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The rest of the paper is organized as follows. Some necessary preliminary knowledge on
quaternions and quaternion matrices are given in the next section. A lower rank quaternion
matrix approximation algorithm is presented in Section 3. In Section 4, we introduce a
concise form for the gradient of a real function in quaternion matrix variables. The gra-
dients of some real functions in quaternion matrix variables, which are useful for our least
squares minimization, have simple expressions. The convergence analysis of our algorithm is
presented in Section 5. We show that the Kurdyka- Lojasiewicz inequality [1, 2, 3] holds for
the critical points of our algorithm there. The LRQMA algorithm is applied to color image
completion. Numerical tests on practical datasets are reported in Section 6. In Section 7,
we make some concluding remarks.

2 Preliminary

2.1 Quaternions

In this paper, the real field, the complex field and the quaternion field are denoted by R,
C and Q, respectively. Furthermore, scalars, vectors, matrices and tensors are denoted by
small letters, bold small letters, capital letters and calligraphic letters, respectively. We
denote vectors with matrix components by bold capital letters. For example, we denote
Z = (A,B,X). We use 0, O and O to denote zero vector, zero matrix and zero tensor with
adequate dimensions. An exception is that i, j and k denote the three imaginary units of
quaternions. We use the notation in [5, 18, 19]. We have

i2 = j2 = k2 = ijk = −1,

which means
ij = −ji = k, jk = −kj = i,ki = −ik = j.

These rules, along with the distribution law, determine the product of two quaternions.
Hence, the multiplication of quaternions is noncommutative.

Let x = x0 + x1i + x2j + x3k ∈ Q, where x0, x1, x2, x3 ∈ R. We define Re(x) = x0 the
real part of x and Im(x) = x1i + x2j + x3k the imaginary part of x. Then the conjugate of
x is

x̄ ≡ x∗ = x0 − x1i− x2j− x3k,
the modulus of x is

|x| = |x∗| =
√
xx∗ =

√
x∗x =

√
x20 + x21 + x22 + x23,

and if x ̸= 0, then x−1 = x∗

|x|2 .

2.2 Quaternion Matrices

Denote the collections of real, complex and quaternion m×n matrices by Rm×n, Cm×n and
Qm×n, respectively. Then A = (aij) ∈ Qm×n can be denoted as

A = A0 +A1i +A2j +A3k, (2.1)

where A0, A1, A2, A3 ∈ Rm×n. The transpose of A is A⊤ = (aji). The conjugate of A is
Ā = (a∗ij). The conjugate transpose of A is A∗ = (a∗ji) = ĀT . The Frobenius norm of A is

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2.
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By [18], we have the following proposition.

Proposition 2.1. Suppose that A ∈ Qm×r and B ∈ Qr×n. Then

∥AB∥F ≤ ∥A∥F ∥B∥F .

A square matrix A ∈ Qm×m is called a unitary matrix if and only if AA∗ = A∗A = Im,
where Im ∈ Rm×m is the real m×m identity matrix.

For the complex representation of a quaternion matrix A ∈ Qm×n with the expression
(2.1), we follow [18], and denote it as AC . Let B1 = A0 + A1i and B2 = A2 + A3i. Then
B1, B2 ∈ Cm×n, and A = B1 +B2j. The complex representation of A is

AC =

(
B1 B2

−B̄2 B̄1

)
.

A color image can be expressed as a third order tensor A ∈ Rm×n×3. On the other hand,
we may also represent it by a pure quaternion matrix [9, 12]

A = A(:, :, 1)i +A(:, :, 2)j +A(:, :, 3)k ∈ Qm×n,

where A(:, :, 1), A(:, :, 2) and A(:, :, 3) are the three frontal slices of A.
We have the following theorem on the QSVD of a quaternion matrix [19].

Theorem 2.2. Any quaternion matrix X ∈ Qm×n has the following QSVD form

X = U

(
Σr O

O O

)
V ∗, (2.2)

where U ∈ Qm×m and V ∈ Qn×n are unitary, and Σr = diag{σ1, · · · , σr} is a real nonneg-
ative r × r diagonal matrix, with σ1 ≥ · · · ≥ σr > 0 as the singular values of X.

The quaternion rank of X is the number of its positive singular values, denoted as
rank(X).

corollaryollary 2.3. Suppose that quaternion matrix X ∈ Qm×n. Then

rank(X) ≤ min{m,n}. (2.3)

For the ranks of quaternion matrices, we have the following theorem. This theorem can
be found on Page 295 of [16] and Page 35 of [20]. Since these two references are not in
English, we give a proof here for completeness.

Theorem 2.4. Suppose that A ∈ Qm×r and B ∈ Qr×n. Then

rank(AB) ≤ min{rank(A), rank(B)}.

In particular,
rank(AB) ≤ r. (2.4)

Proof. (1) We first show that rank(AB) ≤ rank(B).
For any x ∈ Qn satisfying Bx = 0, we have ABx = 0. This means that N (B) ⊆ N (AB),

where N (C) denotes the null space of matrix C. Hence, dimN (B) ≤ dimN (AB) and
rank(AB) ≤ rank(B) since rank(C) = n− dimN (C).
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To show that rank(AB) ≤ rank(A). Let A1, A2, · · · , Am be all rows of matrix A. Then
A1B,A2B, · · · , AmB are all rows of matrix AB. Let rank(AB) = r. Without loss of
generality, we assume that A1B, . . . , ArB are left linearly independent. Now we show that
A1, . . . , Ar are linearly independent by contradiction.

Assume that there exist k1, . . . , kr ∈ Q such that k1A1 + · · ·+ krAr = 0. Then

k1A1B + · · ·+ krArB = (k1A1 + · · ·+ krAr)B = 0.

From A1B, . . . , ArB are left linearly independent [18], we have k1 = · · · = kr = 0 and hence
A1, . . . , Ar are left linearly independent. This means that rank(A) ≥ r since rank(A) is the
maximum number of rows that are left linearly independent. That is, rank(A) ≥ rank(AB).

In all, rank(AB) ≤ min{rank(A), rank(B)}.
From the fact that rank(A) ≤ r, rank(AB) ≤ r is clear.

3 An LRQMA Algorithm

Suppose that we have a quaternion data matrix D ∈ Qm×n, which is only partially observed.
Let Ω be the set of observed entries of D. The low-rank quaternion matrix approximation
(LRQMA) model for color image completion is as follows:

min
X∈Qm×n

{
1

2
∥(X −D)Ω∥2F : rank(X) ≤ r,Re(X) = O

}
, (3.1)

where r < min{m,n}.
We derive a low rank quaternion decomposition theorem for a quaternion matrix X.

Theorem 3.1. Suppose that X ∈ Qm×n. Let positive integer r < min{m,n}. Then
rank(X) ≤ r if and only if there are A ∈ Qm×r and B ∈ Qr×n such that X = AB.

Proof. If X = AB, A ∈ Qm×r and B ∈ Qr×n, then by Theorem 2.4, we have rank(X) ≤ r.
On the other hand, suppose that rank(X) ≤ r. Then by Theorem 2.2, we have (2.2).

Let
U = (U1 U2)

and

V ∗ =

(
V1
V2

)
where U1 ∈ Qm×r, U2 ∈ Qm×(m−r), V1 ∈ Qr×n and V2 ∈ Q(n−r)×n. Let Σ =
diag{√σ1, · · · ,

√
σr}, A = U1Σ and B = ΣV1. Then we have X = AB, A ∈ Qm×r and

B ∈ Qr×n.

The LRQMA model (3.1) can be rewritten as

min
A∈Qm×r,B∈Qr×n,X∈Qm×n

{
f(A,B,X) ≡ 1

2
∥AB −X∥2F : Re(X) = O, Im(XΩ) = Im(DΩ)

}
.

(3.2)
Here, r < min{m,n}, X ∈ Qm×n is a surrogate quaternion matrix. We may use the following
alternative scheme to find A,B and X.

At the beginning, we choose A(0) ∈ Qm×r and B(0) ∈ Qr×n. Set k ← 0.
At the kth iteration, we first calculate X(k). Let X(k) be the solution of

min
X∈Qm×n

{
p(X) ≡ 1

2
∥A(k)B(k) −X∥2F : Re(X) = O, Im(XΩ) = Im(DΩ)

}
. (3.3)



LOW-RANK QUATERNION MATRIX APPROXIMATION 59

Then, it is straightforward to know that

Re(X(k)) = O, Im(X
(k)
Ω ) = Im(DΩ), Im(X

(k)
ΩC

) = Im
(

(A(k)B(k))ΩC

)
, (3.4)

where ΩC is the complement of Ω.
Second, we find A(k+1) as the solution of

min
A∈Qm×r

g(A) ≡ 1

2

∥∥∥AB(k) −X(k)
∥∥∥2
F

+
λ

2

∥∥∥A−A(k)
∥∥∥2
F
, (3.5)

where λ > 0 is a regularization parameter. Note that this least squares problem has a
closed-form solution

A(k+1) =
[
X(k)

(
B(k)

)∗
+ λA(k)

] [
B(k)

(
B(k)

)∗
+ λIr

]−1

. (3.6)

We can see this by the following argument. Let

A = A0 +A1i +A2j +A3k,

A(k) = A
(k)
0 +A

(k)
1 i +A

(k)
2 j +A

(k)
3 k,

B(k) = B
(k)
0 +B

(k)
1 i +B

(k)
2 j +B

(k)
3 k,

X(k) = X
(k)
0 +X

(k)
1 i +X

(k)
2 j +X

(k)
3 k,

where Ai, A
(k)
i , B

(k)
i and X

(k)
i for k = 0, 1, 2, 3, are corresponding real matrices. Then

g(A) = 1
2

∥∥∥A0B
(k)
0 −A1B

(k)
1 −A2B

(k)
2 −A3B

(k)
3 −X(k)

0

∥∥∥2
F

+ 1
2

∥∥∥A0B
(k)
1 +A1B

(k)
0 +A2B

(k)
3 −A3B

(k)
2 −X(k)

1

∥∥∥2
F

+ 1
2

∥∥∥A0B
(k)
2 +A2B

(k)
0 +A3B

(k)
1 −A1B

(k)
3 −X(k)

2

∥∥∥2
F

+ 1
2

∥∥∥A0B
(k)
3 +A3B

(k)
0 +A1B

(k)
2 −A2B

(k)
1 −X(k)

3

∥∥∥2
F

+ λ
2

∑3
i=0

∥∥∥Ai −A(k)
i

∥∥∥2
F
.

By derivation, we see that the solution of (3.5) is (3.6).
Finally, we find B(k+1) as the solution of

min
B∈Qr×n

h(B) ≡ 1

2

∥∥∥A(k+1)B −X(k)
∥∥∥2
F

+
λ

2

∥∥∥B −B(k)
∥∥∥2
F
. (3.7)

Similarly, this least squares problem has a closed-form solution

B(k+1) =
[(
A(k+1)

)∗
A(k+1) + λIr

]−1 [(
A(k+1)

)∗
X(k) + λB(k)

]
. (3.8)

We thus have the following algorithm to solve (3.2).

4 The Gradient of A Real Function in Quaternion Matrix Variables

To conduct convergence analysis for our algorithm, we need to consider optimization prob-
lems of real functions in quaternion matrix variables. To handle this, we introduce a concise
form for the gradient of a real function in quaternion matrix variables.
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Algorithm 1 An LRQMA algorithm for solving (3.2).

1: Choose A(0) ∈ Qm×r and B(0) ∈ Qr×n. Set k ← 0.
2: Use (3.4) to find X(k).
3: Use (3.6) to find A(k+1).
4: Use (3.8) to find B(k+1).
5: If A(k+1) = A(k) and B(k+1) = B(k), stop. Otherwise, k ← k + 1 and goto Step 2.

Consider the following optimization problem

min{f(X) : X ∈ Qm×n, gj(X) = 0, j = 1, . . . , p}, (4.1)

where f, gj : Qm×n → R for j = 1, . . . , p. We need to have a form for ∇f(X) and ∇gj(X)
for j = 1, . . . , p.

Definition 4.1. Let f : Qm×n → R. Let X = X0+X1i+X2j+X3k, where X0, X1, X2, X3 ∈
Rm×n. Then we say that f is differentiable at X if ∂f

∂Xi
exists at Xi for i = 0, 1, 2, 3, and we

denote

∇f(X) =
∂f

∂X0
+

∂f

∂X1
i +

∂f

∂X2
j +

∂f

∂X3
k. (4.2)

If ∂f
∂Xi

exists in a neighborhood of Xi, and is continuous at Xi, for i = 0, 1, 2, 3, then we
say that f is continuously differentiable at X. If f is continuously differentiable for any
X ∈ Qm×n, then we say that f is continuously differentiable.

If f has more variables, then we may change ∇f(X) in (4.2) to ∂f
∂X .

This form is different from the generalized HR calculus studied in [17], which is similar
to the approach in optimization of real functions with complex variables [13].

Based from this definition, we have the following theorem.

Theorem 4.2. Suppose that f, gj : Qm×n → R, for j = 1, . . . , p, are continuously dif-
ferentiable, and X# ∈ Qm×n is an optimal solution of (4.1). Then there are Lagrangian
multipliers πj ∈ Q for j = 1, . . . , p, such that

∇f(X#) +

p∑
j=1

πj∇gj(X#) = O.

Proof. Let X = X0 + X1i + X2j + X3k, where X0, X1, X2, X3 ∈ Rm×n. Then (4.1) is
converted to an optimization problem with real matrix variables. By optimization theory
[14] and Definition 4.1, the conclusion holds.

This theorem can be extended to other optimization problems involving continuously
differentiable real functions in quaternion matrix variables. The Lagrangian multipliers πj
are quaternion numbers. We will see this more clearly in the next section.

With Definition 4.1, the gradients of some functions, which are useful for our model,
have simple expressions.

Theorem 4.3. Suppose that f : Qm×r → R is defined by f(X) = 1
2∥XB + C∥2F , where

B ∈ Qr×n and C ∈ Qm×n. Then

∇f(X) = (XB + C)B∗.
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Proof. We have XB + C = M0 +M1i +M2j +M3k, where

M0 = X0B0 −X1B1 −X2B2 −X3B3 + C0,

M1 = X0B1 +X1B0 +X2B3 −X3B2 + C1,

M2 = X0B2 +X2B0 +X1B3 −X3B1 + C2,

M3 = X0B3 +X3B0 +X1B2 −X2B1 + C3.

Then,

f(X) =
1

2

3∑
i=0

∥Mi∥2F ,

∂f

∂X0
= M0B

⊤
0 +M1B

⊤
1 +M2B

⊤
2 +M3B

⊤
3 ,

∂f

∂X1
= −M0B

⊤
1 +M1B

⊤
0 +M2B

⊤
3 +M3B

⊤
2 ,

∂f

∂X2
= −M0B

⊤
2 +M1B

⊤
3 +M2B

⊤
0 −M3B

⊤
1 ,

∂f

∂X3
= −M0B

⊤
3 −M1B

⊤
2 −M2B

⊤
1 +M3B

⊤
0 .

Thus, we have

∇f(X) =
∂f

∂X0
+
∂f

∂X1
i+

∂f

∂X2
j+

∂f

∂X3
k = (XB+C)(B0−B⊤

1 i−B⊤
2 j−B⊤

3 k) = (XB+C)B∗.

Similarly, we have the following theorem.

Theorem 4.4. Suppose that f : Qr×n → R is defined by f(X) = 1
2∥AX + C∥2F , where

A ∈ Qm×r and C ∈ Qm×n. Then

∇f(X) = A∗(AX + C).

In our convergence analysis, the Kurdyka- Lojasiewicz property [1, 2, 3] plays a critical
role. Since we regard functions in this paper as functions defined on an abstract vector space
with real coefficients, the Kurdyka- Lojasiewicz property also holds for functions related with
the optimization problems studied in this paper.

5 Convergence Analysis

In this section, we present convergence analysis for the LRQMA algorithm. As stated in
Section 3, we may regard the objective function f in (3.2) as a function defined in the
abstract vector space of dimension 4(mr+ rn+mn) with real coefficients. Then we use the
gradient of f to study the stationary points and the first order optimality conditions of (3.2)
without ambiguity.

In the following, we always denote Z ≡ (A,B,X). Thus, Z(k) ≡ (A(k), B(k), X(k)),
Z# ≡ (A#, B#, X#), so on. We have the following theorem.
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Theorem 5.1. Let A# ∈ Qm×r, B# ∈ Qr×n and X# ∈ Qm×n. Suppose that X# satisfies

Re(X#) = O, Im(X#
Ω ) = Im(DΩ), (5.1)

i.e., X# is a feasible point of (3.2). If Z# ≡
(
A#, B#, X#

)
is an optimal solution of (3.2),

then we have (
A#B# −X#

) (
B#

)∗
= Om×r, (5.2)(

A#
)∗ (

A#B# −X#
)

= Or×n, (5.3)

Im
(
X#

ΩC

)
= Im

(
(A#B#)ΩC

)
, (5.4)

i.e., Z# ≡
(
A#, B#, X#

)
is a stationary point of (3.2).

Proof. By Theorem 4.2, Z# ≡
(
A#, B#, X#

)
should satisfy

∂
∂Af(A#, B#, X#) = Om×r,
∂
∂B f(A#, B#, X#) = Or×n,
∂

∂X f(A#, B#, X#) = −Π,

where Π ∈ Qm×n with Im(ΠΩC
) = 0 is a matrix of Lagrangian multipliers.

By Theorem 4.3,

∂

∂A
f(A#, B#, X#) =

(
A#B# −X#

) (
B#

)∗
.

We have (5.2).

By Theorem 4.4,

∂

∂B
f(A#, B#, X#) =

(
A#

)∗ (
A#B# −X#

)
.

We have (5.3).

By Theorem 4.3 or 4.4,

∂

∂X
f(A#, B#, X#) = X# −A#B# = Π.

We have (5.4) and

Re(Π) = Re(A#B# −X#), Im(ΠΩ) = Im
(
(A#B# −X#)Ω

)
.

This shows that the Lagrangian multipliers are quaternion numbers.

The theorem is proved.

We now consider the case that the LRQMA algorithm stops in a finite number of itera-
tions.

Proposition 5.2. If LRQMA algorithm stops in a finite number of iterations, then Z# ≡(
A#, B#, X#

)
=

(
A(k), B(k), X(k)

)
is a stationary point of (3.2).
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Proof. If LRQMA algorithm stops in a finite number of iterations, then A(k+1) = A(k),
B(k+1) = B(k) and X(k+1) = X(k). Denote A# = A(k), B# = B(k) and X# = X(k). By
(3.4), we have (5.1) and (5.4). By (3.6), we have

A#
(
B#(B#)∗ + λIr

)
= X#(B#)∗ + λA#.

This leads to (5.2). By (3.8), we have(
(A#)∗A# + λIr

)
B# = (A#)∗X# + λB#.

This leads to (5.3). These imply that Z# ≡
(
A#, B#, X#

)
≡

(
A(k), B(k), X(k)

)
is a station-

ary point of (3.2).

We then consider the case that the LRQMA algorithm generates an infinite sequence{
Z(k) ≡

(
A(k), B(k), X(k)

)
: k = 0, 1, 2, . . .

}
.

Lemma 5.3. Suppose that
{
Z(k) ≡

(
A(k), B(k), X(k)

)
: k = 0, 1, 2, . . .

}
is the sequence gen-

erated by the LRQMA algorithm. Then

f
(
A(k), B(k), X(k))

)
− f

(
A(k+1), B(k+1), X(k+1)

)
≥ λ

2

[
∥A(k) −A(k+1)∥2F + ∥B(k) −B(k+1)∥2F + ∥X(k) −X(k+1)∥2F

]
.

Proof. First, we have

f
(
A(k), B(k), X(k))

)
− f

(
A(k+1), B(k), X(k)

)
=

1

2

∥∥∥A(k)B(k) −X(k)
∥∥∥2
F
− 1

2

∥∥∥A(k+1)B(k) −X(k)
∥∥∥2
F

= g(A(k))− g(A(k+1) +
λ

2

∥∥∥A(k+1) −A(k)
∥∥∥2
F

≥ λ

2

∥∥∥A(k+1) −A(k)
∥∥∥2
F
.

Here, g is the objective function of (3.5). Since A(k+1) minimizes (3.5), we have g(A(k)) ≥
g(A(k+1). This leads to the last inequality.

Similarly, we have

f
(
A(k+1), B(k), X(k))

)
− f

(
A(k+1), B(k+1), X(k)

)
=

1

2

∥∥∥A(k+1)B(k) −X(k)
∥∥∥2
F
− 1

2

∥∥∥A(k+1)B(k+1) −X(k)
∥∥∥2
F

= h(B(k))− h(B(k+1) +
λ

2

∥∥∥B(k+1) −B(k)
∥∥∥2
F

≥ λ

2

∥∥∥B(k+1) −B(k)
∥∥∥2
F
.

Here, h is the objective function of (3.7). Since B(k+1) minimizes (3.7), we have h(B(k)) ≥
h(B(k+1). This leads to the last inequality.
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Finally, we have

f
(
A(k+1), B(k+1), X(k))

)
− f

(
A(k+1), B(k+1), X(k+1)

)
=

1

2

∥∥∥A(k+1)B(k+1) −X(k)
∥∥∥2
F
− 1

2

∥∥∥A(k+1)B(k+1) −X(k+1)
∥∥∥2
F

=
1

2

∥∥∥Re(A(k+1)B(k+1) −X(k))
∥∥∥2
F
− 1

2

∥∥∥Re(A(k+1)B(k+1) −X(k+1))
∥∥∥2
F

+
1

2

∥∥∥Im((A(k+1)B(k+1) −X(k))Ω)
∥∥∥2
F
− 1

2

∥∥∥Im((A(k+1)B(k+1) −X(k+1))Ω)
∥∥∥2
F

+
1

2

∥∥∥Im((A(k+1)B(k+1) −X(k))ΩC
)
∥∥∥2
F
− 1

2

∥∥∥Im((A(k+1)B(k+1) −X(k+1))ΩC
)
∥∥∥2
F

=
1

2

∥∥∥Im((A(k+1)B(k+1) −X(k))ΩC
)
∥∥∥2
F

=
1

2

∥∥∥Im((X(k+1) −X(k))ΩC
)
∥∥∥2
F

=
1

2
∥X(k) −X(k+1)∥2F .

Summing up these three parts, we have the conclusion.

Lemma 5.4. Suppose that
{
Z(k) ≡

(
A(k), B(k), X(k)

)
: k = 0, 1, 2, . . .

}
is the sequence gen-

erated by the LRQMA algorithm. Then

∞∑
k=0

[∥∥∥A(k) −A(k+1)
∥∥∥2
F

+
∥∥∥B(k) −B(k+1)

∥∥∥2
F

+
∥∥∥X(k) −X(k+1)

∥∥∥2
F

]
<∞,

lim
k→∞

[
A(k) −A(k+1)

]
= Om×r,

lim
k→∞

[
B(k) −B(k+1)

]
= Or×n

and
lim
k→∞

[
X(k) −X(k+1)

]
= Om×n.

Proof. By Lemma 5.3, for k = 0, 1, 2, . . . , we have∥∥∥A(k) −A(k+1)
∥∥∥2
F

+
∥∥∥B(k) −B(k+1)

∥∥∥2
F

+
∥∥∥X(k) −X(k+1)

∥∥∥2
F

≤ 2

λ

[
f
(
A(k), B(k), X(k))

)
− f

(
A(k+1), B(k+1), X(k+1)

)]
.

Summarizing with respect to k, we have

∞∑
k=0

[∥∥∥A(k) −A(k+1)
∥∥∥2
F

+
∥∥∥B(k) −B(k+1)

∥∥∥2
F

+
∥∥∥X(k) −X(k+1)

∥∥∥2
F

]

≤
∞∑
k=0

2

λ

[
f
(
A(k), B(k), X(k))

)
− f

(
A(k+1), B(k+1), X(k+1)

)]
≤ 2

λ
f
(
A(0), B(0), X(0))

)
<∞.

Hence,
∥∥A(k) −A(k+1)

∥∥2
F
→ 0,

∥∥B(k) −B(k+1)
∥∥2
F
→ 0 and

∥∥X(k) −X(k+1)
∥∥2
F
→ 0. The

second conclusion of the lemma follows.
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Theorem 5.5. Suppose that
{
Z(k) ≡

(
A(k), B(k), X(k)

)
: k = 0, 1, 2, . . .

}
is the sequence

generated by the LRQMA algorithm and it is bounded. Then every limiting point of this
sequence is a stationary point of (3.2).

Proof. Since
{(
A(k), B(k), X(k)

)
: k = 0, 1, 2, . . .

}
is bounded, it must have a subsequence{(

A(ki), B(ki), X(ki)
)

: i = 0, 1, 2, . . .
}

that converges to a limiting point
(
A#, B#, X#

)
. By

Lemma 5.4, the subsequence
{(
A(ki+1), B(ki+1), X(ki+1)

)
: i = 0, 1, 2, . . .

}
converges to the

same limiting point.

In (3.4), (3.6) and (3.8), replace k by ki and let i→∞. Then, with an argument similar
to the proof of Proposition 5.2, we conclude that

(
A#, B#, X#

)
is a stationary point of

(3.2).

Consider optimization problem (3.2). As we regard the objective function f as a function
defined on an abstract vector space with real coefficients, it is a semi-algebraic function in the
sense of [1, 2, 3]. Then, for any critical point

(
A#, B#, X#

)
of f , there are a neighborhood

N of this critical point, an exponent θ ∈ [ 12 , 1) and a positive constant µ such that the
Kurdyka- Lojasiewicz inequality [1, 2, 3] below holds, i.e., for any (A,B,X) ∈ N , we have∣∣f(A,B,X)− f

(
A#, B#, X#

)∣∣θ ≤ µ ∥ΠΣ(∇f(A,B,X))∥F , (5.5)

where Σ is the feasible set of (3.2), ΠΣ(∇f) is the projected gradient of f with respect to
Σ. Then, we have

ΠΣ(∇f(A,B,X)) =

 (AB −X)B∗

A∗(AB −X)
Im((X −AB)ΩC

)

 . (5.6)

We may further confirm (5.5) by the following argument in the real field. Let

A = A0 +A1i +A2j +A3k,
B = B0 +B1i +B2j +B3k,
X = X0 +X1i +X2j +X3k,
D = D0 +D1i +D2j +D3k,
W = (A0, A1, A2, A3, B0, B1, B2, B3, X0, X1, X2, X3),

where Ai ∈ Rm×r, Bi ∈ Rr×n, Xi ∈ Rm×n and Di ∈ Rm×n for i = 0, 1, 2, 3. Define
ϕ(W) ≡ f(A,B,X). Then

ϕ(W)=
1

2
∥(A0B0−A1B1−A2B2−A3B3−X0)+(A0B1+A1B0+A2B3−A3B2−X1)i

+(A0B2+A2B0+A3B1−A1B3−X2)j+(A0B3+A3B0+A1B2−A2B1−X3)k∥2F

=
1

2

[
∥A0B0−A1B1−A2B2−A3B3−X0∥2F +∥A0B1+A1B0+A2B3−A3B2−X1∥2F

+∥A0B2+A2B0+A3B1−A1B3−X2∥2F +∥A0B3+A3B0+A1B2−A2B1−X3∥2F
]
.

This shows that ϕ is a semi-algebraic function. The constraints of (3.2) in the real field are
X0 = O and (Xi)Ω = (Di)Ω for i = 1, 2, 3. Applying the Kurdyka- Lojasiewicz inequality in
the real field [1, 2, 3], we may still obtain (5.5).

In the following, we use (5.5) to show that the infinite sequence generated by the LRQMA
algorithm converges to a stationary point. We first to prove two lemmas.
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Lemma 5.6. Suppose that
{
Z(k) ≡

(
A(k), B(k), X(k)

)
: k = 0, 1, 2, . . .

}
is the sequence gen-

erated by the LRQMA algorithm and it is bounded. Then there is a positive constant η ∈ (0, 1]
such that for k = 0, 1, 2, 3, . . . ,∥∥∥(A(k), B(k), X(k))

)
−
(
A(k+1), B(k+1), X(k+1)

)∥∥∥
F
≥ η

∥∥∥ΠΣ(∇f(A(k), B(k), X(k)))
∥∥∥
F
.

Proof. By (3.6) and Proposition 2.1, we have∥∥∥(A(k)B(k) −X(k)
)(

B(k)
)∗∥∥∥2

F

=
∥∥∥(A(k) −A(k+1)

) [
B(k)

(
B(k)

)∗
+ λIr

]∥∥∥2
F

≤
∥∥∥A(k) −A(k+1)

∥∥∥2
F

∥∥∥B(k)
(
B(k)

)∗
+ λIr

∥∥∥2
F

≤ 1

2η2

∥∥∥A(k+1) −A(k)
∥∥∥2
F
.

Here η ∈ (0, 1] is a positive constant. Such a positive constant exists, as
{(
A(k), B(k), X(k)

)}
is bounded. Similarly, by (3.8) and Proposition 2.1, we have∥∥∥(A(k)

)∗ (
A(k)B(k) −X(k)

)∥∥∥2
F
≤ 1

2η2

∥∥∥A(k+1) −A(k)
∥∥∥2
F

+
1

η2

∥∥∥B(k+1) −B(k)
∥∥∥2
F
.

We also have ∥∥∥Im(
(X(k) −A(k)B(k))ΩC

)∥∥∥2
F
≤

∥∥∥X(k+1) −X(k)
∥∥∥2
F
.

By (5.6) and the above three inequalities, we have∥∥∥ΠΣ

(
∇f(A(k), B(k), X(k))

)∥∥∥2
F

=
∥∥∥(A(k)B(k) −X(k)

)(
B(k)

)∗∥∥∥2
F

+
∥∥∥(A(k)

)∗ (
A(k)B(k) −X(k)

)∥∥∥2
F

+
∥∥∥Im(

(X(k) −A(k)B(k))ΩC

)∥∥∥2
F

≤ 1

η2

∥∥∥A(k+1) −A(k)
∥∥∥2
F

+
1

η2

∥∥∥B(k+1) −B(k)
∥∥∥2
F

+
∥∥∥X(k+1) −X(k)

∥∥∥2
F

≤ 1

η2

∥∥∥(A(k), B(k), X(k))
)
−
(
A(k+1), B(k+1), X(k+1)

)∥∥∥2
F
.

Hence, we have the conclusion.

Lemma 5.7. Let Z# be one limiting point of {Z(k)}. Assume that Z(0) satisfies Z(0) ∈ N
and

∥∥Z(0) − Z#
∥∥ ≤ ρ, where

ρ >
2µ

λη(1− θ)

∣∣∣f(Z(0))− f(Z#)
∣∣∣1−θ

+
∥∥∥Z(0) − Z#

∥∥∥ . (5.7)

Then we have the following conclusions:∥∥∥Z(k) − Z#
∥∥∥ ≤ ρ, for k = 0, 1, 2, . . . (5.8)

and
∞∑
k=0

∥∥∥Z(k) − Z(k+1)
∥∥∥ ≤ 2µ

λη(1− θ)

∣∣∣f(Z(0) − f(Z#)
∣∣∣1−θ

. (5.9)
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Proof. We prove (5.8) by induction. By assumption, (5.8) holds for k = 0. We now assume

that there is an integer k̂ such that (5.8) holds for 0 ≤ k ≤ k̂. This means that the Kurdyka-

 Lojasiewicz inequality holds at these points. We now prove that (5.8) holds for k = k̂ + 1.
Define a scalar function

ψ(α) :=
1

1− θ
∣∣α− f(Z#)

∣∣1−θ
.

Then ψ is a concave function and ψ′(α) = |α− f(Z#)|−θ if α ≥ f(Z#). For 0 ≤ k ≤ k̂, we
have

ψ
(
f
(
Z(k)

))
− ψ

(
f
(
Z(k+1)

))
≥ ψ′

(
f
(
Z(k)

)) [
f
(
Z(k)

)
− f

(
Z(k+1)

)]
≥ 1∣∣f (Z(k)

)
− f

(
Z(#)

)∣∣θ λ2
∥∥∥Z(k) − Z(k+1)

∥∥∥2
F

[by Lemma 5.3]

≥ λ

2µ

∥∥Z(k) − Z(k+1)
∥∥2
F∥∥ΠΣ

(
∇f

(
Z(k)

))∥∥ [by (5.5)]

≥ λη

2µ

∥∥Z(k) − Z(k+1)
∥∥2
F∥∥Z(k) − Z(k+1)

∥∥
F

[by Lemma 5.6]

=
λη

2µ

∥∥∥Z(k) − Z(k+1)
∥∥∥
F
.

Summarizing k from 0 to k̂, we have

k̂∑
k=0

∥∥∥Z(k) − Z(k+1)
∥∥∥
F
≤ 2µ

λη

k̂∑
k=0

[
ψ
(
f
(
Z(k)

))
− ψ

(
f
(
Z(k+1)

))]
=

2µ

λη

[
ψ
(
f
(
Z(0)

))
− ψ

(
f
(
Z(k̂+1)

))]
≤ 2µ

λη
ψ
(
f
(
Z(0)

))
. (5.10)

By this and (5.7), we have

∥∥∥Z(k̂+1) − Z(#)
∥∥∥
F
≤

k̂∑
k=0

∥∥∥Z(k) − Z(k+1)
∥∥∥
F

+
∥∥∥Z(0) − Z#

∥∥∥
≤ 2µ

λη
ψ
(
f
(
Z(0)

))
+
∥∥∥Z(0) − Z#

∥∥∥
< ρ.

This proves (5.8).

Letting k̂ →∞ in (5.10) and using (5.7), we have (5.9).

Theorem 5.8. Suppose that the LRQMA algorithm generates a bounded sequence {Z(k)}.
Then

∞∑
k=0

∥∥∥Z(k) − Z(k+1)
∥∥∥ <∞,

which means that the entire sequence {Z(k)} converges to a limit.
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Proof. Because {Z(k)} is bounded, it must have a limiting point Z#. Then there is an index
k0 such that ∥∥Zk0 − Z#

∥∥ ≤ ρ.
We may regard Zk0 as the initial point. Then Lemma 5.7 holds. The entire sequence satisfies
(5.9). The theorem is proved.

Finally, we establish convergence rates for the convergence of this sequence.

Theorem 5.9. Suppose that the LRQMA algorithm generates a bounded sequence {Z(k)}.
Then,

(1) if θ = 1
2 , then there exist σ ∈ [0, 1) and β > 0 such that∥∥∥Z(k) − Z#

∥∥∥ ≤ βσk,

i.e., the sequence converges R-linearly;
(2) if 1

2 < θ < 1, then there exists β > 0 such that∥∥∥Z(k) − Z#
∥∥∥ ≤ βk− 1−θ

2θ−1 .

Proof. Without loss of generality, assume that
∥∥Z(0) − Z#

∥∥ < ρ. Let

∆k :=

∞∑
i=k

∥∥∥Z(i) − Z(i+1)
∥∥∥ ≥ ∥∥∥Z(k) − Z#

∥∥∥ . (5.11)

By Lemma 5.7 we have

∆k ≤ 2µ

λη(1− θ)

∣∣∣f(Z(k) − f(Z#)
∣∣∣1−θ

=
2µ

λη(1− θ)

[∣∣∣f(Z(k) − f(Z#)
∣∣∣θ] 1−θ

θ

≤ 2µ

λη(1− θ)
µ

1−θ
θ

∥∥∥ΠΣ

(
∇f

(
Z(k)

))∥∥∥ 1−θ
θ

[by (5.5)]

≤ 2µ

λη(1− θ)

(
µ

η

) 1−θ
θ ∥∥∥Z(k) − Z(k+1)

∥∥∥ 1−θ
θ

[by Lemma 5.6]

=
2µ

1
θ

λη
1
θ (1− θ)

∥∥∥Z(k) − Z(k+1)
∥∥∥ 1−θ

θ

. (5.12)

(1) If θ = 1
2 , then 1−θ

θ = 1. By (5.12), we have

∆k ≤
2µ

1
θ

λη
1
θ (1− θ)

(∆k −∆k+1) .

This implies that
∆k+1 ≤ σ∆k, (5.13)

where

σ =
2µ

1
θ − λη 1

θ (1− θ)
2µ

1
θ

.
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By (5.11) and (5.12), we know that∥∥∥Z(k) − Z#
∥∥∥ ≤ ∆k ≤ σ∆k−1 ≤ · · · ≤ σk∆0 ≡ βσk,

where β ≡ ∆0 is finite by Theorem 5.8. The conclusion follows.
(2) Let

κ
1−θ
θ =

2µ
1
θ

λη
1
θ (1− θ)

.

By (5.12), we get

∆
θ

1−θ

k ≤ κ (∆k −∆k+1) .

Define ζ(α) := α− θ
1−θ . Then ζ is monotonically decreasing. We have

1
κ ≤ ζ(∆k) (∆k −∆k+1)

=
∫∆k

∆k+1
ζ(∆k)dα

≤
∫∆k

∆k+1
ζ(α)dα

= − 1−θ
2θ−1

(
∆

− 2θ−1
1−θ

k −∆
− 2θ−1

1−θ

k+1

)
.

Denote ν := − 2θ−1
1−θ . Then ν < 0 since 1

2 < θ < 1. We have

∆ν
k+1 −∆ν

k ≥ ξ > 0,

where ξ ≡ − ν
κ . This implies that

∆k ≤ [∆ν
0 + kξ]

1
ν ≤ (kξ)

1
ν .

Letting β = ξ
1
ν , we have the conclusion.

6 Numerical Experiments

In this section, we are going to evaluate the performance of the proposed low-rank quaternion
matrix approximation method for color image completion. Given a color image with possibly
missing pixels, we represent it as a quaternion matrix, where red, green, blue values are
placed into three imaginary parts of the pure quaternion matrix. For simplicity, missing
entries of the quaternion matrix take the mean of known entries. In this way, we get a
quaternion matrix D ∈ Qm×n. Let USV ∗ = D be the QSVD decomposition; See Theorem
2.2. Singular values of D are located in the diagonal of S and satisfy σ1 ≥ σ2 ≥ · · · ≥
σmin(m,n) ≥ 0. The parameter of rank is determined by choosing the smallest integer r that
satisfies

r∑
i=1

σi ≥ 0.96

min(m,n)∑
i=1

σi.

We define S1:r as the leading r × r diagonal block of S. Let U1:r and V1:r be the first r
columns of U and V , respectively. Then, the initial points are A(0) = U1:r and B(0) =
S1:rV

∗
1:r. The LRQMA algorithm terminates if the decrease of the objective function is tiny,

f(Z(k−1))−f(Z(k))
max(1,f(Z(k)))

≤ 10−5, or the number of iterations exceeds 500.

We compare four algorithms as follows.
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Figure 1: Original color images are illustrated in the first line. Second to the last lines report
associated images with 25%, 50%, and 75% randomly missing pixels, respectively.

• LRQMA: The proposed algorithm in Section 3, where the quaternion toolbox for mat-
lab [11] is used.

• LMaFit: A low-rank matrix factorization model is solved by a nonlinear successive
over-relaxation algorithm for the matrix completion problem [15].

• FPCA: A fixed point continuation with approximate SVD (FPCA) algorithm is de-
signed for solving the matrix nuclear norm minimization problem [8].

• LRTC: The low-rank tensor completion approach is proposed for estimating missing
values in visual data [7].

Testing color images (named lena, baboon, fruits, peppers, lotus, sailboat, and airplane)
are from the public-domain test images dataset, which are illustrated in Figure 1. These
color images are all of size 256 × 256 × 3. Incomplete images with 25%, 50%, and 75%
randomly missing pixels are shown in the second to the last lines of Figure 1. We calculate
the peak signal-to-noise ratio (PSNR) of the recovered images

PSNR = 10 log10

(
(28 − 1)2

MSE

)
,

where the mean square error is

MSE =
1

256× 256× 3

256∑
i=1

256∑
j=1

3∑
k=1

(
Xrec

ijk −Xtrue
ijk

)2
,

and Xrec and Xtrue denote the recovered and true color images, respectively.

https://homepages.cae.wisc.edu/ ece533/images/
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Methods lena baboon fruits peppers lotus sailboat airplane
25% missing pixels

LRQMA 34.682 29.292 33.116 37.183 34.070 33.729 31.079
LMaFit 28.410 26.911 27.608 27.130 27.565 26.271 27.995
FPCA 29.607 26.263 28.505 29.607 28.392 27.044 29.562
LRTC 31.749 29.020 31.181 32.311 31.987 29.788 31.961

50% missing pixels
LRQMA 31.335 25.098 29.146 32.602 29.431 28.443 28.264
LMaFit 24.963 23.415 24.023 23.772 24.242 22.875 24.552
FPCA 26.353 23.195 25.068 26.140 25.473 23.677 25.823
LRTC 26.414 24.626 26.321 26.777 27.008 24.516 26.822

75% missing pixels
LRQMA 26.887 21.873 24.998 26.956 23.052 22.873 22.500
LMaFit 21.559 19.252 18.708 10.685 8.196 18.903 20.003
FPCA 20.942 17.881 19.903 19.746 19.442 17.952 19.724
LRTC 21.765 21.025 22.184 21.610 22.402 20.061 22.507

Table 1: PSNRs of recovered color images.

Methods lena baboon fruits peppers lotus sailboat airplane
LRQMA 31.533 30.223 31.698 32.912 32.442 31.652 28.760
LMaFit 28.814 24.207 25.720 28.157 27.884 27.852 21.881
FPCA 30.108 27.783 30.379 31.078 29.473 28.615 29.351
LRTC 30.399 28.929 31.399 30.880 30.343 29.097 30.197

Table 2: PSNRs of color images.

In numerical experiments, we examine four algorithms for completing color images with
randomly missing pixels. Resulting images are illustrated in Figures 2–4 and associated
PSNRs are reported in Table 1. First, all methods report recovered images. As the pixels
missing ratio increases from 25% to 75%, the quality of recovered color images decreases.
Second, the tensor-based approach LRTC performs better than real matrix-based approaches
LMaFit and FPCA, because the tensor could capture the inherent multilinear structure of
color images though the third mode of the tensor is only of 3 dimension. Finally, since we
transform the red-green-blue pixel to a pure quaternion as a while, the proposed quaternion-
based method works wonderfully and gives higher PSNR color images when compared with
other approaches.

Next, we consider the case that color images are of text missing pixels, which are il-
lustrated in the second line of Figure 5. Using four methods, the resulting PSNR values
and recovered images are reported in Table 2 and lines 3–6 of Figure 5. Obviously, our
quaternion-based method LRQMA outperforms other methods. Hence, we claim that the
proposed low-rank quaternion matrix approximation is effective and powerful for color image
completion.

7 Conclusion

In a certain sense, the gradient of a real function in quaternion matrix variables, studied in
Section 4, is a kind of the pseudo-derivative mentioned in [17]. What we presented in (4.2)
is a concise form of such a pseudo-derivative. It turns out to give us simple expressions for
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Figure 2: Recovered images by various algorithms from 25% randomly missing pixels.

Figure 3: Recovered images by various algorithms from 50% randomly missing pixels.
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Figure 4: Recovered images by various algorithms from 75% randomly missing pixels.

Figure 5: Text missing images and recovered images by various methods.
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gradients of functions, and optimality conditions of optimization problems, involved in our
convergence analysis. It may be worth further exploring the use of (4.2).
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