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AN ACCELERATED GRADIENT METHOD FOR
NONCONVEX SPARSE SUBSPACE CLUSTERING PROBLEM*
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Abstract: The sparse subspace clustering problem is to group a set of data into their underlying subspaces
and correct the underlying noise simultaneously. It was shown in the recent literature that, the clustering
task can be characterized as a block diagonal matrix regularized nonconvex minimization problem. However,
this problem is not easy to solve because it contains a nonconvex bilinear function. The earliest method
named block diagonal regularization (BDR) only solved a penalized model, but not the original problem
itself. The recently algorithm named accelerated block coordinated gradient descent (ABCGD) can solve the
original problem efficiently, but its convergence is not given. In this paper, we attempt to use an accelerated
gradient method (AGM), and establish its convergence in the sense of converging to a critical point with a
certain stepsize policy. We show that closed-form solutions are enjoyed for each subproblem by taking full
use of the constraints’ structure so that the algorithm is easily implementable. Finally, we do numerical
experiments by the using of two real datasets. The numerical results illustrate that the proposed algorithm
AGM performs better than BDR and ABCGD evidently.

Key words: sparse subspace clustering, nonconvex nonsmooth optimization, accelerated gradient method,
Hopkins 155 real datasets, Extended Yale B database
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Introduction

Many applications in various areas can be captured by finding and exploiting low-dimensional
structure in high-dimensional data. Let S := {S1,8s,...,S;} be a set of independent sub-
spaces and X := [X1, X»,..., X;] be a given sample drawn from S with the relation X; € S;.
Assume that each sample X; is with size m x n; and rank d;, then it can be represented
as a linear combination by itself, i.e., X; = X;Z; where Z; € R™*"i is expected not to be
an identity. Moreover, let n = > . n;, d = ) . d;, and Z = Diag(Z1,...,7;), i.e., a block
diagonal matrix with its diagonal block Z;, then we have

X=XZ, (1.1)

where X € R™*" is with rank d, and Z € R"*" is a called representation coefficient of X.
Under the assumption of m < n, i.e., the dimension of X is less than the number of
samples, then there exist infinite number of coefficients Z that satisfing (1.1). Noting that
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all the off-diagonal blocks of Z are zeros, and all the diagonal elements are zeros, hence, it
is reasonable to find a sparsest one among all the solutions of (1.1), that is

Zgglm 2], st.X=XZ, Z;;=0, j=1,...n}, (1.2)
where || - ||1 is a so-called extension £;-norm of matrix. It was shown by Elhamifar & Vidal

[3] that, if each samples {X;}! are noiseless and drawn from an independent subspaces, then
the optimal solution of (1.2) is block diagonal. On other hand, each sample Z;, and even Z,
actually has low rank structure if the d; is assumed to be d; < min{m,n;}. In such case, it
turns to seek the lowest-rank representation of the data samples, that is

Zélﬂl{innxn {12]., st. X=XZ}, (1.3)
where || - ||« is a nuclear norm which serves as a convex surrogate of a rank function. As

shown by Liu et al. [8], the optimal solution to problem (1.3) is also block diagonal under the
assumption of noiselessness and subspaces independence. The method NNLRS of Zhuang
et al. [16] is to seek a non-negative low-rank and sparse coefficient via solving the following
optimization problem
min  {[|Z|l. + 72|, st. X =XZ, Z>0},
ZERnxn

where v > 0 is a weighting parameter to control the balance between low rank and sparsity,
and Z > 0 means that all the entries of Z are nonnegative.

However, in practice, a fraction of the data vectors may be grossly corrupted by noise,
and hence the diagonal structure of the optimal solution might be violated. In this case,
it is shown by Liu et al. [7] that it is appropriate to find a low-rank representation (LRR)
coefficient via solving

et N2+ M Bl st X = X2+ B}, (1.4)
where A > 0 is balance between low rank and error of residuals, and || - ||, /¢, is defined as

the sum of the ¢y-norm of each column of matrix. The multi-subspace representation (MSR)
[10] combines the idea of NNLRS and LRR, which is formulated as

yin {120+ Z I+ NX = X 2l e, }- (1.5)
It should be noted that the optimal solutions obtained by both approaches obey block
diagonal structures even when the data is heavily corrupted by noise.

The independent subspaces assumption is essential to guarantee the block diagonal prop-
erty, but it can be removed by the using of subspace segmentation with quadratic program-
ming (SSQP) [4] in which a regularization || Z T Z||; instead of || Z||; is used. Besides, there
is another exciting progress to encourage a nonnegative symmetric matrix to be block diag-
onal. Let “1” be a vector with all entries are one, and define a Laplacian matrix of a given
symmetric matrix Z as Lz := Diag(Z1) — Z. The block diagonal representation (BDR)

method for subspace clustering of Lu et al. [9] is formulated as the following optimization
min 41X — X213+ Lzl "
st. 2>0,Z=2", Zj; =0, j=1,...,n, '

where || - || is a Frobenius norm of a matrix, and [|Z||; is a block diagonal regularization
defined as the sum of the smallest [ eigenvalues of Lz. The key challenge for solving (1.6)
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lies in the regularization term || - ||;. To address this issue, Lu et al. [9] approximated
| Lz as convex programming to get the following model

win  3|.X — XZ|[3 + 5(Ding(21) - Z,W)
st. Z2>0,2=2",2;=0,j=1,...,n, (1.7)
I=W =0, Tt(W) =1,

where (-,-) and Tr(-) are matrix inner product and trace respectively, and W > 0 means
that W is positive semi-definite. The BDR method of Lu et al. [9] used a block coordinate
descent method [15] to solve a penalty variant of (1.7) and its effectiveness and high-efficiency
is experimentally demonstrated by the using of several real dataset. Subsequently, the
performance of BDR is greatly improved by Kong et al. [6] where a Nesterov’s accelerated
technique [11] is employed, but the convergence of the accelerated variant is not given. We
must emphasize that the algorithms [9] and [6] are both concerned on an approximated
model, but not the original (1.7) itself. The accelerated block coordinated gradient descent
(ABCGD) [6] has the ability to solve (1.7), but its convergence is still unknown. Therefore,
it is necessary to develop an effective algorithm with convergence guarantee to solve the
problem (1.7) directly.

It is much difficult and challenging to solve (1.7) due to the nonconvex bilinear term
“(Diag(Z1) — Z7W>” as well as the constraints on the variables. To address this issue,
we focus on the using of the novel accelerated gradient method of Ghadimi & Lan et al.[5]
which can be reviewed as a generalized variant of the well-known Nesterov’s accelerated
gradient method [1, 11] to solve nonconvex and possibly stochastic optimization problems.
It has been known that the attractive feature of using this method is that an optimal rate
of convergence is exhibited if the composite problem is convex, and the best known rate
of convergence is improved if the problem is nonconvex. Nevertheless, the convergence of
the algorithm depends on a pair of stepsize which is related with the Lipschitz constant of
the gradient to the smooth functions. To tackle this difficulty, we numerically estimate the
Lipschitz constant by the using of the structure of the given data. Finally, we do a series of
numerical experiments on some real data which demonstrates that the proposed algorithm
is highly more efficient than BDR and ABCGD.

The remaining parts of this paper are organized as follows. In Section 2, we quickly
review some key ingredients needed for our subsequent developments. In Section 3, we
propose an AGM to solve the model (1.7) followed by a convergence theorem. In Section 4,
we present some numerical experiments using some real data to show the efficiency of our
algorithm. Finally, we conclude our paper with some remarks in Section 5.

Preliminaries

In this section, we summarize some basic concepts in convex analysis [12] and quickly review
the accelerated gradient method of Ghadimi & Lan [5] used to the subsequent developments.
Let X be a finite-dimensional real Euclidean space with an inner product and associated
norm denoted by (-, ) and ||-||2, respectively. For any z € £, the metric projection of z onto C
denoted by II¢(z) is the optimal solution of the minimization problem myin{||y —z|| |y €C}.

Let g : X — (—o00,+00] be a closed proper convex function. The subdifferential of g(-) is a
convex set defined as dg(z) = {z* | g(2) > g(z) + (z*,z — x), Vz € X}. Obviously, dg(z) is
a closed convex set when it is not empty [12]. A necessary but not sufficient condition for
x* € R™ to be a minimizer of function g(-) is 0 € dg(z*), where z* is called a critical point.
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The Moreau-Yosida regularization of g at x € X with positive scalar > 0 is defined by

. 1 2
ey(e) = min{o) + 5y — o (2.1)
For any « € X, problem (2.1) has an unique optimal solution, which is known as the proximal
mapping of z associated with g and simply denoted by PJ(z), i.e.,

1
N — . 2
Pg(x) : arggm{g(ywrznlly x| } (2.2)

We now briefly review the accelerated gradient method for a class of the following com-
posite problem
min f(z) + h(z) + g(z), (2.3)

where f: R™ — R is a continuously differentiable function (possibly nonconvex), h : R" —
R is a continuously differentiable convex function, and g : R — (—o0,+00] is a proper
closed convex function. Let {ay} be a positive sequence such that ay € (0,1) and oy = 1.
Starting from z° and 2V , the accelerated gradient method generates an iterate sequence

ag’
{(ah 4,2k, 2%)} via the iterative scheme:

koo k—1 k—1
Tpg = (L —ag)zg,t +apa”™ 7,

2hy = P (b — BV F(h,0) + Vh(h)] ). (2.4
2 = Py (51 = e[V f(ahg) + Vh(ah ),

where 5 > 0 and pg > 0 are the suitable stepsizes. Note that, if pp = Sk, then we have

:rfi;l =2F1 and ;vfnd = 2F=1 in this case, this accelerated gradient method reduces to the

tranditional proximal gradient method, and then it also reduces to the Nesterov’s accelerated
gradient method [11] if a4 is chosen properly. For more details on this method, one may
refer to [5].

Accelerated Gradient Method

Algorithm’s construction

For convenience, we define
C:={WeRY"|I=W=z0, Te(W)=1},
Cow={ZeR™"|Z2>0,2Z=2", Zj;=0, j=1,...n},

which are all convex set. Therefore, the problem (1.7) can be represented equivalently as
follows:

iy {dc, (W) +dc,(2) + 51X — XZ|[* + (Ding(21) — 2,W) }. (3.1)

s

where d¢, (-) represents an indicator function over C;. Obviously, the objective function is
nonconvex because W and Z are coupled together in the last term.
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For the sake of simplicity, we denote Y := [Z; W] € R?*"*™ and C := C; x C. Using these
notations, the nonsmooth term d¢, (W) + d¢,(Z) can be rewritten equivalently as d¢(Y).
Besides, we define a linear operator A : R"*" — R™*™ such that A(Z) = Diag(Z1) — Z,
then the coupled term can be reformulated as <A(Z), W> = <Q1Y7 Q2Y> = <Q;Q1Y, Y> =

(QY,Y') with
a=(3 ohe=(§ f)me=(50) e

Moreover, denote © := [X;0] € R™*2" then the problem (3.1) is transformed into

1
in {F(Y):=06c(Y)+ -|X — OV v.Y) . .
min {F(Y):=0e(Y) + 31X - O [} +7(QY.Y) (33)
Clearly, F'(+) is nonsmooth and nonconvex because of the indefiniteness of (). The problem
(3.3) can also be rewritten equivalently as

i F(Y) = g(Y) 4 5e(Y), (3.4)

where ¥(Y) := h(Y) + f(Y) with
h(Y) = %HX —0Y|%, and f(Y):=(QY,Y). (3.5)

Obviously, f is a nonconvex continuously differentiable function. We also assume that V f(+)
and Vh(-) are Lipschitz continuous with the modulus Ly and Lj, respectively, and hence
V(-) satisfies Lipschitz continuous with modulus Ly = Ly + Lj,.

We now turn our attention to the solving of problem (3.4). Because d¢(-) is an indicator
function on convex compact set C, from [5, Lemma 2], it is easy to see that there exists a
positive constant M such that [|Pg, (Y —=nV(Y))|| < M for any given > 0 and Y € R***™,
where PJ (-) is a proximal mapping. From the definition of Py, (Y —nVy(Y)), we define an
important quantity as follows

G.TU( ))& L (Y = PLY —nV(¥). (36)

From [5, Lemma 3], we know that as the size of G(Y, V4 (Y),n) vanishes, the PJ (Y —
nV(Y)) approaches to a critical point Y* of problem (3.4).

We now focus on the practical implementation for (3.3), or equivalently (3.4). The
employed algorithm here is based on the AGM of Ghadimi & Lan [5], which starts from the
initial point (Y}, ¥?), and generates an iterate sequence {(Y,r;, Y., Y*)} via the iterative
scheme:
ka = (1 — Oék)Yakg_l + Oékyk_l,

m

YE =P (Y = gV (Yer)), (3.7)

C
Yakg = Péﬁck (Y’II:Ld - Bkvw(yrﬁ,d))’
where ay € (0,1) with a; = 1, and B > 0, pr > 0 are the suitable stepsizes. Note that, if
Pk = Bk, then we have V7! = Y*~1and Y%, = Y*~1, in this case, this accelerated gradient
method reduces to the simplest proximal gradient method. From [5, Corollary 2], we can
get the main convergence properties of (3.7) as follows provided that the parameters {ay },
{Br}, and {pi} are chosen properly. For more details on the choices of these parameters
{ar}, {Br}, and {px}, one can refer to [5, Lemma 1, Corollary 1].
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Subproblems’ solving

Notice that d¢(-) is very simple so that the subproblems involved in (3.7) are easily com-
putable. From the definition of proximal mapping, we see that the subproblem involved in
(3.7) are with the form

1 2
Y* = argmin 8¢ (Y) + —HY — (YR = g V(VE ) H , (3.8)
YeRZan F

|y - ke - mevevia)| (3.9)

YF = argmin 6¢(Y)
g YERZ"X" 2ﬁk
Recalling that Y = [Z; W]. We notice that the Y-subproblems involved in (3.8) and (3.9)
are easily implementable in the sense that it can be partitioned into a couple of lower-
dimensional subproblems regarding to Z and W, that is,

[Zk; Wk] = arg min {561(W) +dc,(Z2) + LHZ — (Zk_1 — pkvwz(zﬁdn H2
zW

2

W— (WE1 = v I}
2pk: H Pk ¢W( m,d)) F
Noting that Z and W are independent with each other, they can be computed individually,
that is,

7* = argmin {6, (2) + o1 Z Mo 2}, W = argmin {ae, (W) + |~ Nog 2},
ZERnXn 2Pk WERnXn ka
(3.10)

where My, := ZF~1 — ppVpz(ZE ) and Noy := WE=L — p, Vapyy (WE ) with
Voz(Zia) = X (X Zhg = X) + 7AWy, and  Vow (Why) = vA(Zh.).  (3.11)

We now show that computing the projection onto C; or Cs is really a trivial task. On
the one hand, denote Ny, := (Nog + Ny3)/2, and there exists an orthogonal matrix V* such
that

Nop = VES,(VF)T, (3.12)
where ¥, is a diagonal matrix whose diagonal entries consist of the eigenvalue of Ny in
nondecreasing order, and V* is an orthogonal matrix whose columns are the corresponding

eigenvectors. Let VL’C be the submatrices associated with the [ smallest eigenvalues of Noy.
Then the optimal solution W* can be explicitly described as

Wk =vEvE

On the other hand, it is from [9, Proposition 7] that, the new Z* has an analytical solution
with form
M. M),
Z% = max {% O}
where Moy, = Moy, — Diag(diag(Max)). In a similar way, the variables ijq and fog can be
obtained by

_ 1 . _ 1 ’
Wiy = argmin {oe, W)+ g IW = N3} 28, = arg min {3,204 5517 - 5|13
(3.13)
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where My := Zk . — B,V (ZE ) and Ny := Wk — B, Vpw (WE ). Furthermore, denote
Ny := (Ny? + (N52)T)/2, and do eigenvalue decomposition as

Ngi? = Urs (UM)T, (3.14)
Besides, denote Uf be the submatrices associated with the last ! columns of U¥, then we
get
-
W, =UUE .
and

M 4 ( Mag)T
ko_ 2k 2k
Zayg = max{f,O},
where Mg{ = M7 — Diag(diag(Msy)) with M7 := ZF , — 8.V 7(ZF ).
In light of the above analysis and definition of V¢ in (3.11), we are ready to state the
iterative framework of the accelerated gradient method (AGM) to solve the problem (3.4).

Algorithm: AGM

Step 0. Input a Lipschitz constant Ly > 0; Initialize: Y2, = Y% = Y° € R***". For
k=1,2,..., do the following operations iteratively:

Step 1. Compute
2 1 kB

kv Tapy M=y
Step 2. Compute W, = (1 — ap)WE™ + o WF 1 and ZF, = (1 —ap) Z5 1 + ap 241
Step 3. Compute W* and Z* according to

e95

- Compute Noj, = Wk=1 — pkvqu(W,’;d) and My, = Z+-1 — pkvwz(z,’;d);

- Set Nop = (Naj 4+ N,}.)/2 and Moy = Moy, — Diag(diag(May,));

Compute Naj, = VESL(VF)T, determine V£, and then compute

T
WE=VEVE
- Compute
Vi, + 0,
Z" :max{%ﬂ}.

Step 4. Compute Wéfq and fog according to

Compute Ng? = Wk . — BV (WE ) and MY = Z* . — 8.V (ZE ));
- Set Ny = (N5 + (N3¢)")/2 and Mg = Mg — Diag(diag(Msy));
- Compute N57 = U*S,(U*)T, determine UJ, and then compute
T
wh, = USUs
- Compute

Mag Mag T
fog :max{—% +2( 2k) ,0}.
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Step 5. Let k —1:=k, go to Step 1.

From [5, Lemma 1, Corollary 1], we can get the following theorem which further indicates
that AGM converges globally.

Theorem 3.1. Let {Z* W*} be the sequence generated by the AGM with properly choosing
g, Br and pg. Then for any N > 1, we have

; k k 2 4L¢,||Y° —Y? Ly
pin (607 Vot 80 < 1L | g S v g t W

()2 + 2]

where Y* = [ZF;W*] and Y* is a critical point for problem (3.4), which means that
G(YE,, Vo(YE)), Be) vanishes if N is large enough and {Z*,W*} converges globally from
[5, Lemma 3].

The Theorem indicates that, one can find an approximated solution Y with a tolerance
e > 0 such that [|G(Y, Vi(Y), i)”2 < e in at most (’)(Lf/g’/el/3 + LyLy/€) iterations.

Numerical Experiments

This section is devoted to evaluating the feasibility and efficiency of AGM on the standard
motion segmentation dataset — Hopkins 155 [13] and the Extended Yale Database B [14].
All experiments are performed under MAC OS and Matlab R2018a running on a MacBook
Air with an Intel Core i5 CPU at 1.60 GHz and 8 GB of memory. In all the tests given
below, we use zero matrices as starting points, and simply terminate the iterative process
when the relative changes of two consecutive iterations are sufficiently small, i.e.,

sz-l-l _ Zk:H
RelErr :i= ———— <,
1Z¥]|

where “e > 07 is a given margin of error. Specifically, if we can’t achieve convergence within
the maximum the number of iterations 1000, the iterative process is forcefully terminate.
The quality of an optimal solution is measured by using the usual clustering error defined
as:

1 n
CluErr :=1— - Z 5(ai7map(bi))v

=1

where a; and b; represent the output label and the true one of the i-th point respectively,
d(z,y) = 1if x = y and 0 otherwise, and map(b;) is the best mapping function that permutes
clustering labels to match the true labels.

To be more clearly evaluate the efficiencies and stabilities of AGM for solving (1.7), we
also do performance comparisons with the state-of-the-art algorithms BDR and ABCGD.
For both algorithms, we use the Matlab packages provided by the authors and set all the
parameters as default. Before we begin our test, we briefly review the iterative frame of
ABCGD to make it is easier to follow. The algorithm ABCGD is proposed by Kong at
her thesis [6], which employs the famous Nesterov’s accelerated gradient method to solve
(1.7) with equivalent form (3.1). Starting from Z*, it is from [6] we know that the iterative
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scheme of ABCGD is the following:

WHH. = arg miny, {6c1(W) +y(Diag(Z%1) — ZF, W) + LW — Wk|32, }

ZF+ = arg min, {6@ (2) +v(Diag(Z1) — Z, W1y + 1| X — X 2|2 + 1||Z — ZkH%vZ},

144/1+4t2

1 = —5—,

Zk+1 — Zk+1 + te—1 (Zk+1 _ Zk)

tit1 '
where tg > 0 is a constant, and W; and W, are self-adjoint semi-positive definite linear
operators to make each subproblem easier to compute. For more details, one may refer to
[6].

Motion Segmentation

The Hopkins 155 data set provides fact-based movement labels and outlier-free feature tra-
jectories (x-, y-coordinates) by the pictures with moderate noises. The number of feature
trajectories with different colors in every sequence ranges from 39 to 556, and the frame from
15 to 100. In the affine camera model, the movement track is in an affine subspace which
is three dimensional at best, as a result of which the subspace clustering methods can be
applied to motion segmentation, and every sequence actually is a separate clustering task. In
this test, the primitive 2F-dimensional feature trajectories are used, where F' stands for the
number of frames in the video sequences. Exactly, if there is a set of feature points zf, € R?
with 4 =1,..., N and every frame is expressed as f = 1,..., F in the video. Then, under the
affine projection model, the feature trajectory is formed as y; = [x];,74;,...,75,]" € R?F
by superimposing the feature point x,. Since the trajectories are relevant to the single rigid
movement in the affine subspace of R?¥ which is at most four dimensions, it is composed
by [ rigid movements in the union of [ low-dimensional subspaces of R?!". Therefore, the
problem of affine multi-view motion segmentation can be simplified as a subspace clustering
problem.

In this test, we choose the model parameter as v = 0.04 which is same as the one in
AGM, BDR and ABCGD, and set the error tolerance as € = le — 3. In each test, we report
the results obtained by all the methods with respect to the sequence name in Hopkins 155
(Name), the number of motions in this sequence (Motions), the number of iterations (Iter),
the computing time (Time), the relative changes of final two consecutive iterations (RelErr),
and the clustering errors of the final solution (CluErr). The detailed computational results
of each algorithm for these problems are reported in Table 3- 5.

It can be seen from Table 3 -5 that, the quality of CluErr and RelErr of the solutions
produced by BDR, ABCGD, and AGM are almost the same, but the computing times
and the number of iterations are significantly different. For reporting the performance of
algorithms preferably, we compute the average values of Time, Iter, and CluErr produced
by BDR, ABCGD and AGM, and then display them in Table 1. As can be seen from this
table that, AGM performs much better than BDR and ABCGD, and particularly, AGM is
faster than the state-of-the-art algorithm ABCGD and at least two times faster than BDR
for the vast majority of the tested problems.

To more clearly show the performance of each algorithm, we draw the profiles of Dolan
and Moré [2] regarding to computing time and iterations. We recall that a point (x,y) is in
the performance profile curve of a method if and only if it can solve exactly (100y)% of all



274 H. LI, H. ZHANG AND Y. XIAO

Table 1: Average result of AGM, BDR and ABCGD

Motions AGM BDR ABCGD
Iter Time | CluErr Iter Time CluErr Iter Time CluErr
2 57.4 2.840 | 0.0692 277.1 7.521 0.0900 144.3 3.741 0.0977
3 59.5 6.484 | 0.1414 284.4 16.870 | 0.1956 147.0 8.331 0.1689
all 57.90 | 3.663 | 0.0855 | 278.75 9.632 0.1136 | 144.94 | 4.7775 | 0.1138

the tested problems at most x times worse than any other methods. In short, the top curved
shape at the figure means that the corresponding algorithm is a winner. The performance
profiles of all the algorithms are plotted in Figure 1. Observing Figure 1, it is clear that,
in each plot, the blue broken line is always at the top and the yellow dashed line at the
second, which indicates that AGM performs better than ABCGD, and they both perform

better than BDR.

~-

f

(100y)\% of problems.

- BOR =0 BOR
A8CGD ABCGD
— e AGM J’ — o AGM

(b)

Figure 1: Performance profiles of BDR, ABCGD and AGM based on (a) iterations and (b)

computing time.

Face Clustering

In this part, we further evaluate the practical abilities of AGM on the Extended Yale B
database which is available at http://vision.ucsd.edu/leekc/ExtYaleDatabase/
ExtYaleB.html. The Extended Yale B database consists the frontal face images of 28
human subjects under 9 poses and 64 illumination conditions. The data set partitions these
images into 38 classes and each one contains 64 face images with 192 x 168 pixels. To reduce
the computation and memory cost, we downsample each image to 32 x 32 pixels and then
vectorize it as a vector with length 1024. Besides, to avoid overflows, we normalize each
data into an unit length. We construct the data matrix X from subsets which consist of
different numbers of subjects x € {2,3,5,8,10} from the Extended Yale B database. For
each k, we randomly sample x number subjects face images from this data set to construct
the data matrix X € R™*" where m = 1024 and n = 64x. Then the subspace clustering
methods can be performed on X and the segmentation accuracies are recorded. We run 20
times of each algorithm and list the results of the mean of segmentation accuracy, running
time (Time), and number of iterations (Iter) for each algorithm in Table 2.

It can be seen from the first column in Table 2 that AGM produce higher quality seg-
mentation accuracies than BDR and ABCGD, and as the number of cluster increases, the
accuracy decreases monotonously. While we turn our attention to the other columns regard-
ing to iterations, we can find that AGM only needs two to three hundreds iterations, but
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ABCGD needs at least one thousand and BDR requires at least two thousand iterations.
The phenomenon is not surprising, because the AGM not only converges globally but also
has the ability to accelerate its iterative points, so that the number of iterations should be
reduced greatly. Moreover, the third column shows that AGM is at leat two times faster
than ABCGD and about four times than BDR. At last, we also see that as the number
of cluster increases, the computing time and the iterations both increase correspondingly.
Taking everything together, this experiment once again demonstrates the effectiveness of
our AGM for the challenging face clustering task on the Extended Yale B database.

Table 2: The mean of segmentation accuracy(%), running time(s), and iterations of each
algorithm.

NCluster AGM BDR ABCGD
Accuracy | Time | Iter | Accuracy | Time Iter | Accuracy | Time Tter
2 100.000 1.120 | 293 100.000 3.020 | 1965 100.000 1.480 | 1012
3 95.833 1.790 | 326 94.792 7.150 | 2039 94.792 4.300 | 1058
5 96.875 4.650 | 315 96.875 18.540 | 2081 96.875 8.200 | 1070
8 84.375 11.780 | 315 73.047 41.320 | 2106 73.047 26.000 | 1080
10 84.688 18.950 | 313 69.062 67.570 | 2145 69.062 37.150 | 1098

To end this part, we test the influence of the regular parameter v on segmentation
accuracy and algorithm’s performance. In this test, we set the error tolerance as e = le — 4
and choose the parameter values v from 0.001 to 0.01 with apart 0.001, and then from
0.01 to 0.1 with apart 0.01, and then from 0.1 to 0.2 with apart 0.05. In this test, we use
10 subjects from the Extended Yale B database to observe the segmentation accuracy and
computing time when the regular parameter v increases. The behavior is drawn in Figure
2. It can be seen from the figure that with the increase of 7, the segmentation accuracy and
computing time almost remain unchanged, and then change rapidly from the point v = 0.09,
that is, it needs to spend more computing time but getting lower segmentation accuracy.
From this simple test, we can conclude that the parameter regular value v = 0.02 to 0.08
are all suitable choices.

Running time of AGM

0 002 004 006 008 01 012 014 016 018 02
The parameter choice of

(a) (b)

Figure 2: Changes of the segmentation accuracy (a) and Running time (b) of AGM as the
regular parameter vy increases.

Concluding Remarks

The sparse subspace clustering problem was recently characterized as a block diagonal matrix
regularized nonconvex minimization problem. The earliest algorithm BDR targeted to a
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penalty model but not the original model (1.7) itself. The recent algorithm ABCGD has the
ability to solve the original model (1.7), but its convergence is still not known. To remedy
these deficiencies, this paper proposed an efficient algorithm with convergence guaranteed
to solve the original model (1.7). The algorithm is an implementation of AGM [5] in which
we showed that each subproblem is easily implementable by taking full use of the favourable
structure of the constraints. We showed that the generated sequence converges globally to
a critical point of the original model (1.7) if the stepsize is chosen properly. We have tested
the proposed algorithm on the Hopkins 155 and Extended Yale B real datasets and did
performance comparisons with BDR, BCD, and ABCGD. The results demonstrated that
the proposed AGM is faster than the ABCGD, and highly faster than BDR. At last but
not at least, we must emphasize that the stepsize is heavily depending on the Lipschitz
constant of the differentiable term, which is not an easy task to evaluate. Therefore, it is an
interesting topic for further research.
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Table 3: Numerical results of BDR, ABCGD and AGM (I)

BDR ABCGD AGM

Name Mt ' Ttor —Time  RelBrr  Clulrr | Ther  Time  RelErr  CluErr | Teer  Time  RelErr  CluErr
TR2RC 3 | 283 25.19 9.97c-04 _ 0.205 | 148 10.98 9.97¢-04 _ 0.191 61 11.37 9.740-04 _ 0.189
1R2RCR 2 | 303 2.05 1.00e-03  0.000 | 148  0.87  9.96e-04  0.000 54  0.70  9.97e-04  0.000
1R2RCR_g12 2 | 272 14.03 9.97e-04  0.240 | 144  6.22  9.97e-04  0.243 59  5.21  9.90e-04  0.238
1R2RCR_g13 2 | 268 15.36 9.98e-04  0.188 | 137  9.06  1.00e-03  0.178 57  6.04 9.96e-04  0.072
1R2RCR-g23 3 | 288 18.64 9.98¢-04 0.114 | 141  8.05 1.00e-03  0.105 60  5.84  9.80c-04  0.069
1R2RCT_A 2 | 313  3.65 9.97e-04  0.000 | 167 1.82  9.96e-04  0.000 60 1.08  9.79¢-04  0.000
1R2RCT_A_g12 2 | 299 9.31  9.98-04 0.141 | 150 3.57 9.99e-04  0.081 59  2.60 9.93e-04  0.074
1R2RCT_A_g13 2 | 265 870 9.98-04 0.051 | 126 4.21  9.96e-04  0.060 56  3.76  9.79e-04  0.051
1R2RCT-A_g23 3 | 208 23.21 9.98e-04  0.131 | 147 11.45 9.98¢-04  0.246 59  7.52  9.97¢-04  0.115
1R2RCT_B 2 | 206 249  9.99e-04  0.000 | 158 1.79  9.97e-04  0.000 60 1.05  9.74e-04  0.000
1R2RCT_B_g12 2 | 270 7.45  9.97e-04  0.138 | 134  4.47  9.93e-04  0.129 56 3.10 9.79e-04  0.107
1R2RCT_B_gl13 2 | 285 13.21 9.99e-04  0.123 | 147 8.16 9.97e-04  0.113 60  5.52  9.79e-04  0.102
1R2RCT_B_g23 2 | 200 3.11  9.96e-04  0.000 | 140 1.65 9.95e-04  0.000 54 1.18  9.84e-04  0.000
1R2RC-g12 2 | 274 833 9.98-04 0.254 | 136  3.96 9.99¢-04  0.260 57  3.47  9.98¢-04  0.254
1R2RC_gl13 2 268 11.01 9.99e-04 0.192 133 5.01 9.99e-04 0.197 57 4.52 9.81e-04 0.197
1R2RC-g23 3 | 279 29.19 9.97e-04  0.131 | 141 15.89 9.97e-04  0.131 61 12.88 9.79e-04  0.131
1R2TCR 3 | 287 25.48 9.97e-04  0.155 | 140 12.27 9.98e-04  0.167 62  12.67 9.91e-04  0.151
1R2TCRT 2 | 257 2,51 9.97e-04  0.000 | 125  1.20  9.91e-04  0.000 53 1.14  9.88¢-04  0.000
1R2TCRT_g12 2 | 279 12.30 9.97e-04  0.013 | 146  7.28  9.97e-04  0.024 62  6.68 9.91e-04  0.000
1R2TCRT_g13 2 | 271  16.14 1.00e-03  0.021 | 125  7.07  1.00e-03  0.000 59  6.91  9.83e-04  0.174
1R2TCRT_g23 2 | 295 3.55 9.98-04 0.000 | 147 1.77  9.97e-04  0.000 55 1.87  9.82e-04  0.000
1R2TCR.-g12 2 | 284 14.67 9.98e-04  0.027 | 140  6.52  9.96e-04  0.024 60  6.50  9.84e-04  0.027
1R2TCR.-g13 2 | 267 19.55 9.97e-04  0.129 | 138  9.79  9.93e-04  0.131 60  9.05 9.88¢-04  0.129
1R2TCR_g23 3 | 305 24.63 9.98¢-04  0.116 | 151 11.94 9.99e-04  0.116 60  8.98  9.86e-04  0.122
1RT2RCR 3 | 284 17.51 9.97e-04  0.088 | 149 10.62 9.99e-04  0.095 61 8.50  9.80e-04  0.079
1RT2RCRT 2 | 286 2.53  1.00e-03  0.000 | 157 1.69  9.95e-04  0.000 57 1.22  9.82e-04  0.000
1RT2RCRT_g12 2 | 263 898 9.97¢-04 0.070 | 142  5.75  9.96e-04  0.079 60  4.00  9.89¢-04  0.000
1RT2RCRT_g13 2 | 266 8.18 9.98-04 0.103 | 138  4.09  1.00e-03  0.103 57  3.30 9.95¢-04  0.103
1RT2RCRT_g23 2 | 293  4.82  9.96e-04  0.000 | 154  2.87  9.98e-04  0.000 58 1.89  9.97e-04  0.000
1RT2RCR_g12 2 | 277 10.81 9.98e-04  0.114 | 143  5.60 9.97e-04  0.143 59  4.44  9.86e-04  0.140
1RT2RCR_g13 2 | 257 835 9.99e-04  0.171 | 126  4.42  9.95¢-04  0.163 54  3.57  9.73¢-04  0.163
1RT2RCR_g23 3 | 302 849 9.98-04 0.119 | 150 4.12  9.99e-04  0.137 59  3.12  9.97e-04  0.125
1RT2RTCRT_A 2 | 298 2.29 9.97e-04  0.000 | 159  1.23  9.96e-04  0.000 54  0.82  9.82e-04  0.000
1RT2RTCRT.A_gl2 2 | 272  4.46  9.96e-04  0.101 | 136  2.13  9.93e-04  0.125 56 1.83  9.83e-04  0.101
IRT2RTCRT.-Agl3 2 | 251 3.09 9.99e-04  0.167 | 125  1.44  9.95e-04  0.163 54 1.27  9.72e-04  0.145
1IRT2RTCRT-A_g23 3 | 299 14.00 1.00e-03  0.180 | 154  7.20  9.94e-04  0.177 61 5.43  9.83e-04  0.157
1RT2RTCRT_B 2 318 2.21 1.00e-03 0.000 173 1.12 9.95e-04 0.000 64 0.93 9.84e-04 0.000
1IRT2RTCRT-B_gl2 2 | 284 7.66 1.00e-03  0.153 | 146  3.78  9.96e-04  0.037 60  3.18 9.81e-04  0.016
1RT2RTCRT.-B_gl3 2 | 270 6.74 9.97e-04  0.212 | 139  3.34  9.95e-04  0.199 56 2.50  9.83e-04  0.199
1IRT2RTCRT-B_g23 3 | 293 7.35 9.99e-04 0.110 | 149  3.71  9.98¢-04  0.110 58  2.67  9.84c-04  0.094
1RT2TC 3 | 289  6.55 9.96e-04  0.145 | 159  3.68  9.93e-04  0.125 61 2.71  9.91e-04  0.132
1RT2TCRT-A 2 | 290 1.99 9.99e-04  0.000 | 154 1.19  9.96e-04  0.000 57  0.73  9.85e-04  0.000
1RT2TCRT_A_g12 2 | 262  3.15 9.99e-04  0.005 | 142  1.71  9.95e-04  0.434 58 1.32  9.84e-04  0.434
1RT2TCRT-A_gl3 2 | 244 290 9.85e-04  0.192 | 127 1.41  9.94e-04  0.174 55 1.26  9.85e-04  0.179
1RT2TCRT_A_g23 3 | 262 861 9.99e-04  0.122 | 143  4.06  9.95¢-04  0.104 59  3.43  9.82¢-04  0.104
1RT2TCRT_B 2 | 299 1.60 9.96e-04  0.000 | 163 0.84 9.98e-04  0.000 57  0.59  9.79e-04  0.000
1RT2TCRT_B_g12 2 | 263 4.19 9.97e-04  0.020 | 145 2.28  9.93e-04  0.024 60 1.88  9.95e-04  0.000
1RT2TCRT-B_g13 2 | 242 4.47 9.98e-04  0.130 | 128  2.24  9.98¢-04  0.120 55 1.97  9.95e-04  0.123
1RT2TCRT-_B_g23 2 | 300 3.49  1.00e-03  0.000 | 155 1.46  9.93e-04  0.000 59 1.14  9.95e-04  0.000
1RT2TC_g12 2 | 286 3.02  9.96e-04  0.000 | 144 1.41  9.94e-04  0.000 53 1.06  9.97e-04  0.000
1RT2TC_g13 2 | 279  3.13  9.99e-04  0.092 | 140 1.40  9.99e-04  0.135 52 1.13  9.84e-04  0.135
1RT2TC_g23 3 | 303  25.27 9.99e-04  0.273 | 148 14.63 9.95e-04  0.271 62  9.85  9.86e-04  0.259
2R3RTC 3 | 305 16.27 9.99e-04  0.146 | 149  9.13  9.94e-04  0.156 62 551  9.85c-04  0.144
2R3RTCRT 2 | 256  2.96 9.98-04 0.000 | 135 2.01  9.97e-04  0.000 53 1.23  9.79e-04  0.000
2R3RTCRT._gl2 2 | 300 6.26 9.99e-04  0.231 | 154  3.30  9.94e-04  0.265 61 2.23  9.87e-04  0.213
2R3RTCRT.-g13 2 | 292 884 9.98-04 0.069 | 137 4.21  9.98¢-04  0.176 58  3.18  9.96e-04  0.170
2R3RTCRT-g23 2 | 263  4.35 9.98-04 0.000 | 136 2.54  9.93e-04  0.000 52 1.63  9.98¢-04  0.000
2R3RTC_gl2 2 | 260 7.54  9.99e-04  0.390 | 124  3.64  9.97¢-04  0.384 56  3.10  9.82¢-04  0.369
2R3RTC_gl3 2 | 296 14.88 9.99e-04  0.039 | 139  8.03  9.99e-04  0.051 60  5.46  9.98e-04  0.022
2R3RTC_g23 3 | 291  31.15 1.00e-03  0.445 | 137 15.13 9.99e-04  0.345 59  11.29 9.96e-04  0.102
2RT3RC 3 | 292 26.18 1.00e-03  0.247 | 134 12.80 1.00e-03  0.215 59  9.89  9.74e-04  0.280
2RT3RCR 2 | 267  3.62  9.98e-04  0.000 | 139  2.02  1.00e-03 _ 0.000 54 1.42  9.74e-04 _ 0.000
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Table 4: Numerical results of BDR, ABCGD and AGM (II)

Name Mt BDR ABCGD AGM

Tter Time RelErr CluErr Tter Time RelErr CluErr Tter Time RelErr CluErr
2RT3RCR_g12 2 291 14.26 9.99e-04 0.093 138 6.03 9.98e-04 0.083 58 4.63 9.89e-04 0.013
2RT3RCR_g13 2 272 15.31 1.00e-03 0.428 130 7.18 9.99e-04 0.234 57 5.74 9.79e-04 0.416
2RT3RCR_g23 3 301 12.50 1.00e-03 0.125 159 5.71 9.95e-04 0.143 63 4.12 9.80e-04 0.140
2RT3RCT_-A 2 261 2.67 9.97e-04 0.000 138 1.26 9.95e-04 0.000 57 0.92 9.94e-04 0.000
2RT3RCT_A_gl2 2 277 4.44 9.97e-04 0.031 148 1.84 9.93e-04 0.004 61 1.51 9.65e-04 0.004
2RT3RCT_A_gl3 2 287 6.83 9.98e-04 0.047 145 2.97 9.96e-04 0.054 59 2.44 9.80e-04 0.047
2RT3RCT_A_g23 3 299 25.27 9.97e-04 0.308 147 10.44 9.96e-04 0.308 61 7.97 9.99e-04 0.302
2RT3RCT_B 2 261 2.10 1.00e-03 0.000 154 1.05 9.99e-04 0.000 50 0.72 9.88e-04 0.000
2RT3RCT_B_gl2 2 263 8.92 9.97e-04 0.401 134 3.97 1.00e-03 0.390 59 3.54 9.85e-04 0.398
2RT3RCT_B_gl13 2 285 16.39 9.98e-04 0.059 138 7.75 9.99e-04 0.374 59 6.22 9.92e-04 0.031
2RT3RCT_B_g23 2 260 3.36 9.98e-04 0.000 145 2.30 9.98e-04 0.000 56 1.37 9.87e-04 0.000
2RT3RC_gl2 2 278 16.13 9.98e-04 0.411 132 6.90 9.99e-04 0.381 58 5.69 9.81e-04 0.000
2RT3RC_gl13 2 278 20.61 9.99e-04 0.271 129 8.75 9.95e-04 0.163 57 7.42 9.97e-04 0.119
2RT3RC_g23 3 296 11.38 9.98e-04 0.179 157 6.53 9.98e-04 0.140 61 4.02 9.94e-04 0.160
2RT3RTCRT 2 279 2.27 1.00e-03 0.000 154 1.22 9.98e-04 0.000 60 0.87 9.74e-04 0.000
2RT3RTCRT_g12 2 287 5.39 9.99e-04 0.278 159 2.98 9.94e-04 0.275 62 2.00 9.97e-04 0.275
2RT3RTCRT_gl13 2 276 6.29 9.98e-04 0.221 147 3.33 9.93e-04 0.218 59 2.41 9.87e-04 0.183
2RT3RTCRT_g23 3 284 29.67 1.00e-03 0.424 144 13.30 9.96e-04 0.342 60 12.11 9.82e-04 0.379
2T3RCR 3 292 30.84 9.98e-04 0.409 143 14.57 9.98e-04 0.438 61 11.63 9.92e-04 0.409
2T3RCRT 3 294 24.76 9.98e-04 0.118 144 11.50 9.95e-04 0.122 61 9.13 9.87e-04 0.049
2T3RCRTP 2 283 3.50 1.00e-03 0.000 147 2.28 9.99e-04 0.000 59 1.29 9.85e-04 0.000
2T3RCRTP_gl2 2 290 10.34 9.99e-04 0.331 148 6.24 9.95e-04 0.381 61 3.89 9.87e-04 0.000
2T3RCRTP_gl13 2 286 15.48 9.98e-04 0.141 138 9.28 9.98e-04 0.078 59 6.10 9.96e-04 0.078
2T3RCRTP_g23 2 293 2.22 9.99e-04 0.000 162 1.20 9.99e-04 0.000 58 1.09 9.66e-04 0.000
2T3RCRT_gl2 2 282 20.47 9.98e-04 0.178 139 10.09 9.99e-04 0.022 59 7.02 9.98e-04 0.000
2T3RCRT_gl13 2 284 21.62 9.99e-04 0.457 135 8.69 9.99e-04 0.472 59 T7.74 9.99e-04 0.478
2T3RCRT_g23 2 257 2.95 9.99e-04 0.000 147 1.19 9.99e-04 0.000 58 0.98 9.80e-04 0.000
2T3RCR_gl2 2 286 15.01 1.00e-03 0.385 147 7.73 1.00e-03 0.385 61 6.05 9.84e-04 0.381
2T3RCR_g13 2 273 19.83 9.99e-04 0.399 139 11.51 9.96e-04 0.386 58 7.54 9.93e-04 0.326
2T3RCR_g23 3 294 22.81 9.98e-04 0.192 148 10.31 1.00e-03 0.094 60 7.70 9.78e-04 0.066
2T3RCTP 2 244 4.54 9.99e-04 0.000 133 2.21 9.97e-04 0.000 55 1.82 9.83e-04 0.000
2T3RCTP_gl2 2 286 8.60 9.98e-04 0.204 145 3.70 9.98e-04 0.163 58 3.14 9.81e-04 0.000
2T3RCTP_gl13 2 283 11.26 9.99e-04 0.036 139 4.44 9.98e-04 0.006 56 3.74 9.94e-04 0.078
2T3RCTP_g23 3 311 30.49 9.99e-04 0.327 150 13.91 9.99e-04 0.308 62 10.56 9.90e-04 0.351
2T3RTCR 2 272 7.22 9.97e-04 0.000 136 3.34 9.97e-04 0.000 54 2.93 9.88e-04 0.000
2T3RTCR_gl12 2 283 10.40 1.00e-03 0.009 140 4.88 9.96e-04 0.003 59 4.77 9.90e-04 0.003
2T3RTCR-gl3 2 293 13.81 9.97e-04 0.360 144 9.67 9.95e-04 0.305 59 5.43 9.89e-04 0.292
2T3RTCR_g23 2 280 0.44 9.99e-04 0.026 150 0.25 9.99e-04 0.000 64 0.21 9.78e-04 0.000
arm 3 276 1.58 9.98e-04 0.000 147 1.33 9.97e-04 0.000 44 0.50 9.90e-04 0.000
articulated 2 267 0.47 9.97e-04 0.000 145 0.46 9.98e-04 0.000 49 0.17 9.95e-04 0.000
articulated_gl2 2 320 0.97 9.96e-04 0.000 174 0.67 9.99e-04 0.000 65 0.36 9.86e-04 0.000
articulated_gl3 2 265 0.90 9.98e-04 0.000 148 0.71 9.93e-04 0.000 56 0.35 9.97e-04 0.000
articulated_g23 2 290 7.23 9.98e-04 0.003 158 4.23 9.96e-04 0.003 63 3.01 9.85e-04 0.003
carsl 3 297 6.71 9.98e-04 0.054 161 3.90 9.97e-04 0.054 64 2.81 9.93e-04 0.051
carsl0 2 311 4.24 9.99e-04 0.000 168 2.15 9.99e-04 0.000 64 1.74 1.00e-03 0.000
carsl0_gl2 2 305 3.83 1.00e-03 0.000 160 3.26 9.99e-04 0.000 61 1.63 9.80e-04 0.036
carsl0_gl3 2 310 2.05 9.99e-04 0.101 166 1.19 9.99e-04 0.094 62 0.87 9.94e-04 0.082
cars10_g23 2 298 25.03 9.97e-04 0.333 145 11.43 9.96e-04 0.451 61 9.00 9.94e-04 0.004
cars2 3 290 30.84 9.97e-04 0.389 153 15.89 9.98e-04 0.437 64 11.86 9.85e-04 0.000
cars2B 2 247 0.60 9.98e-04 0.000 162 0.37 9.93e-04 0.000 54 0.25 9.76e-04 0.000
cars2B_gl2 2 294 27.78 9.99e-04 0.492 145 13.75 9.94e-04 0.472 62 9.90 9.73e-04 0.000
cars2B_gl3 2 282 24.83 9.97e-04 0.000 151 10.35 9.99e-04 0.000 62 8.90 9.90e-04 0.000
cars2B_g23 3 241 1.30 9.98e-04 0.065 131 0.47 9.97e-04 0.033 55 0.48 9.87e-04 0.000
cars2_06 2 284 0.30 9.99e-04 0.000 174 0.15 9.97e-04 0.000 56 0.08 9.79e-04 0.000
cars2_06_gl2 2 215 0.63 1.00e-03 0.000 126 0.36 9.97e-04 0.000 52 0.28 9.74e-04 0.000
cars2_06_gl3 2 231 0.81 9.98e-04 0.000 125 0.38 1.00e-03 0.000 51 0.33 9.85e-04 0.010
cars2_06_g23 3 262 4.03 1.00e-03 0.429 147 1.67 9.97e-04 0.000 57 1.59 9.94e-04 0.000
cars2_07 2 317 0.22 9.98e-04 0.000 159 0.09 9.99e-04 0.000 50 0.07 9.19e-04 0.000
cars2_07_gl12 2 253 2.45 9.97e-04 0.479 137 1.17 9.97e-04 0.000 53 1.02 9.91e-04 0.000
cars2_07_gl3 2 258 3.04 1.00e-03 0.000 144 1.25 9.94e-04 0.000 50 0.99 9.89e-04 0.000
cars2_07_g23 3 250 30.74 9.97e-04 0.341 144 15.86 9.94e-04 0.356 58 12.48 9.75e-04 0.402
cars3 2 289 1.02 9.99e-04 0.000 160 0.59 9.91e-04 0.000 57 0.41 9.97e-04 0.000
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Table 5: Numerical results of BDR, ABCGD and AGM (III)
Name Mt BDR ABCGD AGM

Iter Time RelErr CluErr Iter Time RelErr CluErr Iter Time RelErr CluErr
cars3-gl2 2 233 17.47 1.00e-03 0.000 137 11.62 9.95e-04 0.386 57 7.78 9.74e-04 0.000
cars3_gl3 2 271 28.57 1.00e-03 0.000 129 12.10 9.94e-04 0.239 57 10.00 9.85e-04 0.000
cars3_g23 2 268 1.62 9.99e-04 0.000 150 0.79 9.95e-04 0.000 61 0.78 9.96e-04 0.000
cars4 3 229 11.43 9.99e-04 0.000 141 6.37 9.98e-04 0.056 58 4.76 9.79e-04 0.000
carsb 2 294 0.57 9.99e-04 0.000 157 0.34 9.93e-04 0.000 36 0.14 1.00e-03 0.000
cars5-gl2 2 237 9.70 9.99e-04 0.000 112 4.53 9.95e-04 0.073 55 3.60 9.85e-04 0.000
cars5.-gl3 2 235 10.26 9.98e-04 0.000 120 4.67 1.00e-03 0.000 55 3.78 9.84e-04 0.000
cars5.g23 2 265 21.25 9.99e-04 0.000 115 7.82 9.98e-04 0.000 54 6.96 9.97e-04 0.000
cars6 2 277 25.30 9.98e-04 0.004 145 12.64 9.96e-04 0.267 61 9.79 9.75e-04 0.014
cars7 2 303 2.68 9.99e-04 0.000 162 1.31 9.95e-04 0.000 63 1.37 9.79e-04 0.000
cars8 3 275 3.69 9.99e-04 0.305 157 1.75 9.98e-04 0.309 60 1.33 9.94e-04 0.309
cars9 2 325 0.49 9.99e-04 0.000 169 0.28 9.99e-04 0.000 65 0.21 9.75e-04 0.000
cars9_gl2 2 256 2.24 9.97e-04 0.005 152 1.27 9.94e-04 0.011 59 1.01 9.77e-04 0.000
cars9_gl3 2 273 2.01 9.96e-04 0.011 142 1.04 9.95e-04 0.011 58 0.82 9.87e-04 0.011
cars9_g23 5 273 2.01 9.96e-04 0.011 142 1.04 9.95e-04 0.011 58 0.82 9.87e-04 0.011
dancing 2 291 0.82 9.92e-04 0.455 151 0.38 9.98e-04 0.424 51 0.27 9.83e-04 0.444
head 2 250 1.30 9.99e-04 0.000 137 0.60 9.97e-04 0.000 54 0.50 9.86e-04 0.000
kanatanil 2 304 0.41 9.98e-04 0.000 167 0.21 9.97e-04 0.000 62 0.18 9.93e-04 0.000
kanatani2 2 251 0.39 9.94e-04 0.178 118 0.19 9.96e-04 0.192 50 0.14 9.81e-04 0.192
kanatani3 2 278 25.97 9.99e-04 0.002 158 12.94 9.98e-04 0.024 50 0.21 9.81e-04 0.192
peoplel 2 278 21.25 9.98e-04 0.002 145 10.02 9.99e-04 0.275 62 9.24 9.80e-04 0.000
people2 3 268 2.02 1.00e-03 0.029 149 1.07 9.98e-04 0.029 58 0.99 9.89e-04 0.029
three-cars 2 291 0.69 9.95e-04 0.000 167 0.36 9.96e-04 0.000 63 0.27 9.95e-04 0.000
three-cars_gl2 2 265 1.27 9.99e-04 0.000 142 0.54 9.97e-04 0.000 54 0.41 9.87e-04 0.016
three-cars_gl13 2 311 1.79 1.00e-03 0.039 170 0.69 9.96e-04 0.031 58 0.49 9.86e-04 0.039
three-cars_g23 2 269 2.76 1.00e-03 0.000 139 1.13 1.00e-03 0.000 59 1.02 9.67e-04 0.000
truckl 2 291 9.78 9.97e-04 0.027 158 4.53 9.96e-04 0.027 62 4.12 9.95e-04 0.027
truck2 3 262 0.67 9.97e-04 0.415 142 0.32 9.93e-04 0.043 54 0.42 9.97e-04 0.043
two_cranes 2 250 0.35 9.95e-04 0.000 131 0.20 9.95e-04 0.000 55 0.16 9.71e-04 0.000
two_cranes_gl2 2 275 0.44 9.96e-04 0.000 146 0.27 9.95e-04 0.000 53 0.20 9.72e-04 0.000
two_cranes_gl3 2 255 0.13 1.00e-03 0.128 132 0.08 9.98e-04 0.154 73 0.15 9.73e-04 0.180




