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Abstract: In this paper, we concern with solving non-homogenous multi-linear equations with M-tensors.
We prove the existence and uniqueness of the positive solution to a non-homogenous M-tensor equation with
a positive right-hand side vector. In addition, we expand some classical splitting methods like the Jacobi-like,
Gauss-Seidel-like, simplified Gauss-Seidel-like, and SOR-like methods to solve the tensor equations, further
providing their convergence analyses. Moreover, numerical results show that generally, the SOR-like method
performs the best in iteration steps. The Jacobi-like method is the worst but requires less CPU time, and the
effects of the other methods are between the above two with narrow distinctions in most non-sparse cases.
Furthermore, the SOR-like method for the sparse cases needs the least CPU time, while the Jacobi-like
method needs the most.
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1 Introduction

Tensor research has attracted a wide range of interests due to some wide applications,
such as medical engineering ([36]), the analysis of documents ([8, 30]) and high-order web
link ([23, 24]), n-people noncooperative games ([21]), partial differential equations (PDEs,
[12, 22]) and so on.

Solving multi-linear equations is an important problem in engineering and scientific
computing ([29]). A homogenous multi-linear equation is often represented in a tensor
form Axm−1 − b = 0, where x,b ∈ Rn, A is an mth-order n-dimensional real tensor
([9, 16, 25, 26, 27, 33, 34, 35]) that takes the form

A = (Ai1i2i3···im), Ai1i2i3···im ∈ R, ij = 1, · · · , n for j = 1, · · · ,m,
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denoted as A ∈ R[m,n], and the notation Axm−1 is defined by

(
Axm−1

)
i
=

n∑
i2,··· ,im=1

Aii2i3···imxi2xi3 · · ·xim for i = 1, · · · , n.

In 2015, Li and Ng proposed iterative methods (see [29]) for solving a set of sparse non-
negative tensor equations and gave the convergence analysis under suitable conditions. More-
over, Ding and Wei [12] investigated the solution of Axm−1 − b = 0 when the coefficient
tensor A is an M-tensor in 2016. In particular, the conditions implying a unique positive
solution are “A is a nonsingular (or strong) M-tensor” and “b is a positive vector” (see
Theorem 3.2 in [12]). In the same year, Li et al. [28] used splitting methods for solving
Axm−1 −b = 0, such as the Jacobi, Gauss-Seidel, SOR, and Newton-Gauss-Seidel iteration
methods, which are different from those in [12]. Furthermore, Han introduced a homotopy
method in [17] for solving M-equations and proved its convergence in 2017. In 2018, Lv
and Ma [31] proposed a Levenberg-Marquardt method for solving semi-symmetric tensor
equations and H-eigenvalue of a semi-symmetric tensor and gave the global convergence
theorem. In the same year, Xie et al. proposed a new tensor method based on the rank-1
approximation ([5]) of the coefficient tensor for solving some M-systems in [40].

With respect to (nonsingular) M-tensors ([11]), we call a tensor A ∈ R[m,n] anM-tensor,
if there exist s ∈ R and an mth-order n-dimensional tensor B ≥ 0 such that A = sI − B,
where s ≥ ρ(B) with ρ(B) being the spectral radius of B,

ρ(B) = max
{
|λ| : Bξm−1 = λ · ξ[m−1]

}
, ξ[m−1] = [ξm−1

1 , · · · , ξm−1
n ]⊤ 6= 0.

B ≥ 0 means that every entry of B is nonnegative. When s > ρ(B), A is called a nonsingular
M-tensor. Some equivalent definitions have been proposed in [11, 42] and we just mention
a few.

Proposition 1.1. Suppose that A is a Z-tensor, i.e., all its off-diagonal entries are non-
positive. Then the following conditions are equivalent.

¬ A is a nonsingular M-tensor.

­ There exists x > 0 with Axm−1 > 0.

® There exists x ≥ 0 with Axm−1 > 0.

Here x > 0 and x ≥ 0 mean all its entries are positive and nonnegative, respectively.

In this paper, we consider the following system of non-homogenous multi-linear equations
with M-tensors

Amxm−1 +Am−1x
m−2 + · · ·+A3x

2 +A2x = b, (1.1)

where {Ak ∈ R[k,n]}mk=2 is a given series of M-tensors, Am is a nonsingular M-tensor, b is
a given non-zero vector, and x contains the unknowns (see [10, 12, 13, 17, 20]).

One application from (1.1) is the one-dimension nonlinear Poisson equation ([15]) with
Dirichlet ’s boundary condition{

−∆u = −uxx = f(u) in (0, 1),

u(0) = c0, u(1) = c1,
(1.2)

where

f(u) =
1

1 + u+ u2 + · · ·+ um−2
, m = 2, 3, 4, · · · .
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Set the stepsize h = 1
n−1 and let xi = u ((i− 1) · h). The nonlinear Poisson equation (1.2)

is discretized into
x1 = u(0) = c0,

(2xi − xi−1 − xi+1) · (1 + xi + x2
i + · · ·+ xm−2

i ) = 1
(n−1)2 , i = 2, 3, · · · , n− 1,

xn = u(1) = c1.

(1.3)

By noticing that (2xi − xi−1 − xi+1) · xk−2
i = Akx

k−1 and Ak is an M-tensor of kth-order
with

(Ak)1, 1, 1, · · · , 1︸ ︷︷ ︸
k copies

= (Ak)n,n,n,··· ,n = 1,

(Ak)i,i,i,··· ,i = 2, i = 2, 3, · · · , n− 1,

(Ak)i,i−1,i,··· ,i = (Ak)i,i,i−1,··· ,i = · · · = (Ak)i,i,i,··· ,i−1 = − 1
k−1 , i = 2, 3, · · · , n− 1,

(Ak)i,i+1,i,··· ,i = (Ak)i,i,i+1,··· ,i = · · · = (Ak)i,i,i,··· ,i+1 = − 1
k−1 , i = 2, 3, · · · , n− 1

(1.4)
for k = 2, 3, · · · ,m, hence Eq. (1.3) can be equivalently rewritten as a non-homogenous
M-equation with the right-hand side vector b, whose elements are

b1 =
1−cm−1

0

1−c0
for c0 6= 1 or b1 = m− 1 for c0 = 1,

bi =
1

(n−1)2 , i = 2, 3, · · · , n− 1,

bn =
1−cm−1

1

1−c1
for c1 6= 1 or b1 = m− 1 for c1 = 1.

Generally, the storage cost of the tensor A is O(nk) and the computation complexity of
Axk−1 is (k−1)nk (i.e., O(nk)) for any tensor A ∈ R[k,n]. However, by some straightforward
calculations, we can find the number of nonzero entries of Ak is only 2(k − 1)(n − 2) + n
(i.e., O(n)), which indicates (1.3) is a sparse system in nature. At the same time, the
computation complexity ofAkx

k−1 will decrease from O(nk) toO(n), which improves greatly
the computational efficiency. In addition, the sets of n-dimension nonnegative vectors and n-
dimension positive vectors are denoted by Rn

+ and Rn
++, respectively. Moreover, the operator

[{Ak}mk=2]
−1

b represents roots of the multi-polynomial equation (1.1), i.e.,

[{Ak}mk=2]
−1

b =
{
x ∈ Rn : Amxm−1 +Am−1x

m−2 + · · ·+A3x
2 +A2x = b

}
, (1.5)

where Ak ∈ R[k,n] and b ∈ Rn. Similarly,

[{Ak}mk=2]
−1

++ b =
{
x ∈ Rn

++ : Amxm−1 +Am−1x
m−2 + · · ·+A3x

2 +A2x = b
}
. (1.6)

The rest of this paper is organized as follows. First we give the proof of the existence and
uniqueness of a positive solution to non-homogenous multi-linear equations (1.1) in Section
2. Next, we present the Jacobi-like, (backward, simplified) Gauss-Seidel-like and SOR-like
methods established to solve (1.1) in Section 3. In addition, we provide convergence analyses
for the proposed algorithms in Section 4 and compare the effects of these methods applied
to solve equations in Section 5. Finally, we draw some conclusions and raise several future
directions in Section 6.

2 Existence and Uniqueness of Positive Solutions

In order to analyze the existence and uniqueness of the positive solution to a non-homogenous
multi-linear equation with a positive right-hand side vector, we introduce two lemmas about
polynomial equations as follows.
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Lemma 2.1. Given b > 0 and suppose that

ak ≥ 0 for any k = 2, 3, . . . ,m and aj > 0 for some j ∈ {2, 3, . . . ,m}.

The following polynomial equation

amxm−1 + am−1x
m−2 + · · ·+ a2x = b (2.1)

has a unique positive root. Furthermore, for any b2 ≥ b1 > 0, we have x2 ≥ x1 > 0, where
x1 and x2 satisfy

amxm−1
1 + am−1x

m−2
1 + · · ·+ a2x1 = b1, (2.2)

amxm−1
2 + am−1x

m−2
2 + · · ·+ a2x2 = b2. (2.3)

Proof. Denote f(x) = amxm−1 + am−1x
m−2 + · · · + a2x − b. We can find f ′(x) is strictly

increasing in (0,+∞). Notice that

f(0) = −b < 0 and lim
x→+∞

f(x) = +∞.

Hence, f(x) has a unique zero point in (0,+∞). Taking difference between (2.2) and (2.3)
yields

am(xm−1
1 − xm−1

2 ) + am−1(x
m−2
1 − xm−2

2 ) + · · ·+ a2(x1 − x2) = b1 − b2 ≤ 0,

which can be rewritten as

(x1 − x2)

[
am

m−2∑
i=0

xi
1x

m−2−i
2 + am−1

m−3∑
i=0

xi
1x

m−3−i
2 + · · ·+ a2

]

=am(x1 − x2)

m−2∑
i=0

xi
1x

m−2−i
2 + am−1(x1 − x2)

m−3∑
i=0

xi
1x

m−3−i
2 + · · ·+ a2(x1 − x2) ≤ 0

by using the formula that ak−1 − bk−1 = (a− b)(ak−2 + ak−3b+ · · ·+ abk−3 + bk−2). Then
x1 ≤ x2, because

am

m−2∑
i=0

xi
1x

m−2−i
2 + am−1

m−3∑
i=0

xi
1x

m−3−i
2 + · · ·+ a2 > 0

can be derived from x1 > 0, x2 > 0 and the assumption about {ak ∈ R}mk=2.

In addition, through this lemma, we can portray the following conclusion in the n-
dimensional case of the M-equation, whose diagonal elements are identical and the others
are zeros.

Lemma 2.2. Given b ∈ Rn
++ and suppose that

sk ≥ 0 for any k = 2, 3, . . . ,m and sj > 0 for some j ∈ {2, 3, . . . ,m}.

The following system of polynomial equations

smx[m−1] + sm−1x
[m−2] + · · ·+ s3x

[2] + s2x = b (2.4)

has a unique positive solution. Furthermore, for any d ≥ c > 0, we have y ≥ x > 0, where
x and y are satisfying

smx[m−1] + sm−1x
[m−2] + · · ·+ s3x

[2] + s2x = c,

smy[m−1] + sm−1y
[m−2] + · · ·+ s3y

[2] + s2y = d.
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Proof. For any i ∈ {1, 2, . . . , n}, Lemma 2.1 shows us that

smxm−1
i + sm−1x

m−2
i + · · ·+ s3x

2
i + s2xi = bi, bi > 0 (2.5)

has a unique root in (0,+∞), denoted as x∗
i . This implies Eq. (2.4) has the unique positive

root
x∗ = [x∗

1, x
∗
2, · · · , x∗

n]
⊤.

In addition, Theorem 2.1 shows us that, for any di ≥ ci > 0, we have yi ≥ xi > 0, where
xi and yi are the roots of equation (2.5) when the right-hand side scalars are ci and di,
respectively. Therefore, let x = [x1, · · · , xn]

⊤, y = [y1, · · · , yn]⊤ and c = [c1, · · · , cn]⊤,
d = [d1, · · · , dn]⊤. Then we get 0 < x ≤ y when 0 < c ≤ d.

Moreover, we can obtain the theorem about the existence and uniqueness of a positive
solution to Eq. (1.1) by the following two lemmas and a fixed-point theorem in [1].

Lemma 2.3. Let {Bk ∈ R[k,n]}mk=2 be a series of nonnegative tensors and {sk ∈ R}mk=2

be also nonnegative with at least one sk > 0. Given b,x0 ∈ Rn
++, and define xl+1 as the

solution to

smx[m−1] + sm−1x
[m−2] + · · ·+ s3x

[2] + s2x = Bmxm−1
l + Bm−1x

m−2
l + · · ·+ B2xl + b,

l = 0, 1, · · · . (2.6)

Then each vector of the sequence {xl}∞l=0 is positive.

Proof. First, we know that

smx[m−1] + sm−1x
[m−2] + · · ·+ s3x

[2] + s2x = Bmxm−1
0 + Bm−1x

m−2
0 + · · ·+ B2x0 + b

has a unique positive solution under given conditions according to Lemma 2.2, i.e., x1 is
positive. Second, we assume that xl > 0 which indicates

Bmxm−1
l + Bm−1x

m−2
l + · · ·+ B2xl + b > 0, l ≥ 1.

Finally, we can similarly get xl+1 is positive according to Lemma 2.2.

Lemma 2.4. Let Am ∈ R[m,n] be a nonsingular M-tensor and {Bk ∈ R[k,n]}m−1
k=2 be a series

of nonnegative tensors, and b ∈ Rn
++. Then there exists a vector x ∈ Rn

++ such that

Amxm−1 > Bm−1x
m−2 + · · ·+ B2x+ b. (2.7)

Proof. Since Am is a non-singular M-tensor and by ­ in Prop. 1.1, there exists a vector
z ∈ Rn

++ such that Amzm−1 > 0. For any α > 1 we have

Am(αz)m−1 = αm−1 · Amzm−1 > 0

and

0 < Bm−1(αz)
m−2 + · · ·+ B2(αz) + b = αm−2 · Bm−1z

m−2 + · · ·+ α · B2z+ b

< αm−2 ·
[
Bm−1z

m−2 + · · ·+ B2z+ b
]
.

Therefore, we get

Am(αz)m−1 −
[
Bm−1(αz)

m−2 + · · ·+ B2(αz) + b
]

> αm−1 · Amzm−1 − αm−2 ·
[
Bm−1z

m−2 + · · ·+ B2z+ b
]

= αm−2 ·
[
αAmzm−1 −

(
Bm−1z

m−2 + · · ·+ B2z+ b
)]

.
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It follows that there a large enough α like

α =

max
i=1,··· ,n

{
(Bm−1z

m−2 + · · ·+ B2z+ b)i
}

min
i=1,··· ,n

{(Amzm−1)i}
+ 1

satisfying αAmzm−1 −
(
Bm−1z

m−2 + · · ·+ B2z+ b
)
> 0, which indicates the inequality

(2.7) taking x = αz.

Theorem 2.5 ([1, 12, 39]). Let P be a regular cone in an ordered Banach space E and
[u,v] ⊂ E be a bounded order interval. Suppose that T : [u,v] → E is an increasing map1

which satisfies

u ≤ T (u) and v ≥ T (v). (2.8)

Then T has at least one fixed point in [u,v]. Moreover, there exist a minimal fixed point x∗
and a maximal fixed point x∗ in the sense that every fixed point x satisfies x∗ ≤ x ≤ x∗.
Finally, the iteration method

xl+1 = T (xl), l = 0, 1, 2, · · ·

converges to x∗ from below if x0 = u, i.e.,

u = x0 ≤ x1 ≤ · · · ≤ x∗,

and converges to x∗ from above if x0 = v, i.e.,

v = x0 ≥ x1 ≥ · · · ≥ x∗.

Based on the above lemmas and theorem, we have the following theorem.

Theorem 2.6. Given b ∈ Rn
++. The non-homogeneous M-equation (1.1) has a unique

positive solution, i.e., there exists only one x∗ ∈ Rn
++ such that

Amxm−1
∗ +Am−1x

m−2
∗ + · · ·+A3x

2
∗ +A2x∗ = b.

Proof. According to the definition of (nonsingular) M-tensors, there exists a series of non-
negative tensors {Bk ∈ R[k,n]}mk=2 and scalars {sk ∈ R}mk=2 satisfying

Ak = skIk − Bk, and sk ≥ ρ(Bk), k = 2, · · · ,m.

Particularly, sm > ρ(Bm) ≥ 0. Consider the fixed-point iteration

xl+1 = Ps,B(xl), l = 0, 1, · · · ,

where x0 ∈ Rn
++ is given and Ps,B(xl) represents the unique positive solution of the multi-

polynomial equation (2.6) (proved in Lemma 2.3). Apparently Ps,B(·) is a mapping from
Rn

++ to Rn
++ and 0 < Ps,B(0).

Next, we know from Lemma 2.4 there exist z ∈ Rn
++ and a scalar α > 0 such that

Am(αz)m−1 > Bm−1(αz)
m−2 + · · ·+ B2(αz) + b.

1T is an increasing continuous map if for any x, y in its domain and x ≤ y (i.e., x − y ≤ 0), we have
T (x) ≤ T (y) (i.e., T (x)− T (y) ≤ 0).
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Furthermore,

Am(αz)m−1 + sm−1(αz)
[m−2] + · · ·+ s3(αz)

[2] + s2(αz) > Bm−1(αz)
m−2 + · · ·+B2(αz) +b

holds, which can be rewritten as

sm(αz)[m−1]+· · ·+s3(αz)
[2]+s2(αz) > Bm(αz)m−1+Bm−1(αz)

m−2+· · ·+B2(αz)+b. (2.9)

Meanwhile, the definition of Ps,B(·) implies that Ps,B(αz) is the solution of following equation

smx[m−1]+sm−1x
[m−2]+ · · ·+s3x

[2]+s2x = Bm(αz)m−1+Bm−1(αz)
m−2+ · · ·+B2(αz)+b,

in which x contains the unknowns. It follows that

sm (Ps,B(αz))
[m−1]

+ · · ·+ s3 (Ps,B(αz))
[2]

+ s2Ps,B(αz) = Bm(αz)m−1 + Bm−1(αz)
m−2

+ · · ·+ B2(αz) + b.
(2.10)

Taking (2.9) and (2.10) together, it yields

sm(αz)[m−1]+· · ·+s3(αz)
[2]+s2(αz) > sm (Ps,B(αz))

[m−1]
+· · ·+s3 (Ps,B(αz))

[2]
+s2Ps,B(αz),

i.e.,
m∑

k=2

sk

[
(αz)[k−1] − (Ps,B(αz))

[k−1]
]
> 0.

This indicates for any i = 1, . . . , n,

m∑
k=2

sk
[(
(αz)i − (Ps,B(αz))i

) (
(αz)k−2

i + (αz)k−3
i (Ps,B(αz))i

+ · · ·+ (αz)i (Ps,B(αz))
k−3
i + (Ps,B(αz))

k−2
i

)]
> 0

or equivalent form

[
(αz)i − (Ps,B(αz))i

] m∑
k=2

sk

[
(αz)k−2

i + · · ·+ (Ps,B(αz))
k−2
i

]
> 0

by using the formula ak−1 − bk−1 = (a− b)(ak−2 + ak−3b+ · · ·+ abk−3 + bk−2). Obviously,
there must be (αz)i > (Ps,B(αz))i. Otherwise the above inequality is wrong. Thus,

αz > Ps,B(αz).

For any y ≥ x > 0, we can verify that

Bmxm−1 + · · ·+ B2x+ b ≤ Bmym−1 + · · ·+ B2y + b,

which yields Ps,B(x) ≤ Ps,B(y) based on Theorem 2.2. Therefore, Ps,B(·) is an increasing
continuous map. Note that Rn

+ is a regular cone. There exists at least one fixed point x∗ of
Ps,B(·) with 0 < x∗ < αz according to Theorem 2.5, which is also a positive vector.

Furthermore, we can prove that the positive fixed point is unique when b is positive.
Assume that there are two positive fixed points x∗ and y∗, i.e.,

Ps,B(x∗) = x∗ > 0 and Ps,B(y∗) = y∗ > 0,
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and let γ = min
i=1,2,··· ,n

(y∗)i
(x∗)i

> 0. Then y∗ ≥ γx∗ and (y∗)j = γ(x∗)j for some j. If γ < 1,

we obtain
Am(γx∗)

m−1 + · · ·+A2(γx∗) < Amxm−1
∗ + · · ·+A2x∗ = b.

From the above discussion, we know that

γx∗ < Ps,B(γx∗).

However, since Ps,B is positive and increasing, we have

(Ps,B(γx∗))j ≤ (Ps,B(y∗))j = (y∗)j = γ(x∗)j .

This forms a contradiction. If γ ≥ 1, it implies y∗ ≤ γx∗. Similarly, we can also show that
x∗ ≤ γy∗, so x∗ = γy∗. Therefore, the positive fixed point of Ps,B(·) is unique, i.e., the
positive solution to the non-homogeneous M-equation (1.1) is unique.

However, the inverse of Theorem 2.6 is not correct. For example, after taking x = 1 ≜
[1, · · · , 1]⊤n in the Test One of Example 5.1 and by direct calculation on Matlab, we find

b = A31
2 +A21 ≈ [−687.6, · · · , 1367.2]⊤ /∈ Rn

++.

3 Generalization of Classical Methods

Just like the definitions of the diagonal, (strictly) lower and (strictly) upper triangular
matrixs in matrix theory, Ding and Wei define the diagonal, (strictly) lower and (strictly)
upper triangular tensors (see Pages 692, 693 in [12]) as follows.

Definition 3.1 ([12]). For any tensor A ∈ R[m,n],

• The diagonal of A contains the entries Ai,··· ,i with i = 1, 2, . . . , n, and other entries are
called off-diagonal (see [33]). A tensor is called diagonal if all its off-diagonal entries
are zeros.

• The lower triangular part of A contains the entries Ai1i2...im with i1 = 1, 2, . . . , n and
i2, . . . , im ≤ i1, and other entries are said to be in the off-lower triangular part. The
strictly lower part consists of the entries Ai1i2···im with i1 = 1, 2, . . . , n and i2, . . . , im <
i1. A tensor is called lower triangular if all its entries in the off-lower triangular part
are zeros.

• Similarly, the upper triangular part of A contains the entries Ai,...,i with i1 = 1, 2, . . . , n
and i2, . . . , im ≥ i1, and other entries are said to be in the off-upper triangular part.
The strictly upper part consists of the entries Ai1i2···im with Ai,...,i with i1 = 1, 2, . . . , n
and i2, . . . , im > i1. A tensor is called upper triangular if all its entries in the off-upper
triangular part are zeros.

Then the non-homogenous diagonal equation (the simplest non-homogenous multi-linear
equations)

Dmxm−1 +Dm−1x
m−2 + · · ·+D2x = b, (3.1)

the non-homogenous lower triangle equation

Lmxm−1 + Lm−1x
m−2 + · · ·+ L2x = b, (3.2)
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and the non-homogenous upper triangle equation

Umxm−1 + Um−1x
m−2 + · · ·+ U2x = b, (3.3)

corresponding to diagonal ({Dk ∈ R[k,n]}mk=2), lower ({Lk ∈ R[k,n]}mk=2 ), and upper triangu-
lar tensors ({Lk ∈ R[k,n]}mk=2 ), respectively, are defined automatically (similar to [2, 3, 6]).
At the same time, we establish a direct method named forward substitution (back substi-
tution) for solving the the lower triangle equation (3.2) (the upper triangle equation (3.3))
as follows, and another is omitted because it is similar.

Algorithm 1: forward substitution

Input: The set of coefficient tensors {Lk ∈ R[k,n]}mk=2 and the right hand vector
b ∈ Rn for the lower triangle equation (3.2).

Output: x∗, the root set to the above lower triangle equation.
1 x1 = one root of (Lm)1,··· ,1x

m−1
1 + · · ·+ (L3)1,1,1x

2
1 + (L2)1,1x1 = b1;

2 for i = 2 : n do
3 for j = 1 : m do
4

pj =

m∑
k=j

i∑
i2,··· ,ik=1

{
1

xj−1
i

(Lk)i,i2,··· ,ik

k∏
l=2

xil :

there only exist (j − 1) indices in {i2, · · · , ik} equal to i

}
5

6 end
7 xi = one of the roots of the polynomial equation: p1 + p2t+ · · ·+ pmtm−1 = bi;

8 end
9 return x;

For different choices of Mk in

Ak = Mk −Mk, k = 2, · · · ,m, (3.4)

we obtain different methods for solving (1.1). Similar to [12], we mainly establish four
alternatives corresponding to different iterative methods as follows, based on the requirement

that the tensor equation
m∑

k=2

Mky
k−1 = g is easy to solve and the fact that Akx

k−1 =

Mkx
k−1 −Mkx

k−1.
Similar to the Jacobi method for solving linear equations Ax = b, we can take Mk = Dk

in (3.4) for getting the following fixed point iteration

xl+1 = JD,D(xl) ≜ J(xl) := [{Dk}mk=2]
−1

[
m∑

k=2

Dkx
k−1
l + b

]
, l = 0, 1, · · · , (3.5)

where Dk is the diagonal part of tensor Ak and the operator [{Dk}mk=2]
−1
[

m∑
k=2

Dkx
i−1
l + b

]
has been defined as in (1.5). This non-homogenous diagonal equation can be solved easily.
Therefore, we call (3.5) the Jacobi-like method for solving non-homogenousM-equations.
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Similarly, after taking Mk = Lk in (3.4) we establish the following Gauss-Seidel-like
method to solve non-homogenous M-equations.

xl+1 = GL,L(xl) ≜ G(xl) := [{Lk}mk=2]
−1

[
m∑

k=2

Lkx
k−1
l + b

]
, l = 0, 1, · · · , (3.6)

where Lk is the lower triangular part of tensorAk and the operator [{Lk}mk=2]
−1

[
m∑

k=2

Lkx
k−1
l

+b] has been defined as in (1.5). It refers to the non-homogenous lower triangle equation
(3.2) which can be solved by the algorithm of forward substitution.

Note 3.2. • If Lk in (3.6) represents sum of the strictly lower and diagonal parts of
tensor Ak, (3.6) becomes a simplified Gauss-Seidel-like method.

• In contrast, if Mk = Uk in (3.4) is the upper part (or the sum of strictly upper and
diagonal parts) of tensor Ak, we obtain (simplified) backward Gauss Seidel-like
method to solve non-homogenous M-equations.

• In each iteration (set as l) of these methods, {(xl)i}ni=1, n components of the vector
xl, can’t be calculated independently. This indicates we must know the information
about the first j−1 components {(xl)i}j−1

i=1 before calculating (xl)j , j = 1, . . . , n. This
will cause these iterations to run longer than the Jacobi-like iteration.

With the introduction of successive over-relaxation parameter ω and based on

Ak =

Mk︷ ︸︸ ︷[
1

ω
Dk + Lk

]
−

Mk︷ ︸︸ ︷[
(
1

ω
− 1)Dk + Tk

]
,

we can establish the following SOR-like method to solve non-homogenous M-equations,

xl+1 =

[{
1

ω
Dk + Lk

}m

k=2

]−1
[

m∑
k=2

[
(
1

ω
− 1)Dk + Tk

]
xk−1
l + b

]
, l = 0, 1, · · · , (3.7)

where Di and Li are the diagonal and strictly lower triangular parts of tensor Ak, respec-
tively, and the operator of the above right-hand side is defined as in (1.5). It is the non-
homogenous lower triangle equation (3.2) which can be solved by the algorithm of forward
substitution.

Note 3.3. We need to solve a system of n one-dimensional polynomial equations about
these proposed methods at each iteration. Indeed, like in [14] we transform this problem
into finding the eigenvalues of its corresponding m-dimension companion matrix, which can
be solved stably.2

4 Convergence Analysis

We now establish the convergence for these above methods. Consider a mapping ϕ : Rn →
Rn. Let x∗ be a fixed point of ϕ(x). x∗ is called an attracting fixed point if there exists δ > 0
such that {xl} defined by xl+1 = ϕ(xl) converges to x∗ for any x0 ∈ {x ∈ Rn : ‖x−x∗‖ ≤ δ}.

2We solve these equations in Matlab by using the code: roots().
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Lemma 4.1 (Theorem 3.5 in [37]). Suppose that ϕ : E ⊂ Rn → Rn has a fixed point
x∗ ∈ int(E), where ϕ is differentiable. If σ := ρ

(
Jϕ(x∗)

)
< 1, then x∗ is a point of attraction

of the iteration
xl+1 = ϕ(xl), l = 0, 1, · · · .

Further, if σ > 0, then the convergence to x∗ is linear with rate σ, where Jϕ(x∗) represents

the Jacobian matrix of ϕ(x) at point x∗ and ρ
(
Jϕ(x∗)

)
is its spectral radius.

By the Lemma 4.1, we can establish the following local convergence theory.

Theorem 4.2. Assume x∗ is the unique positive solution to the non-homogenous M-
equation (1.1) with b > 0. Suppose that x0 ∈ Rn

++ and given the following tensor splitting

Ak = Mk −Mk, Mk ≥ 0, k = 2, · · · ,m.

Then x∗ is an attracting fixed point of the following iteration scheme

xl+1 = ϕ(xl) = [{Mk}mk=2]
−1

++
(Mmxm−1

l +Mm−2x
m−1
l + · · ·+M2xl + b), l = 0, 1, 2, · · ·

(4.1)

provided that
m∑

k=2

(k − 1) · Akx
k−1
∗ > b.

Proof. To begin with, for any k = 2, · · · ,m, there always exist semi-symmetric tensors3 M̃k

and M̂k such that for any x ∈ Rn,

M̃kx
k−1 = Mkx

k−1, M̂kx
k−1 = Mkx

k−1 (4.2)

and
∂(Mkx

k−1)

∂x
= (k − 1)M̃kx

k−2,
∂(Mkx

k−1)

∂x
= (k − 1)M̂kx

k−2 (4.3)

hold, where the matrix M̂kx
k−2 is defined as(

M̂kx
k−2
)
ij
=

n∑
i3,··· ,ik=1

(M̂k)i,j,i3,··· ,ikxi3 · · ·xik ,

which is similar to the definition of M̃kx
k−2.

In addition, define a mapping F : Rn
++ × Rn

++ → Rn; (x,y) 7→ F(x,y) with

F(x,y) :=
m∑

k=2

Mky
k−1 −

(
m∑

k=2

Mkx
k−1 + b

)
.

We can find that F(·) is differentiable in its domain and F(x∗,x∗) = 0. By direct computa-
tion, we have

Fx|x=x∗ = − ∂

∂x

(
m∑

k=2

Mkx
k−1

)
|x=x∗

= − ∂

∂x

(
m∑

k=2

M̂kx
k−1

)
|x=x∗

= −
m∑

k=2

(k − 1)M̂kx
k−2
∗

3A tensor A ∈ R[k,n] is called semi-symmetric, if Ai1i2···im = Ai1π′(i2···im) for any i1 ∈ {1, · · · , n} and
∀π′ ∈ Πm−1, where Πm−1 is the permutation group of m− 1 indices {i2, · · · , im}.
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and

Fy|y=x∗ =
∂

∂y

(
m∑

k=2

Mky
k−1

)
|y=x∗ =

∂

∂y

(
m∑

k=2

M̃ky
k−1

)
|y=x∗ =

m∑
k=2

(k − 1)M̃kx
k−2
∗

since (4.2) and (4.3). From [Fy|y=x∗ ] is a Z-matrix and

[Fy|y=x∗ ] · x∗ =

m∑
k=2

(k − 1)M̃kx
k−2
∗ · x∗

=

m∑
k=2

(k − 1)Mkx
k−1
∗

>

m∑
k=2

(k − 1)Mkx
k−1
∗ + b > 0

we obtain Fy|y=x∗ is a nonsingular M -matrix and [Fy|y=x∗ ]
−1

> 0 (see Ref. [38] for
details). Therefore, there exist open neighborhoods U, V ⊂ Rn

++ and a continuous mapping
ϕ : U → V ;x 7→ y = ϕ(x) such that ϕ(x) is the solution to the following polynomial
equations

m∑
k=2

(k − 1)Mkz
k−2 =

m∑
k=2

(k − 1)Mkx
k−1 + b (x is given and z is the variable),

and ϕ(x) is differentiable at x∗ with the Jacobian matrix at the point x∗ being

Jϕ(x∗) = −[Fy|y=x∗ ]
−1[Fx|x=x∗ ] =

[
m∑

k=2

(k − 1) · M̃kx
k−2
∗

]−1( m∑
k=2

(k − 1) · M̂kx
k−2
∗

)
,

which is a nonnegative matrix as M̂k is nonnegative, according to Theorem 5.2.4 in [32].
Finally, since

0 <

m∑
k=2

(k − 1) · M̂kx
k−2
∗ · x∗ =

m∑
k=2

(k − 1) · Mkx
k−1
∗

<

m∑
k=2

(k − 1) · Mkx
k−1
∗ − b

≤ θ

m∑
k=2

(k − 1) · Mkx
k−1
∗ = θ

m∑
k=2

(k − 1) · M̃kx
k−1
∗

=

(
m∑

k=2

(k − 1) · M̃kx
k−2
∗

)
(θx∗)

with 0 ≤ θ < 1, Jϕ(x∗) ·x∗ ≤ θx∗. Therefore, the spectral radius ρ(Jϕ(x∗)) ≤ θ < 1 based on
Corollary 8.1.29 in [19]. From Lemma 4.1 we know the proof is completed.

Similarly, Dk, Lk and
[
( 1
ω − 1)Dk + Tk

]
(ω ∈ (0, 1]) are constructed as nonnegative

tensors, hence we have the following corollary.
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Corollary 4.3. Assume x∗ is the unique positive solution to the non-homogenous M-

equation (1.1) with b > 0 and provided that
m∑

k=2

(k − 1) · Akx
k−1
∗ > b. Then x∗ is an

attracting fixed point of the Jacobi-like, Gauss-Seidel-like and simplified Gauss-Seidel-like
iterations, respectively.

For choosing a proper over-relaxation factor ω, we have some constraints like

• ω > 0,

• (
1

ω
Dk + Lk) are M-tensors for k = 2, · · · ,m,

•
m∑

k=2

[
(
1

ω
− 1)Dk + Tk

]
xk−1
l + b > 0 (l = 1, 2, · · · ).

Apparently we can get the following theorem.

Theorem 4.4. For any ω ∈ (0, 1], the SOR-like method is convergent with b > 0 for the

non-homogenous M-equation (1.1) provided that
m∑

k=2

(k − 1) · Akx
k−1
∗ > b.

Nevertheless, Theorem 4.4 does not mean

• the optimal ω ∈ (0, 1],

• and the SOR-like method does not converge in any interval D ⊈ (0, 1] for Eq. (1.1).

Indeed, it’s highly possible that we get the optimal ω in an interval D ⊈ (0, 1]. E.g.,
according to Test Two of Example 5.1 in section 5, we can see ωopt = 2.11 /∈ (0, 1] for the
cases of m = 3 and n = 16 according to Fig. 3(d).

5 Numerical Experiments

In this section, all experiments are implemented in MATLAB R2016a with a machine preci-
sion 10−16 on a personal computer with 2.20 GHz central processing unit (Intel(R) Core(TM)
i5-5200U), 4GB memory and windows 10.1903 operating system.

The iteration stopping criterion is that the lth iterative residual satisfies∥∥∥∥∥b−
m∑

k=2

Akx
k−1
l

∥∥∥∥∥
2

< η,

where η is set to be different values in the following two examples. We compare the Jacobi-
like (J-like), Gauss-Seidel-like (G-S-like), backward Gauss-Seidel-like (backward G-S-like),
simplified Gauss-Seidel-like (Sim. G-S-like), backward simplified Gauss-Seidel-like (back-
ward Sim. G-S-like), and SOR-like methods. The number of iteration steps and total CPU
time (unit: seconds) are abbreviated as IT and CPU, respectively.

Example 5.1. Similar to Examples 4.1 and 4.2 in [12] and Example 6.1 in [40], we construct
nonsingular M-tensors Ak = skIk − Bk (k = 2, 3, · · · ,m) as follows. Moreover, we set
η = 1e-12 and use tensor toolbox (see Ref. [4]) for computing Axm−1, i.e.,
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Axm−1 =ttv(A, {x, · · · , x}︸ ︷︷ ︸
(m−1) copies

, [m,m− 1, · · · , 2]).

• Test One
The initial iteration guess x0 is chosen from {x(1)

0 ,x
(2)
0 ,x

(3)
0 ,x

(4)
0 } = {0 · 1, 0.5 · 1, 5 ·

1, 10 · 1}. Let m = 3, b = 1, Bk ∈ R[k,10] be a nonnegative tensor with

(Bk)i1···ik = | tan(i1 + · · ·+ ik)|, k = 2, 3,

and define A3 = 1500I3 − B3. Example 4.2 in [12] shows that it is a symmetric
nonsingular M-tensor. In addition, A2 = 260I − B2 is an M -matrix under ρ(B2) ≈
241.4184.

• Test Two
The initial iteration guess is set to be x0 = 0 · 1 = 0 = [0, · · · , 0]⊤n . Let m = 3, 4.

First, we generate 3 nonnegative tensors Bk ∈ R[k,n]
n containing random values drawn

from the standard uniform distribution on (0, 1). Next, set the scalar

sk = (1 + ε) · max
i=1,2,··· ,n

(Bk1
k−1)i, ε > 0, k = 2, 3, 4.

Here Ak is a nonsingular M-tensor (see Example 4.2 in [12]). During the procession of
Test Two, we take n ∈ {3, 4, 6, 8, 12, 16, 24, 32} and ε = 0.01, which are basically same
as in Ref. [12]. In addition, we choose the right hand-side vector b = rand(n,1).

• Test Three
The initial iteration guess is set to be x0 = 0 and Let m = 3, 4, 5. We take an M-tensor
like in Example 6.1 of [40], i.e., sk = nk−1 and each entry of Bk is

(Bk)i1i2···ik = | sin(i1 + i2 + · · ·+ ik)|.

Ak is an M-tensor, which is proved in [41]. Meanwhile, we choose the right-hand side
vector b = 10 · 1.

In Test One, we take the value of over-relaxation factor ω from 0 to 1.2 with stepsize 0.05
when using the SOR-like method for each initial iteration guess, and the result is displayed
in Fig. 1(a). We can find the optimal parameters ωopt should be in the intervals [0.35, 0.45]
and [1.00, 1.20], approximately. Therefore, we search the value ωopt from 0.3 to 0.4, and
from 1.00 to 1.20 with stepsize 0.01 again. In Fig. 1(b) and (c) we can see that ωopt

equals to 0.43, 0.38, 1.13, 1.10, respectively, with respect to each initial iteration vector x0.

Particularly, the SOR-like method is invalid when ω > 1.13 for x0 = x
(3)
0 , and ditto for

x0 = x
(4)
0 when ω > 1.10. Therefore, there are only parts of curves in Fig. 1(c).
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Figure 1: Optimal ω for the SOR-like method in Test One for each initial guess.

Figure 2: Results for Test One
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The relationships between residual and IT for the Jacobi-like, Gauss-Seidel-like, sim-
plified Gauss-Seidel-like, and SOR-like methods with different initial iteration vectors are
displayed in Fig. 2. It shows that the SOR-like method is the best with ωopt in terms
of IT among these methods, while the Jacobi-like method’s performance is not very well.
Unexceptionably, the effects of the other methods, between those of the SOR-like and Jacobi-
like methods, are better than that of the Jacobi-like method but not beyond the SOR-like
method.

In Test Two, we first search the value of ωopt like in Test One when using the SOR-like
method for the cases of m ∈ {3, 4}, n ∈ {3, 4, 6, 8, 12, 16, 24, 32}. The results are showed
in Figs. 3-4 and Tab. 2. The relationships among residual, CPU, IT for the Jacobi-
like, (backward) Gauss-Seidel-like, (backward) simplified Gauss-Seidel-like, and SOR-like
methods are displayed in the Figs. 5-6 and Tab. 1, respectively. According to these figures
and tables, we can obtain the following conclusions.

• From the perspective of IT, the conclusion is similar to Test One, and the main reason
is discussed scrupulously in the 3rd item of Note 3.2.

• From the perspective of CPU, the Jacobi-like method takes the least although it has
large numbers of IT. Meanwhile, we can see from Figs. 5-6 and Tab. 1 that as the
dimension and order (i.e., n changed from 3 to 32, and m ∈ {3, 4}) get larger, the
other methods need more CPU times. This is mainly because we can use parallel
computation in the Jacobi-like method but can not in other methods.

Table 1: Results for Test Two

m = 3 m = 4

methods n 4 8 16 32 4 8 16 32

J-like
IT 114 141 248 356 226 264 468 798
CPU 0.41 0.57 1.01 1.75 1.27 1.33 2.57 8.90

G-S-like
IT 66 84 155 227 136 171 323 565
CPU 0.51 1.98 23.61 276.50 2.31 22.22 576.07 13430.46

Sim. G-S-like
IT 79 93 166 235 184 197 348 587
CPU 0.43 1.69 22.95 246.52 1.96 16.89 500.45 14115.91

backward IT 67 86 156 226 138 176 321 563
G-S-like CPU 0.45 1.84 19.61 208.37 2.44 23.86 629.88 14286.67

backward IT 82 97 167 235 181 200 346 586
Sim. G-S-like CPU 0.37 1.35 18.26 197.49 1.83 16.58 506.21 13411.29

SOR-like (ωopt)
IT 47 51 74 88 72 82 152 309
CPU 0.278 3.17 14.03 102.39 1.74 8.47 174.19 12895.84
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Figure 3: Optimal ω for the SOR-like method in Test Two with m = 3.
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Figure 4: Optimal ω for the SOR-like method in Test Two with m = 4.
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Figure 5: Partial outer iteration history of six methods in Test Two.
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Figure 6: Partial outer iteration history of six methods in Test Two.
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Table 2: Partial optimal parameters ω for the SOR-like method in Test Two

m = 3 m = 4

n 3 6 12 24 3 6 12 24

ωopt 1.81 1.83 2.15 2.04 1.65 2.00 1.95 1.98

Tab. 3 lists these values of ωopt in the last column for all the cases in Test Three. The
conclusion in Test Three is almost identical to that in Test Two. Here we only need to
explain that, when the order is 4 or 5, all the methods except the Jacobi-like method need
more CPU times as the dimension gets larger. Thus, we let n ∈ {2, 4, 8, 12, 16, 20} and
n ∈ {2, 4, 8, 12} corresponding to the cases of m = 4 and m = 5, respectively.

Table 3: Results for Test Three

methods J-like G-S-like Sim. G-S-like SOR-like

n IT CPU IT CPU IT CPU IT CPU ωopt

m = 3 5 72 0.22 45 0.41 56 0.40 29 0.30 1.39
20 70 0.32 47 13.77 50 12.88 27 5.43 1.31
40 71 0.31 49 128.00 50 118.56 27 47.34 1.33
60 71 0.51 49 425.47 50 389.94 27 161.07 1.31
80 72 0.62 50 878.63 51 880.12 27 389.52 1.32
100 72 0.80 51 1760.30 51 1667.88 27 736.32 1.31

m = 4 2 57 1.20 35 0.35 51 0.37 28 0.25 1.41
4 72 0.40 48 0.96 62 0.70 34 0.55 1.43
8 68 0.48 49 6.79 56 4.83 30 3.73 1.39
12 69 0.47 50 30.25 55 22.72 30 17.48 1.37
16 70 0.47 52 87.99 55 79.18 30 56.55 1.38
20 70 0.59 52 209.18 55 180.60 30 114.08 1.37

m = 5 2 66 0.64 38 1.04 63 0.76 39 0.45 1.39
4 73 0.66 51 2.10 66 2.49 37 1.22 1.44
8 67 3.59 51 45.60 57 45.16 32 24.29 1.40
12 69 23.19 54 334.40 59 363.25 32 154.13 1.42

Note 5.2. In these three tests of Example 5.1, we need to make the following explana-
tion.

• About ω. On the one hand, we find that the value of ωopt seems to change as the initial
iteration vector changes according to Test One. For every iteration step, these optimal
parameters ω in each table are computed according to the least iteration steps before
the iterations start, hence the CPU time does not include the time spent on searching
ωopt. Moreover, we need to find the optimal parameter again if problems are changed.

On the other hand, we give a numerical strategy to find the optimal ω. We first search
in a longer interval like [0, 3] with a larger stepsize 0.05 so that the ωopt is located in
a narrow interval. Then the numerical optimal parameter is obtained by reducing the
search stepsize (such as 0.01) again in this narrow interval.
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• About symmetric. We call the non-homogenous M-equation (1.1) a symmetric system
if all the coefficient tensors are symmetric ([5, 7, 33]). There is no doubt that Test
Two is not a symmetric system but the other two are. In the case of symmetric sys-
tems, the Gauss-Seidel-like and simplified Gauss-Seidel-like methods are equivalent to
the backward Gauss-Seidel-like and backward simplified Gauss-Seidel-like methods, re-
spectively. Therefore, we do not consider the backward Gauss-Seidel-like and backward
simplified Gauss-Seidel-like methods in Tests One and Three.

Example 5.3 (The nonlinear Poisson equation in (1.2)). In this example, we set η = 1e-4

which is larger than in Example 5.1, because the CPU time and iteration steps will be
more as the dimension and order get larger. Therefore, we choose 1e-4 through a lot of
experiments. In addition, we set m = 3, 4, 5, 6, and all the numerical results are reported in
Tabs. 4–7. The initial iteration guess is set to be x0 = 0.

The conclusion in terms of the iteration steps is also similar to that in Example 5.1.
However, from the perspective of the CPU time, we find (i) the SOR-like method takes the
least CPU time, and (ii) the CPU times in the Gauss-Seidel-like, simplified Gauss-Seidel-
like methods are not so much but a little more than that in the SOR-like method. On
the contrary, the Jacobi-like method takes the most. This is mainly because the nonlinear
Poisson equation in (1.2) is a sparse system. Moreover, the computation complexity of
Akx

k−1 is reduced to O(n), which significantly improves the computational efficiency.

Furthermore, we can see that when n = 400 in Tabs. 4–7, both the CPU time and IT
are smaller than those of the case of n = 200. Indeed, when n = 400 in Eq. (1.1), some
entries of the right-hand vector are

bi =
1

(n− 1)2
=

1

3992
≈ 9.92e-6, i = 2, . . . , 399,

which implies the exact solution x∗ must be close to zero.

Table 4: Results for Example Two with m = 3

methods J-like G-S-like Sim. G-S-like SOR-like

n IT CPU IT CPU IT CPU IT CPU ωopt

5 34 0.22 19 0.38 22 0.24 11 0.05 1.35
20 383 1.67 193 2.02 221 1.05 44 0.27 1.84
40 1181 4.98 592 11.01 670 3.25 100 0.84 1.93
60 2200 11.96 1101 29.47 1236 7.72 160 1.49 1.96
80 3338 23.15 1670 70.22 1863 14.82 221 3.24 1.97
100 4523 41.26 2263 120.14 2508 23.54 280 3.88 1.98
150 7355 109.31 3679 336.39 4020 63.57 385 13.52 1.98
200 9527 242.51 4765 592.14 5135 133.08 426 19.98 1.98
400 4225 4853.71 2113 7627.86 2139 401.74 95 27.46 1.95
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Table 5: Results for Example Two with m = 4

methods J-like G-S-like Sim. G-S-like SOR-like

n IT CPU IT CPU IT CPU IT CPU ωopt

5 51 0.67 27 2.40 34 0.06 13 1.26 1.60
20 426 5.80 214 0.66 252 0.59 41 4.43 1.96
40 1248 33.77 625 2.12 720 2.58 87 10.19 2.03
60 2284 8.94 1143 4.53 1302 5.31 143 17.80 2.03
80 3435 16.28 1719 8.34 1941 9.99 207 27.50 2.02
100 4630 25.97 2316 13.42 2596 15.80 260 35.88 2.02
150 7477 47.44 3740 27.22 4120 29.50 368 2.82 2.01
200 9651 90.24 4827 47.81 5232 53.81 391 3.81 2.01
400 4284 78.46 2142 39.48 2169 41.14 97 1.60 1.95

Table 6: Results for Example Two with m = 5

methods J-like G-S-like Sim. G-S-like SOR-like

n IT CPU IT CPU IT CPU IT CPU ωopt

5 51 0.09 27 0.04 35 0.06 13 0.03 1.59
20 426 1.06 214 0.53 252 0.72 41 0.10 1.97
40 1248 4.42 625 2.24 721 2.69 88 0.30 2.03
60 2284 9.59 1143 5.01 1304 5.73 145 0.63 2.03
80 3435 17.11 1719 9.28 1943 11.05 210 1.19 2.02
100 4631 27.70 2317 14.30 2599 16.83 263 1.63 2.02
150 7477 64.49 3740 31.17 4123 38.08 371 4.42 2.01
200 9652 100.91 4827 53.63 5235 59.18 393 4.45 2.01
400 4284 81.27 2142 42.56 2169 43.54 97 1.95 1.95

Table 7: Results for Example Two with m = 6

methods J-like G-S-like Sim. G-S-like SOR-like

n IT CPU IT CPU IT CPU IT CPU ωopt

5 51 0.10 27 0.06 35 0.07 13 0.03 1.60
20 426 1.10 214 0.60 253 0.72 41 0.11 1.97
40 1248 4.93 625 2.34 721 2.55 88 0.31 2.03
60 2284 10.07 1143 5.28 1304 6.16 145 0.65 2.03
80 3435 19.31 1719 9.94 1944 10.53 210 1.11 2.02
100 4631 31.68 2317 15.38 2599 18.90 263 2.08 2.02
150 7478 70.49 3740 46.41 4124 54.46 371 4.47 2.01
200 9652 116.50 4827 57.86 5235 58.75 393 4.46 2.01
400 4284 90.38 2142 43.28 2169 45.08 97 2.03 1.95
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6 Conclusions

In this paper, we first prove the existence and uniqueness of a positive solution to the
non-homogenous M-equation

Amxm−1 +Am−1x
m−2 + · · ·+A3x

2 +A2x = b,

with a positive right-hand side vector. In addition, we expand some classical splitting
methods to obtain the Jacobi-like, Gauss-Seidel-like, simplified Gauss-Seidel-like, and SOR-
like methods for solving the tensor equations and give their convergence analyses. Next, we
find the SOR-like method with the optimal over-relaxation factor ω in terms of iteration
steps performs the best among these methods. The Jacobi-like method needs the most,
while the other methods do not differ much and are between the SOR-like and Jacobi-like
methods. From the perspective of the CPU time, the Jacobi-like method takes the least CPU
time in the non-sparse case, while SOR-like method needs the most. The SOR-like method
takes the least CPU time in the sparse case, and the CPU times of the other methods are
also not so much. The Jacobi-like method takes the most CPU time.

Finally, we give a numerical strategy in Note 5.2 about searching the optimal parameter
ω in the SOR-like method. How to obtain the optimal parameter is an interesting topic and
worth studying. Hadjidimos and other scholars have studied the optimal ω for saddle point
problems, e.g. see [18] and references therein. Nevertheless, whether those techniques for
the saddle point problems can be generalized to tensor problems, and how to calculate the
optimal ω also need to be further investigated. That is one direction in our future study.
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