∥δD∥+∥∥XH
2

∥∥ ∥∥A†∥∥ ∥X1∥
∥∥EH

1

∥∥ ∥δD∥ (5.15)

where we apply Lemma 5.1 and Lemma 5.2 to the inequality
2
≤. Because we have that

∥Xi∥ ≤ ϵA ∥A∥ for 1 ≤ i ≤ 2, ∥Ei∥ ≤ ϵA ∥A∥ for 1 ≤ i ≤ 2 (Recall Ei
def
= Yi(YH

i Yi)
†) and

∥δD∥ ≤ ϵD ∥D∥, then the Eq. (5.15) can be further reduced as:

∥Y − X∥ = (1 + ϵD) ∥D∥ (2ϵ2A ∥A∥2
∥∥A†∥∥+ ϵ3A ∥A∥3 + ϵ4A ∥A∥4

∥∥A†∥∥) +
ϵD
∥∥A†∥∥ ∥D∥ , (5.16)

and since ∥D∥ = ∥AX∥ ≤ ∥A∥ ∥X∥, we have

∥Y − X∥
∥X∥

≤ (1 + ϵD) ∥A∥3 (2ϵ2A
∥∥A†∥∥+ ϵ3A ∥A∥+ ϵ4A ∥A∥2

∥∥A†∥∥) +
ϵD ∥A∥

∥∥A†∥∥ (5.17)

The theorem is proved.

5.2 Numerical Evaluation

In this section, we will apply the normalized error bound results derived in Section 5.1 to
the multilinear equation A ⋆2 X = D with following tensors:

A =


1 −1 0 0
0 0 −1 0
0 1 0 0
0 0 1 0

 , (5.18)

A† =


1 0 0 0
1 0 1 0
0 −0.5 0 0
0 0.5 0 0

 , (5.19)

and

D =

[
1 2
1 1

]
. (5.20)

In Fig. 1, the normalized error bound for the multilinear system A⋆2X = D is presented
against the change of the Frobenius norm of the tesnor A according to the Theorem 5.4.
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Fig. 1 delineates the normalized error bound with respect to three different perturbation
values ϵA = 0.09, 0.05, 0.01 of the tensor A subject to the perturbation value ϵD = 0.01
of the tensor D. The way we change the Frobenius norm of the tesnor A is by scaling the
tensor A with some positive number α, i.e., αA is a tensor obtained by multiplying the value
α to each entries of the tensor A. We observe that the normalization error En increases
with the increase of the perturbation value ϵA. Given the same perturbaiton value ϵA, the
normalized error bound En can achieve its minimum by scaling the tesnor A properly. For
example, when the value ϵA is 0.09, the minimum error bound happens when the value of
∥A∥ is about 2.5.

Figure 1: The normalized error bound En for the perturbed multilinear system AX = D
with respect to the tesnor norm ∥A∥ for different ϵA values when the tesnor norm ∥D∥ is 7
and ϵD = 0.01.

In Fig. 2, the normalized error bound for the multilinear system A⋆2X = D is presented
against the change of the Frobenius norm of the tesnor A. Fig. 2 plots the normalized
error bound with respect to three different perturbation values ϵD = 0.09, 0.05, 0.01 of the
tensor D subject to the perturbation value ϵA = 0.01 of the tensor A. We find that the
normalization error En increases with the increase of the perturbation value ϵD. Given the
same perturbaiton value ϵA, the bound En also can achieve its minimum by scaling the tesnor
A properly. For example, when the value ϵD is 0.01, the minimum error bound happens when
the value of ∥A∥ is about 1.25. Compared to Fig. 2, the error bounds difference between
various perturbation values ϵA becomes more significant when the value of the Frobenius
norm of the tensor A increases. On the other hand, the error bounds difference between
various perturbation values ϵD becomes less significant when the value of the Frobenius
norm of the tensor A increases. Both figures show that the error bound variation is more
sensitive with respect to the Frobenius norm of the tensor A for smaller value range of ∥A∥.
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Figure 2: The normalized error En for the perturbed multilinear system equations AX = D
with respect to the tesnor norm ∥A∥ for different ϵD when the tesnor norm ∥D∥ is 7.

6 Conclusions

Motivated by great applications of the Sherman-Morrison -Woodbury matrix identity, anal-
ogously, we developed the Sherman-Morrison-Woodbury identity for tensors to facilitate the
tensor inversion computation with those benefits in the matrix inversion computation when
the correction of the original tensors is required. We first established the Sherman-Morrison-
Woodbury identity for invertible tensors. Furthermore, we generalized the Sherman-Morrison-
Woodbury identity for tensor with Moore-Penrose inverse by using orthogonal projection
of the correction tensor part into the original tensor and its Hermitian tensor. Finally, we
applied the Sherman-Morrison-Woodbury identity to characterize the error bound for the
solution of a multilinear system between the original system and the corrected system, i.e.,
the coefficient tensors are corrected by other tensors with same dimensions.

There are several possible future works that can be extended based on current work.
Because we can quantify the normalized error bound with respect to perturbation values
and the Frobenius norm of the coefficient tensor, the next question is how to design a robust
multilinear system to have the minimum normalized solution error given perturbation values.
Such robust design should be crucial in many engineering problems which are modeled by
multilinear systems. We have to decompose the perturbed tensor in the Eq. (5.10) in order
to apply our result, similar to the matrix case, how can we select low rank decomposition for
the perturbed tensor is the second direction for the future research. Since we have developed
a new Sherman-Morrison-Woodbury identity for tensor, it will be interested in finding more
impactful applications based on this new identity. We expect this new identity will shed
light on the development of more efficient tensor-based calculations in the near future.
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