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all the off-diagonal blocks of Z are zeros, and all the diagonal elements are zeros, hence, it
is reasonable to find a sparsest one among all the solutions of (1.1), that is

min
Z∈Rn×n

{
‖Z‖1, s.t. X = XZ, Zjj = 0, j = 1, . . . n

}
, (1.2)

where ‖ · ‖1 is a so-called extension `1-norm of matrix. It was shown by Elhamifar & Vidal
[3] that, if each samples {Xi}l1 are noiseless and drawn from an independent subspaces, then
the optimal solution of (1.2) is block diagonal. On other hand, each sample Zi, and even Z,
actually has low rank structure if the di is assumed to be di � min{m,ni}. In such case, it
turns to seek the lowest-rank representation of the data samples, that is

min
Z∈Rn×n

{
‖Z‖∗, s.t. X = XZ

}
, (1.3)

where ‖ · ‖∗ is a nuclear norm which serves as a convex surrogate of a rank function. As
shown by Liu et al. [8], the optimal solution to problem (1.3) is also block diagonal under the
assumption of noiselessness and subspaces independence. The method NNLRS of Zhuang
et al. [16] is to seek a non-negative low-rank and sparse coefficient via solving the following
optimization problem

min
Z∈Rn×n

{
‖Z‖∗ + γ‖Z‖1, s.t. X = XZ, Z ≥ 0

}
,

where γ > 0 is a weighting parameter to control the balance between low rank and sparsity,
and Z ≥ 0 means that all the entries of Z are nonnegative.

However, in practice, a fraction of the data vectors may be grossly corrupted by noise,
and hence the diagonal structure of the optimal solution might be violated. In this case,
it is shown by Liu et al. [7] that it is appropriate to find a low-rank representation (LRR)
coefficient via solving

min
Z∈Rn×n,E∈Rm×n

{
‖Z‖∗ + λ‖E‖`2/`1 , s.t. X = XZ + E

}
, (1.4)

where λ > 0 is balance between low rank and error of residuals, and ‖ · ‖`2/`1 is defined as
the sum of the `2-norm of each column of matrix. The multi-subspace representation (MSR)
[10] combines the idea of NNLRS and LRR, which is formulated as

min
Z∈Rn×n

{
‖Z‖∗ + γ‖Z‖1 + λ‖X −XZ‖`2/`1

}
. (1.5)

It should be noted that the optimal solutions obtained by both approaches obey block
diagonal structures even when the data is heavily corrupted by noise.

The independent subspaces assumption is essential to guarantee the block diagonal prop-
erty, but it can be removed by the using of subspace segmentation with quadratic program-
ming (SSQP) [4] in which a regularization ‖Z>Z‖1 instead of ‖Z‖1 is used. Besides, there
is another exciting progress to encourage a nonnegative symmetric matrix to be block diag-
onal. Let “1” be a vector with all entries are one, and define a Laplacian matrix of a given
symmetric matrix Z as LZ := Diag (Z1) − Z. The block diagonal representation (BDR)
method for subspace clustering of Lu et al. [9] is formulated as the following optimization

min
Z

1
2‖X −XZ‖

2
F + γ‖LZ‖[l]

s.t. Z ≥ 0, Z = Z>, Zjj = 0, j = 1, . . . , n,
(1.6)

where ‖ · ‖F is a Frobenius norm of a matrix, and ‖Z‖[l] is a block diagonal regularization
defined as the sum of the smallest l eigenvalues of LZ . The key challenge for solving (1.6)
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lies in the regularization term ‖ · ‖[l]. To address this issue, Lu et al. [9] approximated
‖LZ‖[l] as convex programming to get the following model

min
Z,W

1
2‖X −XZ‖

2
F + γ

〈
Diag(Z1)− Z,W

〉
s.t. Z ≥ 0, Z = Z>, Zjj = 0, j = 1, . . . , n,

I �W � 0, Tr(W ) = l,

(1.7)

where 〈·, ·〉 and Tr(·) are matrix inner product and trace respectively, and W � 0 means
that W is positive semi-definite. The BDR method of Lu et al. [9] used a block coordinate
descent method [15] to solve a penalty variant of (1.7) and its effectiveness and high-efficiency
is experimentally demonstrated by the using of several real dataset. Subsequently, the
performance of BDR is greatly improved by Kong et al. [6] where a Nesterov’s accelerated
technique [11] is employed, but the convergence of the accelerated variant is not given. We
must emphasize that the algorithms [9] and [6] are both concerned on an approximated
model, but not the original (1.7) itself. The accelerated block coordinated gradient descent
(ABCGD) [6] has the ability to solve (1.7), but its convergence is still unknown. Therefore,
it is necessary to develop an effective algorithm with convergence guarantee to solve the
problem (1.7) directly.

It is much difficult and challenging to solve (1.7) due to the nonconvex bilinear term
“〈Diag(Z1) − Z,W

〉
” as well as the constraints on the variables. To address this issue,

we focus on the using of the novel accelerated gradient method of Ghadimi & Lan et al.[5]
which can be reviewed as a generalized variant of the well-known Nesterov’s accelerated
gradient method [1, 11] to solve nonconvex and possibly stochastic optimization problems.
It has been known that the attractive feature of using this method is that an optimal rate
of convergence is exhibited if the composite problem is convex, and the best known rate
of convergence is improved if the problem is nonconvex. Nevertheless, the convergence of
the algorithm depends on a pair of stepsize which is related with the Lipschitz constant of
the gradient to the smooth functions. To tackle this difficulty, we numerically estimate the
Lipschitz constant by the using of the structure of the given data. Finally, we do a series of
numerical experiments on some real data which demonstrates that the proposed algorithm
is highly more efficient than BDR and ABCGD.

The remaining parts of this paper are organized as follows. In Section 2, we quickly
review some key ingredients needed for our subsequent developments. In Section 3, we
propose an AGM to solve the model (1.7) followed by a convergence theorem. In Section 4,
we present some numerical experiments using some real data to show the efficiency of our
algorithm. Finally, we conclude our paper with some remarks in Section 5.

2 Preliminaries

In this section, we summarize some basic concepts in convex analysis [12] and quickly review
the accelerated gradient method of Ghadimi & Lan [5] used to the subsequent developments.
Let X be a finite-dimensional real Euclidean space with an inner product and associated
norm denoted by 〈·, ·〉 and ‖·‖2, respectively. For any z ∈ E , the metric projection of z onto C
denoted by ΠC(z) is the optimal solution of the minimization problem min

y
{‖y− z‖ | y ∈ C}.

Let g : X → (−∞,+∞] be a closed proper convex function. The subdifferential of g(·) is a
convex set defined as ∂g(x) = {x∗ | g(z) ≥ g(x) + 〈x∗, z − x〉, ∀z ∈ X}. Obviously, ∂g(x) is
a closed convex set when it is not empty [12]. A necessary but not sufficient condition for
x∗ ∈ Rn to be a minimizer of function g(·) is 0 ∈ ∂g(x∗), where x∗ is called a critical point.
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The Moreau-Yosida regularization of g at x ∈ X with positive scalar η > 0 is defined by

ϕηg(x) := min
y∈X

{
g(y) +

1

2η
‖y − x‖2

}
. (2.1)

For any x ∈ X , problem (2.1) has an unique optimal solution, which is known as the proximal
mapping of x associated with g and simply denoted by Pηg (x), i.e.,

Pηg (x) := arg min
y∈X

{
g(y) +

1

2η
‖y − x‖2

}
. (2.2)

We now briefly review the accelerated gradient method for a class of the following com-
posite problem

min
x

f(x) + h(x) + g(x), (2.3)

where f : Rn → R is a continuously differentiable function (possibly nonconvex), h : Rn →
R is a continuously differentiable convex function, and g : Rn → (−∞,+∞] is a proper
closed convex function. Let {αk} be a positive sequence such that αk ∈ (0, 1) and α0 = 1.
Starting from x0 and x0ag, the accelerated gradient method generates an iterate sequence

{(xkmd, xkag, xk)} via the iterative scheme:

xkmd = (1− αk)xk−1ag + αkx
k−1,

xkag = Pβkg
(
xkmd − βk[∇f(xkmd) +∇h(xkmd)]

)
,

xk = Pρkg
(
xk−1 − ρk[∇f(xkmd) +∇h(xkmd)]

)
,

(2.4)

where βk > 0 and ρk > 0 are the suitable stepsizes. Note that, if ρk = βk, then we have
xk−1ag = xk−1 and xkmd = xk−1, in this case, this accelerated gradient method reduces to the
tranditional proximal gradient method, and then it also reduces to the Nesterov’s accelerated
gradient method [11] if αk is chosen properly. For more details on this method, one may
refer to [5].

3 Accelerated Gradient Method

3.1 Algorithm’s construction

For convenience, we define

C1 :=
{
W ∈ Rn×n | I �W � 0, Tr(W ) = l

}
,

C2 :=
{
Z ∈ Rn×n | Z ≥ 0, Z = Z>, Zjj = 0, j = 1, . . . n

}
,

which are all convex set. Therefore, the problem (1.7) can be represented equivalently as
follows:

min
W,Z

{
δC1(W ) + δC2(Z) +

1

2
‖X −XZ‖2 + γ

〈
Diag(Z1)− Z,W

〉}
, (3.1)

where δCi(·) represents an indicator function over Ci. Obviously, the objective function is
nonconvex because W and Z are coupled together in the last term.
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For the sake of simplicity, we denote Y := [Z;W ] ∈ R2n×n and C := C1×C2. Using these
notations, the nonsmooth term δC1(W ) + δC2(Z) can be rewritten equivalently as δC(Y ).
Besides, we define a linear operator A : Rn×n → Rn×n such that A(Z) = Diag(Z1) − Z,
then the coupled term can be reformulated as

〈
A(Z),W

〉
=
〈
Q1Y,Q2Y

〉
=
〈
Q>2 Q1Y, Y

〉
=〈

QY, Y
〉

with

Q1 =
( A 0

0 0

)
, Q2 =

(
0 I
0 0

)
, and Q =

(
0 0
A 0

)
. (3.2)

Moreover, denote Θ := [X; 0] ∈ Rm×2n, then the problem (3.1) is transformed into

min
Y ∈R2n×n

{
F (Y ) := δC(Y ) +

1

2
‖X −ΘY ‖2F + γ

〈
QY, Y

〉}
. (3.3)

Clearly, F (·) is nonsmooth and nonconvex because of the indefiniteness of Q. The problem
(3.3) can also be rewritten equivalently as

min
Y ∈R2n×n

F (Y ) := ψ(Y ) + δC(Y ), (3.4)

where ψ(Y ) := h(Y ) + f(Y ) with

h(Y ) :=
1

2
‖X −ΘY ‖2F , and f(Y ) := γ

〈
QY, Y

〉
. (3.5)

Obviously, f is a nonconvex continuously differentiable function. We also assume that ∇f(·)
and ∇h(·) are Lipschitz continuous with the modulus Lf and Lh, respectively, and hence
∇ψ(·) satisfies Lipschitz continuous with modulus Lψ = Lf + Lh.

We now turn our attention to the solving of problem (3.4). Because δC(·) is an indicator
function on convex compact set C, from [5, Lemma 2], it is easy to see that there exists a
positive constant M such that ‖PηδC (Y −η∇ψ(Y ))‖ ≤M for any given η > 0 and Y ∈ R2n×n,
where PηδC (·) is a proximal mapping. From the definition of PηδC (Y − η∇ψ(Y )), we define an
important quantity as follows

G(Y,∇ψ(Y ), η) ,
1

η

(
Y − PηδC (Y − η∇ψ(Y ))

)
. (3.6)

From [5, Lemma 3], we know that as the size of G(Y,∇ψ(Y ), η) vanishes, the PηδC (Y −
η∇ψ(Y )) approaches to a critical point Y ∗ of problem (3.4).

We now focus on the practical implementation for (3.3), or equivalently (3.4). The
employed algorithm here is based on the AGM of Ghadimi & Lan [5], which starts from the
initial point (Y 0

ag, Y
0), and generates an iterate sequence {(Y kmd, Y kag, Y k)} via the iterative

scheme: 
Y kmd = (1− αk)Y k−1ag + αkY

k−1,

Y k = PρkδC
(
Y k−1 − ρk∇ψ(Y kmd)

)
,

Y kag = PβkδC
(
Y kmd − βk∇ψ(Y kmd)

)
,

(3.7)

where αk ∈ (0, 1) with α1 = 1, and βk > 0, ρk > 0 are the suitable stepsizes. Note that, if
ρk = βk, then we have Y k−1ag = Y k−1 and Y kmd = Y k−1, in this case, this accelerated gradient
method reduces to the simplest proximal gradient method. From [5, Corollary 2], we can
get the main convergence properties of (3.7) as follows provided that the parameters {αk},
{βk}, and {ρk} are chosen properly. For more details on the choices of these parameters
{αk}, {βk}, and {ρk}, one can refer to [5, Lemma 1, Corollary 1].
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3.2 Subproblems’ solving

Notice that δC(·) is very simple so that the subproblems involved in (3.7) are easily com-
putable. From the definition of proximal mapping, we see that the subproblem involved in
(3.7) are with the form

Y k = arg min
Y ∈R2n×n

δC(Y ) +
1

2ρk

∥∥∥Y − (Y k−1 − ρk∇ψ(Y kmd)
)∥∥∥2
F
, (3.8)

Y kag = arg min
Y ∈R2n×n

δC(Y ) +
1

2βk

∥∥∥Y − (Y kmd − βk∇ψ(Y kmd)
)∥∥∥2
F
. (3.9)

Recalling that Y = [Z;W ]. We notice that the Y -subproblems involved in (3.8) and (3.9)
are easily implementable in the sense that it can be partitioned into a couple of lower-
dimensional subproblems regarding to Z and W , that is,

[Zk;W k] = arg min
Z,W

{
δC1(W ) + δC2(Z) +

1

2ρk

∥∥∥Z − (Zk−1 − ρk∇ψZ(Zkmd)
)∥∥∥2
F

+
1

2ρk

∥∥∥W − (W k−1 − ρk∇ψW (W k
md)
)∥∥∥2
F

}
.

Noting that Z and W are independent with each other, they can be computed individually,
that is,

Zk = arg min
Z∈Rn×n

{
δC2(Z) +

1

2ρk

∥∥Z −M2k

∥∥2
F

}
, W k = arg min

W∈Rn×n

{
δC1(W ) +

1

2ρk

∥∥W −N2k

∥∥2
F

}
,

(3.10)

where M2k := Zk−1 − ρk∇ψZ(Zkmd) and N2k := W k−1 − ρk∇ψW (W k
md) with

∇ψZ(Zkmd) = X>(XZkmd −X) + γA∗W k
md, and ∇ψW (W k

md) = γA(Zkmd). (3.11)

We now show that computing the projection onto C1 or C2 is really a trivial task. On
the one hand, denote Ñ2k := (N2k +N>2k)/2, and there exists an orthogonal matrix V k such
that

Ñ2k = V kΣk(V k)>, (3.12)

where Σk is a diagonal matrix whose diagonal entries consist of the eigenvalue of Ñ2k in
nondecreasing order, and V k is an orthogonal matrix whose columns are the corresponding
eigenvectors. Let V kL be the submatrices associated with the l smallest eigenvalues of Ñ2k.
Then the optimal solution W k can be explicitly described as

W k = V kLV
k
L
>
.

On the other hand, it is from [9, Proposition 7] that, the new Zk has an analytical solution
with form

Zk = max
{M̂2k + M̂>2k

2
, 0
}
,

where M̂2k = M2k − Diag(diag(M2k)). In a similar way, the variables W k
ag and Zkag can be

obtained by

W k
ag = arg min

W∈Rn×n

{
δC1(W )+

1

2βk

∥∥W −Nag
2k

∥∥2
F

}
, Zkag = arg min

Z∈Rn×n

{
δC2(Z)+

1

2βk

∥∥Z −Mag
2k

∥∥2
F

}
,

(3.13)
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where Mag
2k := Zkmd−βk∇ψZ(Zkmd) and Nag

2k := W k
md−βk∇ψW (W k

md). Furthermore, denote

Ñag
2k := (Nag

2k + (Nag
2k )>)/2, and do eigenvalue decomposition as

Ñag
2k = UkΣk(Uk)>, (3.14)

Besides, denote UkL be the submatrices associated with the last l columns of Uk, then we
get

W k
ag = UkLU

k
L
>
.

and

Zkag = max
{M̂ag

2k + (M̂ag
2k )>

2
, 0
}
,

where M̂ag
2k = Mag

2k −Diag(diag(Mag
2k )) with Mag

2k := Zkmd − βk∇ψZ(Zkmd).
In light of the above analysis and definition of ∇ψ in (3.11), we are ready to state the

iterative framework of the accelerated gradient method (AGM) to solve the problem (3.4).

Algorithm: AGM

Step 0. Input a Lipschitz constant Lψ > 0; Initialize: Y 0
md = Y 0

ag = Y 0 ∈ R2n×n. For
k = 1, 2, . . ., do the following operations iteratively:

Step 1. Compute

αk =
2

k + 1
, βk =

1

2Lψ
, ρk =

kβk
2
.

Step 2. Compute W k
md = (1− αk)W k−1

ag + αkW
k−1 and Zkmd = (1− αk)Zk−1ag + αkZ

k−1.

Step 3. Compute W k and Zk according to

- Compute N2k = W k−1 − ρk∇ψW (W k
md) and M2k = Zk−1 − ρk∇ψZ(Zkmd);

- Set Ñ2k = (N2k +N>2k)/2 and M̂2k = M2k −Diag(diag(M2k));

- Compute Ñ2k = V kΣk(V k)>, determine V kL , and then compute

W k = V kLV
k
L
>

;

- Compute

Zk = max
{M̂2k + M̂>2k

2
, 0
}
.

Step 4. Compute W k
ag and Zkag according to

- Compute Nag
2k = W k

md − βk∇ψW (W k
md) and Mag

2k = Zkmd − βk∇ψZ(Zkmd);

- Set Ñag
2k = (Nag

2k + (Nag
2k )>)/2 and M̂ag

2k = Mag
2k −Diag(diag(Mag

2k ));

- Compute Ñag
2k = UkΣk(Uk)>, determine UkL, and then compute

W k
ag = UkLU

k
L
>

;

- Compute

Zkag = max
{M̂ag

2k + (M̂ag
2k )>

2
, 0
}
.
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Step 5. Let k − 1 := k, go to Step 1.

From [5, Lemma 1, Corollary 1], we can get the following theorem which further indicates
that AGM converges globally.

Theorem 3.1. Let {Zk,W k} be the sequence generated by the AGM with properly choosing
αk, βk and ρk. Then for any N ≥ 1, we have

min
k=1,··· ,N

∥∥G(Y kmd,∇ψ(Y kmd), βk)
∥∥2 ≤ 24Lψ

[ 4Lψ‖Y 0 − Y ∗‖2

N(N + 1)(N + 2)
+
Lf
N

(‖Y ∗‖2 +M2)
]
,

where Y k = [Zk;W k] and Y ∗ is a critical point for problem (3.4), which means that
G(Y kmd,∇ψ(Y kmd), βk) vanishes if N is large enough and {Zk,W k} converges globally from
[5, Lemma 3].

The Theorem indicates that, one can find an approximated solution Ỹ with a tolerance

ε > 0 such that ‖G(Ỹ ,∇ψ(Ỹ ), 1
2Lψ

)‖2 ≤ ε in at most O
(
L
2/3
ψ /ε1/3 + LψLf/ε

)
iterations.

4 Numerical Experiments

This section is devoted to evaluating the feasibility and efficiency of AGM on the standard
motion segmentation dataset – Hopkins 155 [13] and the Extended Yale Database B [14].
All experiments are performed under MAC OS and Matlab R2018a running on a MacBook
Air with an Intel Core i5 CPU at 1.60 GHz and 8 GB of memory. In all the tests given
below, we use zero matrices as starting points, and simply terminate the iterative process
when the relative changes of two consecutive iterations are sufficiently small, i.e.,

RelErr :=
‖Zk+1 − Zk‖
‖Zk‖

≤ ε,

where “ε ≥ 0” is a given margin of error. Specifically, if we can’t achieve convergence within
the maximum the number of iterations 1000, the iterative process is forcefully terminate.
The quality of an optimal solution is measured by using the usual clustering error defined
as:

CluErr := 1− 1

n

n∑
i=1

δ
(
ai,map(bi)

)
,

where ai and bi represent the output label and the true one of the i-th point respectively,
δ(x, y) = 1 if x = y and 0 otherwise, and map(bi) is the best mapping function that permutes
clustering labels to match the true labels.

To be more clearly evaluate the efficiencies and stabilities of AGM for solving (1.7), we
also do performance comparisons with the state-of-the-art algorithms BDR and ABCGD.
For both algorithms, we use the Matlab packages provided by the authors and set all the
parameters as default. Before we begin our test, we briefly review the iterative frame of
ABCGD to make it is easier to follow. The algorithm ABCGD is proposed by Kong at
her thesis [6], which employs the famous Nesterov’s accelerated gradient method to solve
(1.7) with equivalent form (3.1). Starting from Z̃k, it is from [6] we know that the iterative
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scheme of ABCGD is the following:

W k+1 = arg minW

{
δC1(W ) + γ〈Diag(Z̃k1)− Z̃k,W 〉+ 1

2‖W −W
k‖2W1

}
,

Zk+1 = arg minZ

{
δC2(Z) + γ〈Diag(Z1)− Z,W k+1〉+ 1

2‖X −XZ‖
2 + 1

2‖Z − Z
k‖2W2

}
,

tk+1 =
1+
√

1+4t2k
2 ,

Z̃k+1 = Zk+1 + tk−1
tk+1

(
Zk+1 − Zk

)
.

where t0 > 0 is a constant, and W1 and W2 are self-adjoint semi-positive definite linear
operators to make each subproblem easier to compute. For more details, one may refer to
[6].

4.1 Motion Segmentation

The Hopkins 155 data set provides fact-based movement labels and outlier-free feature tra-
jectories (x-, y-coordinates) by the pictures with moderate noises. The number of feature
trajectories with different colors in every sequence ranges from 39 to 556, and the frame from
15 to 100. In the affine camera model, the movement track is in an affine subspace which
is three dimensional at best, as a result of which the subspace clustering methods can be
applied to motion segmentation, and every sequence actually is a separate clustering task. In
this test, the primitive 2F-dimensional feature trajectories are used, where F stands for the
number of frames in the video sequences. Exactly, if there is a set of feature points xfi ∈ R2

with i = 1, . . . , N and every frame is expressed as f = 1, . . . , F in the video. Then, under the
affine projection model, the feature trajectory is formed as yi = [x>1i, x

>
2i, . . . , x

>
Fi]
> ∈ R2F

by superimposing the feature point xfi . Since the trajectories are relevant to the single rigid
movement in the affine subspace of R2F which is at most four dimensions, it is composed
by l rigid movements in the union of l low-dimensional subspaces of R2F . Therefore, the
problem of affine multi-view motion segmentation can be simplified as a subspace clustering
problem.

In this test, we choose the model parameter as γ = 0.04 which is same as the one in
AGM, BDR and ABCGD, and set the error tolerance as ε = 1e− 3. In each test, we report
the results obtained by all the methods with respect to the sequence name in Hopkins 155
(Name), the number of motions in this sequence (Motions), the number of iterations (Iter),
the computing time (Time), the relative changes of final two consecutive iterations (RelErr),
and the clustering errors of the final solution (CluErr). The detailed computational results
of each algorithm for these problems are reported in Table 3- 5.

It can be seen from Table 3 -5 that, the quality of CluErr and RelErr of the solutions
produced by BDR, ABCGD, and AGM are almost the same, but the computing times
and the number of iterations are significantly different. For reporting the performance of
algorithms preferably, we compute the average values of Time, Iter, and CluErr produced
by BDR, ABCGD and AGM, and then display them in Table 1. As can be seen from this
table that, AGM performs much better than BDR and ABCGD, and particularly, AGM is
faster than the state-of-the-art algorithm ABCGD and at least two times faster than BDR
for the vast majority of the tested problems.

To more clearly show the performance of each algorithm, we draw the profiles of Dolan
and Moré [2] regarding to computing time and iterations. We recall that a point (x, y) is in
the performance profile curve of a method if and only if it can solve exactly (100y)% of all
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Table 1: Average result of AGM, BDR and ABCGD

Motions
AGM BDR ABCGD

Iter Time CluErr Iter Time CluErr Iter Time CluErr
2 57.4 2.840 0.0692 277.1 7.521 0.0900 144.3 3.741 0.0977
3 59.5 6.484 0.1414 284.4 16.870 0.1956 147.0 8.331 0.1689

all 57.90 3.663 0.0855 278.75 9.632 0.1136 144.94 4.7775 0.1138

the tested problems at most x times worse than any other methods. In short, the top curved
shape at the figure means that the corresponding algorithm is a winner. The performance
profiles of all the algorithms are plotted in Figure 1. Observing Figure 1, it is clear that,
in each plot, the blue broken line is always at the top and the yellow dashed line at the
second, which indicates that AGM performs better than ABCGD, and they both perform
better than BDR.

Figure 1: Performance profiles of BDR, ABCGD and AGM based on (a) iterations and (b)
computing time.

4.2 Face Clustering

In this part, we further evaluate the practical abilities of AGM on the Extended Yale B
database which is available at http://vision.ucsd.edu/leekc/ExtYaleDatabase/

ExtYaleB.html. The Extended Yale B database consists the frontal face images of 28
human subjects under 9 poses and 64 illumination conditions. The data set partitions these
images into 38 classes and each one contains 64 face images with 192×168 pixels. To reduce
the computation and memory cost, we downsample each image to 32 × 32 pixels and then
vectorize it as a vector with length 1024. Besides, to avoid overflows, we normalize each
data into an unit length. We construct the data matrix X from subsets which consist of
different numbers of subjects κ ∈ {2, 3, 5, 8, 10} from the Extended Yale B database. For
each κ, we randomly sample κ number subjects face images from this data set to construct
the data matrix X ∈ Rm×n, where m = 1024 and n = 64κ. Then the subspace clustering
methods can be performed on X and the segmentation accuracies are recorded. We run 20
times of each algorithm and list the results of the mean of segmentation accuracy, running
time (Time), and number of iterations (Iter) for each algorithm in Table 2.

It can be seen from the first column in Table 2 that AGM produce higher quality seg-
mentation accuracies than BDR and ABCGD, and as the number of cluster increases, the
accuracy decreases monotonously. While we turn our attention to the other columns regard-
ing to iterations, we can find that AGM only needs two to three hundreds iterations, but
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ABCGD needs at least one thousand and BDR requires at least two thousand iterations.
The phenomenon is not surprising, because the AGM not only converges globally but also
has the ability to accelerate its iterative points, so that the number of iterations should be
reduced greatly. Moreover, the third column shows that AGM is at leat two times faster
than ABCGD and about four times than BDR. At last, we also see that as the number
of cluster increases, the computing time and the iterations both increase correspondingly.
Taking everything together, this experiment once again demonstrates the effectiveness of
our AGM for the challenging face clustering task on the Extended Yale B database.

Table 2: The mean of segmentation accuracy(%), running time(s), and iterations of each
algorithm.

NCluster
AGM BDR ABCGD

Accuracy Time Iter Accuracy Time Iter Accuracy Time Iter
2 100.000 1.120 293 100.000 3.020 1965 100.000 1.480 1012
3 95.833 1.790 326 94.792 7.150 2039 94.792 4.300 1058
5 96.875 4.650 315 96.875 18.540 2081 96.875 8.200 1070
8 84.375 11.780 315 73.047 41.320 2106 73.047 26.000 1080
10 84.688 18.950 313 69.062 67.570 2145 69.062 37.150 1098

To end this part, we test the influence of the regular parameter γ on segmentation
accuracy and algorithm’s performance. In this test, we set the error tolerance as ε = 1e− 4
and choose the parameter values γ from 0.001 to 0.01 with apart 0.001, and then from
0.01 to 0.1 with apart 0.01, and then from 0.1 to 0.2 with apart 0.05. In this test, we use
10 subjects from the Extended Yale B database to observe the segmentation accuracy and
computing time when the regular parameter γ increases. The behavior is drawn in Figure
2. It can be seen from the figure that with the increase of γ, the segmentation accuracy and
computing time almost remain unchanged, and then change rapidly from the point γ = 0.09,
that is, it needs to spend more computing time but getting lower segmentation accuracy.
From this simple test, we can conclude that the parameter regular value γ = 0.02 to 0.08
are all suitable choices.

Figure 2: Changes of the segmentation accuracy (a) and Running time (b) of AGM as the
regular parameter γ increases.

5 Concluding Remarks

The sparse subspace clustering problem was recently characterized as a block diagonal matrix
regularized nonconvex minimization problem. The earliest algorithm BDR targeted to a
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penalty model but not the original model (1.7) itself. The recent algorithm ABCGD has the
ability to solve the original model (1.7), but its convergence is still not known. To remedy
these deficiencies, this paper proposed an efficient algorithm with convergence guaranteed
to solve the original model (1.7). The algorithm is an implementation of AGM [5] in which
we showed that each subproblem is easily implementable by taking full use of the favourable
structure of the constraints. We showed that the generated sequence converges globally to
a critical point of the original model (1.7) if the stepsize is chosen properly. We have tested
the proposed algorithm on the Hopkins 155 and Extended Yale B real datasets and did
performance comparisons with BDR, BCD, and ABCGD. The results demonstrated that
the proposed AGM is faster than the ABCGD, and highly faster than BDR. At last but
not at least, we must emphasize that the stepsize is heavily depending on the Lipschitz
constant of the differentiable term, which is not an easy task to evaluate. Therefore, it is an
interesting topic for further research.
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Table 3: Numerical results of BDR, ABCGD and AGM (I)
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Table 4: Numerical results of BDR, ABCGD and AGM (II)
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Table 5: Numerical results of BDR, ABCGD and AGM (III)


