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Definition 1.1. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric real tensor. If
there is λ ∈ R, x ∈ Rm, y ∈ Rn, such that

A · yxy = λx,
A xyx· = λy,
xTx = 1,
yTy = 1,

where
(A · yxy)i =

∑
k∈[m]

∑
j,l∈[n]

aijklyjxkyl,

(A xyx·)l =
∑

i,k∈[m]

∑
j∈[n]

aijklxiyjxk,

then λ is called an M-eigenvalue of A , and x, y is called the left and right eigenvectors with
respect to the M-eigenvalues.

Denote σM (A ) as the set of all M-eigenvalues of A . Then, the M-spectral radius of A is
denoted by ρM (A ) = max{|λ| : λ ∈ σM (A )}. Note that fA (x, y) is positive definite if and
only if M-eigenvalues of A are positive [10]. There are some works on fourth-order partially
symmetric tensor have been implemented [2,3,7,12–14,16–18]. Due to the complexity of the
tensor eigenvalue problem [6, 9], it is not easy to calculate all M-eigenvalues. Hence, some
researchers turned to investigating the inclusion sets of M-eigenvalue, Che et al. [1] proposed
a Gershgorin-type M-inclusion set for fourth-order partially symmetric tensors. He et al. [5]
presented some new M-eigenvalue inclusion sets for fourth-order partially symmetric tensors
and gave some veritable sufficient conditions of the M-positive definiteness.

In this paper, we present some M-eigenvalue localization sets with m parameter to lo-
cate all M-eigenvalues of fourth-order partially symmetric tensors. It is revealed that the
new eigenvalue localization sets are tighter than some existing results [5, 8]. Numerical ex-
amples demonstrate the effectiveness of the results obtained. As applications, we present
some checkable sufficient conditions for the positive definiteness and establish some bound
estimations for the M-spectral radius of the fourth-order partially symmetric tensor.

2 Tighter Eigenvalue Localization Sets

In this section, tighter eigenvalue localization sets with parameter for fourth-order partially
symmetric tensors are demonstrated.

To continue, we need the following definitions and technical results.

Theorem 2.1 ([8]). Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. If
λ is an M-eigenvalue of A , then

λ ∈ Γ1(A ) = {z ∈ R : |z| ≤ min{ max
1≤i≤m

{Ri(A )}, max
1≤l≤n

{Cl(A )}}},

where

Ri(A ) =

m∑
k=1

n∑
j,l=1

|aijkl|, Cl(A ) =

m∑
i,k=1

n∑
j=1

|aijkl|.

Theorem 2.2 ([8]). Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. If
λ is an M-eigenvalue of A , then

λ ∈ Θ(A ) = U(A )
∩

V (A ),
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where

U(A ) =
m∪

s,p=1,s ̸=p

{z ∈ R : (|z| −
n∑

j,l=1

|apjpl|)|z| ≤ (Rp(A )−
n∑

j,l=1

|apjpl|)Rs(A )},

and

V (A ) =

n∪
t,q=1,t ̸=q

{z ∈ R : (|z| −
m∑

i,k=1

|aiqkq|)|z| ≤ (Cq(A )−
m∑

i,k=1

|aiqkq|)Ct(A )}.

Theorem 2.3 ([5]). Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor. If
λ is an M-eigenvalue of A , then

λ ∈ ∆(A ) = ∆1(A )
∩

∆2(A ),

where

∆1(A ) = (
∪

i,k∈[m],i ̸=k

{z ∈ R : (|z| − rii(A ))(|z| − rkk(A )) ≤ ri(A )rk(A )})

∪
(
∪

i∈[m]

{z ∈ R : |z| ≤ rii(A )}),

∆2(A ) = (
∪

j,l∈[n],j ̸=l{z ∈ R : (|z| − cll(A ))(|z| − cjj(A )) ≤ cl(A )cj(A )})∪
(
∪
l∈[n]

{z ∈ R : |z| ≤ cll(A )}),

rii(A ) =

n∑
j,l=1,j ̸=l

|aijil|+ τi, τi = max
l∈[n]

{|ailil|},

ri(A ) =

m∑
k=1,k ̸=i

n∑
j,l=1,j ̸=l

|aijkl|+ ηi, ηi = max
l∈[n]

{
m∑

k=1,k ̸=i

|ailkl|},

cll(A ) =

m∑
i,k=1,i ̸=k

|ailkl|+ νl, νl = max
i∈[m]

{|ailil|},

cl(A ) =

m∑
i,k=1,i ̸=k

n∑
j=1,j ̸=l

|aijkl|+ ςl, ςl = max
i∈[m]

{
m∑

j=1,j ̸=l

|aijil|}.

Motivated by [11], we begin our work by introducing the definition of M-identity tensor.

Definition 2.4. We call FM ∈ R[m]×[n]×[m]×[n] an M-identity tensor, if its entries are

(FM )ijkl =

{
1, if i = k, j = l,
0, otherwise,

where i, k ∈ [m], j, l ∈ [n].

Now we are in a position to exhibit our results.
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Theorem 2.5. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and FM

an M-identity tensor. For any α = (α1, . . . , αm)T ∈ Rm and β = (β1, . . . , βn)
T ∈ Rn, if λ

is the M-eigenvalue of A , then

λ ∈ Γ(A ) = {z ∈ R : |z − bπ| ≤ Gπ(A )},

where
Gπ(A ) = min{ max

1≤i≤m
{Di(A )}, max

1≤l≤n
{Fl(A )}},

b = { α, β | min{ max
1≤i≤m

{Di(A )}, max
1≤l≤n

{Fl(A )}}},

π = { i, l | min{ max
1≤i≤m

{Di(A )}, max
1≤l≤n

{Fl(A )}}},

Di(A ) =

m∑
k=1

n∑
j,l=1

|aijkl − αi(FM )ijkl|,

Fl(A ) =

m∑
i,k=1

n∑
j=1

|aijkl − βl(FM )ijkl|.

Proof. Assume that λ is an M-eigenvalue of A , x ∈ Rm and y ∈ Rn are the corresponding
nonzero left and right M-eigenvectors. Let

|xt| = max
1≤i≤m

{|xi|}, |ys| = max
1≤l≤n

{|yl|}.

Since xTx = 1 and yTy = 1, one has

A · yxy = λx = λ(FM ) · yxy, A xyx· = λy = λ(FM )xyx · .

Noting the tth equation of A · yxy = λx = λ(FM ) · yxy, it yields
m∑

k=1

n∑
j,l=1

λ(FM )tjklyjxkyl =

m∑
k=1

n∑
j,l=1

atjklyjxkyl.

Hence, for any αt, it follows that

(λ− αt)xt =
∑

k∈[m],j,l∈[n]

(λ− αt)(FM )tjklyjxkyl

=
∑

k∈[m],j,l∈[n]

(atjkl − αt(FM )tjkl)yjxkyl.
(2.1)

From (2.1), we obtain

|λ− αt||xt| = |
∑

k∈[m],j,l∈[n]

(λ− αt)(FM )tjklyjxkyl|

≤
∑

k∈[m],j,l∈[n]

|atjkl − αt(FM )tjkl||xt|.

Furthermore,

|λ− αt| ≤
∑

k∈[m],j,l∈[n]

|atjkl − αt(FM )tjkl| = Dt(A ) ≤ max
1≤i≤m

{Di(A )}. (2.2)
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Similarly, from
m∑

i,k=1

n∑
j=1

λ(FM )ijksxiyjxk =

m∑
i,k=1

n∑
j=1

aijksxiyjxk,

for any βs, we have

(λ− βs)ys =
∑

i,k∈[m],j∈[n]

(λ− βs)(FM )ijksxiyjxk

=
∑

i,k∈[m],j∈[n]

(aijks − βs(FM )ijks)xiyjxk.

Moreover,

|λ− βs||ys| = |
∑

i,k∈[m],j∈[n]

(λ− βs)(FM )ijksxiyjxk|

≤
∑

i,k∈[m],j∈[n]

|aijks − βs(FM )ijks||ys|,

which means

|λ− βs| ≤
∑

i,k∈[m],j∈[n]

|aijks − βs(FM )ijks| = Fs(A ) ≤ max
1≤l≤n

{Fl(A )}. (2.3)

From (2.2) and (2.3), we have
|z − bπ| ≤ Gπ(A ),

which implies that λ ∈ Γ(A ), and the desired result holds.

Theorem 2.6. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and FM

an M-identity tensor. For any α = (α1, . . . , αm)T ∈ Rm and β = (β1, . . . , βn)
T ∈ Rn, if λ

is the M-eigenvalue of A , then

λ ∈ Λ(A ) = U1(A )
∩

U2(A ),

where

U1(A ) =

m∪
s ̸=p,s,p=1

{z ∈ R : (|z − αp| −Dp
p(A ))|z − αs| ≤ (Dp(A )−Dp

p(A ))Ds(A )},

U2(A ) =

n∪
t ̸=q,t,q=1

{z ∈ R : (|z − βq| − F q
q (A ))|z − βt| ≤ (Fq(A )− F q

q (A ))Ft(A )},

Dp
p(A ) =

n∑
j,l=1

|apjpl − αp(FM )pjpl|,

F q
q (A ) =

m∑
i,k=1

|aiqkq − βq(FM )iqkq|.

Proof. Assume that λ is an M-eigenvalue of A , x ∈ Rm and y ∈ Rn are the corresponding
nonzero left and right M-eigenvectors. Let

|xp| ≥ |xs| ≥ max
k ̸=p,s,1≤k≤m

{|xk|}, |yq| ≥ |yt| ≥ max
k ̸=q,t,1≤k≤n

{|yk|}.
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Since A · yxy = λx = λ(FM ) · yxy, A xyx· = λy = λ(FM )xyx·,

(λ− αp)xp =
∑

k∈[m],j,l∈[n]

(λ− αp)(FM )pjklyjxkyl

=
∑

j,l∈[n]

(λ− αp)(FM )pjplyjxpyl

+
∑

k ̸=p,k∈[m]

∑
j,l∈[n]

(λ− αp)(FM )pjklyjxkyl

=
∑

j,l∈[n]

(apjpl − αp(FM )pjpl)yjxpyl

+
∑

k ̸=p,k∈[m]

∑
j,l∈[n]

(apjkl − αp(FM )pjkl)yjxkyl,

which implies

|λ− αp||xp| ≤
∑

j,l∈[n]

|apjpl − αp(FM )pjpl)||xp|+ (Dp(A )−Dp
p(A ))|xs|.

Therefore, we have

(|λ− αp| −Dp
p(A ))|xp| ≤ (Dp(A )−Dp

p(A ))|xs|. (2.4)

From Theorem 2.1, one has
|λ− αs||xs| ≤ Ds(A )|xp|. (2.5)

If |xs| > 0, multiplying (2.4) with (2.5), we have

(|λ− αp| −Dp
p(A ))|λ− αs| ≤ (Dp(A )−Dp

p(A ))Ds(A ).

If |xs| = 0, then |λ− αp| −Dp
p(A ) ≤ 0. Therefore, we have λ ∈ U1(A ).

Similarly, for any βq, we obtain

|λ− βq||yq| ≤
∑

i,k∈[m]

|aiqkq − βq(FM )iqkq)||yq|+ (Fq(A )− F q
q (A ))|yt|.

Therefore, we have

(|λ− βq| − F q
q (A ))|yq| ≤ (Fq(A )− F q

q (A ))|yt|. (2.6)

From Theorem 2.1, it holds
|λ− βt||yt| ≤ Ft(A )|yq|. (2.7)

If |yt| > 0, multiplying (2.6) with (2.7), we have

(|λ− βt| − F q
q (A ))|λ− βt| ≤ (Fq(A )− F q

q (A ))Ft(A ).

If |yt| = 0, then |λ− βq| − F q
q (A ) ≤ 0. Therefore, we have λ ∈ U2(A ).

From λ ∈ U1(A ) and λ ∈ U2(A ), we obtain λ ∈ U1(A )
∩

U2(A ), and the desired result
follows.

Theorem 2.7. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and FM

an M-identity tensor. For any α = (α1, . . . , αm)T ∈ Rm and β = (β1, . . . , βn)
T ∈ Rn, if λ

is the M-eigenvalue of A , then

λ ∈ Φ(A ) = Φ1(A )
∩

Φ2(A ),
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where

Φ1(A ) = (
∪

i,k∈[m],i ̸=k

{z ∈ R : (|z − αi| −Xi
i (A ))(|z − αk| −Xk

k (A )) ≤ Xi(A )Xk(A )})∪
(
∪

i∈[m]

{z ∈ R : |z − αi| ≤ Xi
i (A )}),

Φ2(A ) = (
∪

j,l∈[n],j ̸=l

{z ∈ R : (|z − βl| − Y l
l (A ))(|z − βj | − Y j

j (A )) ≤ Yl(A )Yj(A )}∪
(
∪
l∈[n]

{z ∈ R : |z − βl| ≤ Y l
l (A )}),

Xi
i (A ) =

n∑
j,l=1,j ̸=l

|aijil|+ εi, εi = max
l∈[n]

{|ailil − αi(F )ilil|},

Xi(A ) =

m∑
k=1,k ̸=i

n∑
j,l=1,j ̸=l

|aijkl|+ ξi, ξi = max
l∈[n]

{
m∑

k=1,k ̸=i

|ailkl|},

Y l
l (A ) =

m∑
i,k=1,i ̸=k

|ailkl|+ δl, δl = max
i∈[m]

{|ailil − βl(F )ilil|},

Yl(A ) =

m∑
i,k=1,i ̸=k

n∑
j=1,j ̸=l

|aijkl|+ ωl, ωl = max
i∈[m]

{
m∑

j=1,j ̸=l

|aijil|}.

Proof. Assume that λ is an M-eigenvalue of A , x ∈ Rm and y ∈ Rn are the corresponding
nonzero left and right M-eigenvectors. Let

|xp| ≥ |xs| ≥ max
k ̸=p,s,1≤k≤m

{|xk|}, |yq| ≥ |yt| ≥ max
k ̸=q,t,1≤k≤n

{|yk|}.

For any αp, it follows from

A · yxy = λx = λFM · yxy, A xyx· = λy = λFMxyx·

that

(λ− αp)xp =
∑

k∈[m],j,l∈[n]

(λ− αp)(FM )pjklyjxkyl

=

m∑
k=1

n∑
j,l=1,j ̸=l

(λ− αp)(FM )pjklyjxkyl +

m∑
k=1

n∑
l=1

(λ− αp)(FM )plklxky
2
l

=

m∑
k=1

n∑
j,l=1,j ̸=l

(apjkl − αp(FM )pjkl)yjxkyl +

m∑
k=1

n∑
l=1

(aplkl − αp(FM )plkl)xky
2
l .

(2.8)
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From (2.8), it reduces that

|λ− αp||xp| ≤
m∑

k=1

n∑
j,l=1,j ̸=l

|apjkl − αp(FM )pjkl||yj ||xk||yl|

+

m∑
k=1

n∑
l=1

|aplkl − αp(FM )plkl||xk||y2l |

+

n∑
l=1

|aplpl − αp(FM )plpl||xp||y2l |

+

m∑
k=1,k ̸=p

n∑
l=1

|aplkl − αp(FM )plkl||xk||y2l |

≤ (

n∑
j,l=1,j ̸=l

|apjpl − αp(FM )pjpl|

+

n∑
l=1

|aplpl − αp(FM )plpl|)|xp|

+ (

m∑
k=1,k ̸=p

n∑
j,l=1,j ̸=l

|apjkl − αp(FM )pjkl|

+

m∑
k=1,k ̸=p

n∑
l=1

|aplkl − αp(FM )plkl|)|xs|

≤ Xp
p (A )|xp|+Xp(A )|xs|.

(2.9)

Then, (2.9) can be rewritten as

(|λ− αp| −Xp
p (A ))|xp| ≤ Xp(A )|xs|. (2.10)

Meanwhile,
(|λ− αs| −Xs

s (A ))|xs| ≤ Xs(A )|xp|. (2.11)

If |λ − αp| − Xp
p (A ) ≤ 0, then |λ − αp| ≤ Xp

p (A ). If |λ − αp| − Xp
p (A ) > 0, multiplying

(2.10) with (2.11), then we have

(|λ− αp| −Xp
p (A ))(|λ− αs| −Xs

s (A )) ≤ Xp(A )Xs(A ).

Thus, we obtain λ ∈ Φ1(A ).
Next, we will prove λ ∈ Φ2(A ). Similarly,

|λ− βq||yq| ≤
m∑

i,k=1,i ̸=k

|aiqkq − βq(FM )iqkq||xi||yq||xk|

+

m∑
i,k=1,i ̸=k

n∑
j=1,j ̸=q

|aijkq − βq(FM )ijkq||xi||yj ||xk|

+

m∑
i=1

|aiqiq − βq(FM )iqiq||x2
i ||yq|+

m∑
i=1

n∑
j=1,j ̸=q

|aijiq − βq(FM )ijiq||x2
i ||yj |

≤ Y q
q (A )|yq|+ Yq(A )|yt|.

(2.12)
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(2.12) means
(|λ− βq| − Y q

q (A ))|yq| ≤ Yq(A )|yt|. (2.13)

Meanwhile,
(|λ− βt| − Y t

t (A ))|yt| ≤ Yt(A )|yq|. (2.14)

If |λ−βq|−Y q
q (A ) ≤ 0, then |λ−βq| ≤ Y q

q (A ). If |λ−βq|−Y q
q (A ) > 0, multiplying (2.13)

with (2.14), then we have

(|λ− βq| − Y q
q (A ))(|λ− βt| − Y t

t (A )) ≤ Yq(A )Yt(A ).

Thus, we obtain λ ∈ Φ2(A ). Furthermore, λ ∈ Φ(A ) = Φ1(A )
∩

Φ2(A ). And the proof is
completed.

The following conclusion exhibits the relationship between Φ(A ), Λ(A ) and Γ(A ).

Corollary 2.8. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and
FM an M-identity tensor. For any α = (α1, . . . , αm)T ∈ Rm and β = (β1, . . . , βn)

T ∈ Rn,
if λ is the M-eigenvalue of A , then λ ∈ Φ(A ) ⊆ Λ(A ) ⊆ Γ(A ).

Proof. By Theorem 2.5 and Theorem 2.6, it is sufficient to prove Λ(A ) ⊆ Γ(A ). For
any λ ∈ Λ(A ), without loss of generality, there exists t ∈ [m], such that λ ∈ U1(A ), for
all s ̸= t, (|λ − αt| − Dt

t(A ))|λ − αs| ≤ (Dt(A ) − Dt
t(A ))Ds(A ). We now break up the

argument into two cases.
Case 1. If (Dt(A )−Dt

t(A ))Ds(A ) = 0, then

(|λ− αt| −Dt
t(A ))|λ− αs| ≤ 0.

Hence, we have |λ− αt| ≤ Dt
t(A ) or λ = αs.

Case 2. If (Dt(A )−Dt
t(A ))Ds(A ) > 0, then

|λ− αt| −Dt
t(A )

Dt(A )−Dt
t(A )

· |λ− αs|
Ds(A )

≤ 1,

which implies that
|λ− αt| −Dt

t(A )
Dt(A )−Dt

t(A )
≤ 1 or

|λ− αs|
Ds(A ) ≤ 1.

If there exists q ∈ [n], such that λ ∈ U2(A ), for all p ̸= q, (|λ − βq| − F q
q (A ))|λ − βp| ≤

(Fq(A )− F q
q (A ))Fp(A ). Similarly, we break up the argument into two cases.

Case 1. If (Fq(A )− F q
q (A ))Fp(A ) = 0, then

(|λ− βq| − F q
q (A ))|λ− βp| ≤ 0.

Hence, we have |λ− βq| ≤ F q
q (A ) or λ = βp.

Case 2. If (Fq(A )− F q
q (A ))Fp(A ) > 0, then

|λ− βq| − F q
q (A )

Fq(A )− F q
q (A )

· |λ− βp|
Fp(A )

≤ 1,

which implies that
|λ− βq| − F q

q (A )
Fq(A )−F q

q (A )
≤ 1 or

|λ− βp|
Fp(A ) ≤ 1.

Hence, we have λ ∈ Γ(A ).
Next, we prove Φ(A ) ⊆ Λ(A ). For any λ ∈ Λ(A ), we have λ ∈ Φ1(A ) ∩Φ2(A ). If λ ∈

Φ1(A ), then |λ−αp| ≤ Xp
p (A ), or (|λ−αp|−Xp

p (A ))(|λ−αk|−Xk
k (A )) ≤ Xp(A )Xk(A ).

We break up the argument into two cases.
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Case 1. From |λ− αp| ≤ Xp
p (A ), then

Xp
p (A ) ≤

m∑
p,k=1

|aplkl − αp(FM )plkl|,

which means

|λ− αp| ≤
m∑

p,k=1

|aplkl − αp(FM )plkl|.

Then,
(|λ− αp| −Dp

p(A ))|λ− αs| ≤ 0 ≤ (Dp(A )−Dp
p(A ))Ds(A ).

Hence, we have Φ1(A ) ⊆ U1(A ).
Case 2. From |λ− αp| > Xp

p (A ), Xp(A )Xk(A ) ̸= 0, one has

|λ− αp| −Xp
p (A )

Xp(A )
· |λ− αk| −Xk

k (A )

Xk(A )
≤ 1.

From (2.10), we have
|λ− αp| −Xp

p (A )
Xp(A ) ≤ 1. If

|λ− αk| −Xk
k (A )

Xk(A ) ≤ 1, then

|λ− αk| ≤ Xk
k (A ) +Xk(A ) ≤ Dk(A ). (2.15)

|λ− αp| −Dp
p(A ) ≤ Xp(A ) ≤ Dp(A )−Dp

p(A ). (2.16)

Multiplying (2.15) with (2.16), we obtain λ ∈ U1(A ).

If
|λ− αk| −Xk

k (A )
Xk(A ) > 1, then

|λ− αk|
Xk

k (A ) +Xk(A )
≤ |λ− αk| −Xk

k (A )

Xk(A )
.

Furthermore,

|λ− αp| −Dp
p(A )

Dp(A )−Dp
p(A )

· |λ− αk|
Dk(A ) ≤

|λ− αp| −Xp
p (A )

Xp(A ) · |λ− αk|
Xk

k (A )+Xk(A )

≤
|λ− αp| −Xp

p (A )
Xp(A ) · |λ− αk| −Xk

k (A )
Xk(A )

≤ 1,

which implies that λ ∈ U1(A ). Thus, Φ1(A ) ⊆ U1(A ). Similarly, if λ ∈ Φ2(A ), we also
have Φ2(A ) ⊆ U2(A ). Hence, we have Φ(A ) ⊆ Λ(A ). The proof is completed.

Remark 2.9. It is clear that Theorem 2.5 ,2.6 and Theorem 2.7 reduce to Theorem 2.1 ,2.2
and Theorem 2.3, if one takes α = 0, β = 0, respectively.

Now, we present the following examples to illustrate the M-eigenvalue inclusion sets in
Theorem 2.1, 2.2, 2.3, 2.5, 2.6 and 2.7.

Example 2.10 ([11]). Consider the following partially symmetric tensor A = (aijkl) ∈
(R)[2]×[2]×[2]×[2] defined by

aijkl =

 a1111 = 20, a1122 = a1221 = 1, a1212 = 8;
a2222 = 10, a2112 = a2211 = 1, a2121 = 7;
aijkl = 0, otherwise.
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The results are presented in the table, let α = β = (14, 8.5)T .

Table 1. The comparison of inclusion interval

Reference Inclusion interval
Theorem 2.1 [-29,29]
Theorem 2.2 [-28.4081,28.4081]
Theorem 2.3 [-20,20.3852]
Theorem 2.5 [0,28]
Theorem 2.6 [0.7154,26.5539]
Theorem 2.7 [5.4385,20.3852]

By computation, its M-eigenvalues are 8, 20, 10, 8.9659, 7, 9.9815. Obviously, from Table
1, we obtain that the above results contain all the eigenvalues, and the new eigenvalue
localization sets are tighter than some existing results [5, 8].

Example 2.11. Consider the following partially symmetric tensor A = (aijkl) ∈
(R)[2]×[2]×[2]×[2] defined by

aijkl =

 a1111 = 2, a1211 = 3, a2111 = 6, a1121 = 6, a1112 = 3, a1212 = 2;
a2212 = 10, a1222 = 10, a2222 = 5;
aijkl = 0, otherwise.

Let α = (2, 3)T , β = (1, 3)T the results are revealed in the Table 2.

Table 2. The comparison of inclusion interval

Reference Inclusion interval
Theorem 2.1 [-26,26]
Theorem 2.2 [-24,24]
Theorem 2.3 [-16.3246,16.3246]
Theorem 2.5 [-20,24]
Theorem 2.6 [-19.1615,24]
Theorem 2.7 [-12.6119,16.3246]

By calculation, we can obtain that the M-eigenvalue of the fourth order partially symmetric
tensor are −7.6841, 13.8616, −4.2541, 6.6751. From the above Table 2, it can be seen that
our result range includes all eigenvalues and is more accurate.

Remark 2.12. If α = β = (2, 0)T , the result of Theorem 2.6 is λ ∈ [−20.5853, 22.7617].
Obviously, we can get different results by choosing different parameters α, we can find
the appropriate parameter α to make the M-eigenvalue inclusion intervals for fourth-order
partially symmetric tensor tighter.

3 Applications

As applications, we obtain some bound estimations on the spectral radius of a fourth-
order partially symmetric tensor, and take these bounds as the parameter in the WQZ-
algorithm [15] to show a more superior result. Finally, we introduce some checkable sufficient
conditions for the M-positive definiteness of the fourth-order partially symmetric tensor.

From Theorem 2.5, 2.6 and 2.7, we propose three bound estimations on the spectral
radius of nonnegative fourth-order partially symmetric tensors.
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Corollary 3.1. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and
FM an M-identity tensor. Then, for real vector α = (α1, . . . , αm)T ∈ Rm and β =
(β1, . . . , βn)

T ∈ Rn, such that ρ(A ) ≤ bπ +Gπ(A ).

Corollary 3.2. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and
FM an M-identity tensor. Then, for real vector α = (α1, . . . , αm)T ∈ Rm and β =
(β1, . . . , βn)

T ∈ Rn, such that ρ(A ) ≤ min{P1(A ), P2(A )},
where

P1(A ) = max
s,p∈[m],s ̸=p

{1
2
(αp +Dp

p(A ) + αs +∆1/2
s,p )},

∆s,p = (αs + αp +Dp
p(A ))2 − 4(αpαs + αsD

p
p(A ) +Ds(A )Dp

p(A )−Dp(A )Ds(A )),

P2(A ) = max
t,q∈[n],t ̸=q

{1
2
(βq + F q

q (A ) + βt +∆
1/2
t,q )},

∆t,q = (βt + βq + F q
q (A ))2 − 4(βqβt + βtF

q
q (A ) + Ft(A )F q

q (A )− Fq(A )Ft(A )).

Corollary 3.3. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and
FM an M-identity tensor. Then, for real vector α = (α1, . . . , αm)T ∈ Rm and β =
(β1, . . . , βn)

T ∈ Rn, such that ρ(A ) ≤ min{Q1(A ), Q2(A )},
where

Q1(A ) = max
i,k∈[m],k ̸=i

{1
2
(αi +Xi

i (A ) + αk +Xk
k (A ) + ∆

1/2
i,k )},

∆i,k = (αi +Xi
i (A ) + αk +Xk

k (A ))2

− 4(αiαk +Xi
i (A )Xk

k (A ) + αkX
i
i (A ) + αiX

k
k (A )−Xi(A )Xk(A )),

Q2(A ) = max
j,l∈[n],j ̸=l

{1
2
(βl + Y l

l (A ) + βj + Y j
j (A ) + ∆

1/2
j,l )},

∆j,l = (βl + Y l
l (A ) + βj + Y j

j (A ))2

− 4(βlβj + Y l
l (A )Y j

j (A ) + βlY
j
j (A ) + βjY

l
l (A )− Yl(A )Yj(A )).

Now, we give an example to show a more superior result by choosing these bounds as
the parameter in WQZ-algorithm [15].

Example 3.4. Let the fourth-order partially symmetric tensor A satisfy:

A (:, :, 1, 1) =

 −0.9727 0.3169 −0.3437
−0.6332 −0.7866 0.4257
−0.3350 −0.9896 −0.4323

 ,

A (:, :, 2, 1) =

 −0.6332 −0.7866 0.4257
0.7387 0.6873 −0.3248
−0.7986 −0.5988 −0.9485

 ,

A (:, :, 3, 1) =

 −0.3350 −0.9896 −0.4323
−0.7986 −0.5988 −0.9485
0.5853 0.5921 0.6301

 ,

A (:, :, 1, 2) =

 0.3169 0.6158 −0.0184
−0.7866 0.0160 0.0085
−0.9896 −0.6663 0.2559

 ,



TIGHTER EIGENVALUE LOCALIZATION SETS 293

A (:, :, 2, 2) =

 −0.7866 0.0160 0.0085
0.6873 0.5160 −0.0216
−0.5988 0.0411 0.9857

 ,

A (:, :, 3, 2) =

 −0.9896 −0.6663 0.2559
−0.5988 0.0411 0.9857
0.5921 −0.2907 −0.3881

 ,

A (:, :, 1, 3) =

 −0.3437 −0.0184 0.5649
0.4257 0.0085 −0.1439
−0.4323 0.2559 0.6162

 ,

A (:, :, 2, 3) =

 0.4257 0.0085 −0.1439
−0.3248 −0.0216 −0.0037
−0.9485 0.9857 −0.7734

 ,

A (:, :, 3, 3) =

 −0.4323 0.2559 0.6162
−0.9485 0.9857 −0.7734
0.6301 −0.3881 −0.8526

 .
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Figure 1: Analysis of convergence of WQZ algorithm for different parameters.

According to the WQZ-algorithm, we have
∑

1≤s≤t≤mn

|Ast| = 23.3503. According to Ex-

ample 2 in the literature [8] , we have ρ(A ) ≤ 16.6014, ρ(A ) ≤ 14.5910, ρ(A ) ≤ 12.9822.
Let α = β = (−0.18, 0.3587, − 0.2)T . By Corollary 3.1, we have ρ(A ) ≤ 16.2014. By
Corollary 3.2, we have ρ(A ) ≤ 14.8826. By Corollary 3.3, we have ρ(A ) ≤ 11.5123. From
Figure 1, when taking τ = 11.5123, the sequence has more rapidly convergence in WQZ-
algorithm.

Next, we introduce some checkable sufficient conditions for the M-positive definiteness
of the fourth-order partially symmetric tensor.

Theorem 3.5. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and FM

be an M-identity tensor. If there exists a positive real vector α = (α1, . . . , αm)T ∈ Rm or
β = (β1, . . . , βn)

T ∈ Rn such that bπ > Gπ(A ), then A is positive definite.
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Proof. Suppose on the contrary that λ ≤ 0. From Theorem 2.5, there exists i = p ∈ [m],
such that |λ− bπ| = |λ− αp| ≤ Gπ(A ) = Dp(A ). Furthermore, αp > 0 and λ ≤ 0,

αp ≤ |λ− αp| ≤ Dp(A ),

or there exists l = q ∈ [n], such that |λ − bπ| = |λ − βq| ≤ Gπ(A ) = Fq(A ). Furthermore,
βq > 0 and λ ≤ 0,

βq ≤ |λ− βq| ≤ Fq(A ).

We have bπ ≤ Gπ(A ), which contradicts the conditions. Therefore, we have λ > 0, and
then A is M-positive definite.

Theorem 3.6. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and FM

be an M-identity tensor. If there exists a positive real vector α = (α1, . . . , αm)T ∈ Rm and
s ̸= p such that

(αp −Dp
p(A ))αs > (Dp(A )−Dp

p(A ))Ds(A ),

or a positive real vector β = (β1, . . . , βn)
T ∈ Rn and t ̸= q such that

(βq − F q
q (A ))βt > (Fq(A )− F q

q (A ))Ft(A ),

then A is positive definite.

Proof. Suppose on the contrary that λ ≤ 0. From Theorem 2.6, there exists i = p ∈ [m],
such that

(|λ− αp| −Dp
p(A ))|λ− αs| ≤ (Dp(A )−Dp

p(A ))Ds(A ).

Moreover, αp > 0 and λ ≤ 0

(αp −Dp
p(A ))αs ≤ (|λ− αp| −Dp

p(A ))|λ− αs| ≤ (Dp(A )−Dp
p(A ))Ds(A ),

which contradicts the conditions. Therefore, we have λ > 0, and then A is M-positive
definite. The second conclusion can be obtained similarly.

Theorem 3.7. Let A = (aijkl) ∈ R[m]×[n]×[m]×[n] be a partially symmetric tensor, and FM

be an M-identity tensor. For any i, k ∈ [m], k ̸= i, j, l ∈ [n], j ̸= l, if there exists a positive
real vector α = (α1, . . . , αm)T ∈ Rm such that

αi > Xi
i (A ),

(αi −Xi
i (A ))(αk −Xk

k (A )) > Xi(A )Xk(A ),

or a positive real vector β = (β1, . . . , βn)
T ∈ Rn such that

βl > Y l
l (A ),

(βl − Y l
l (A ))(βj − Y j

j (A )) > Yl(A )Yj(A ),

then, A is M-positive definite.

Proof. Suppose on the contrary that λ ≤ 0, From Theorem 2.7, λ ∈ Φ1(A ),

(|λ− αi| −Xi
i (A ))(|λ− αk| −Xk

k (A )) ≤ Xi(A )Xk(A ), |λ− αi| ≤ Xi
i (A ).
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Further, it follows from αi ≥ 0,

Xi(A )Xk(A ) ≥ (|λ− αi| −Xi
i (A ))(|λ− αk| −Xk

k (A ))
≥ (αi −Xi

i (A ))(αk −Xk
k (A )), Xi

i (A )
≥ |λ− αi|
≥ αi,

which contradicts the conditions. Therefore, we have λ > 0, and then A is M-positive
definite. The second conclusion can be obtained similarly.

The following examples reveal that Theorem 3.5, 3.6 and 3.7 can judge the M-positive
definiteness of the fourth-order partially symmetric tensor.

Example 3.8. Consider the following partially symmetric tensor A =(aijkl)∈(R)[2]×[2]×[2]×[2]

defined by

aijkl =

 a1111 = 10, a1221 = a1122 = −0.5, a1212 = 4;
a2121 = 5, a2112 = a2211 = −0.5, a2222 = 3;
aijkl = 0, otherwise.

Set α = (8, 4)T . According to Theorem 3.5, we have α1 = 8 > R1(A , α1) = 4, α2 = 4 >
R2(A , α2) = 3 then, A is positive definite. Or set β = (6, 3)T . According to Theorem 3.6,
we have F 1

1 (A ) = 5, F 2
2 (A ) = 1, F1(A ) = 6, F2(A ) = 2, then A is positive definite. By

calculation, the M-eigenvalue of A are 4, 10, 5, 3, 0.028, 2.972 and all of them are positive,
which verifies the validity of Theorem 3.5 and Theorem 3.6.

Example 3.9. Consider the following partially symmetric tensor A =(aijkl)∈(R)[2]×[2]×[2]×[2]

defined by

aijkl =

 a1111 = a1212 = 1.1, a1222 = −1;
a2121 = a2222 = 1, a2212 = −1;
aijkl = 0, otherwise.

Set α = (1.1, 1)T . According to Theorem 3.3, we have

α1 = 1.1 > X1
1 (A ) = 0, α2 = 1 > X2

2 (A ) = 0,

(α1 −X1
1 (A ))(α2 −X2

2 (A )) = 1.1 > X1(A )X2(A ) = 1.

Then, A is M-positive definite. By calculation, the M-eigenvalue of A are 0.0488, 1.1,
2.0512, which verifies the validity of Theorem 3.7.

4 Conclusion

In this paper, M-identity tensor is introduced to establish some new eigenvalue localization
sets for fourth-order partially symmetric tensor. It is revealed that the new eigenvalue local-
ization sets are tighter than some existing results. As applications, some bound estimations
for the M-spectral radius and some checkable sufficient conditions for the positive definite-
ness of the fourth-order partially symmetric tensor are obtained based on the new eigenvalue
localization sets.
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