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Weiszfeld algorithm, Vardi and Zhang [38] propose the modified Weiszfeld (MW) algorithm,
which admits global convergence, but increases the computational cost considerably. Görner
and Kanzow [10] show that, after a suitable initialization, the standard Newton (NW)
algorithm can be applied to the Weber problem. However, when the number of given
points is large, the computational cost of NW algorithm is expensive in the initialization.
Recently, an alternating direction method of multipliers (ADMM) is proposed in [40] to
solve the Weber problem and the numerical results demonstrate the efficiency of ADMM.
We refer readers to [12, 13, 14, 19, 22] for more results on Weber problem.

In this paper, we aim to develop an efficient and robust algorithm for solving the Weber
problem (1.1). The excellent numerical performance of the semismooth Newton based aug-
mented Lagrangian (Ssnal) algorithm has been demonstrated when it is applied to solve
large-scale Lasso problems [20, 21, 24, 41], OSCAR and SLOPE models [27], singly linearly
and box constrained least squares regression [23], and support vector machines [32]. The
innovation of the Ssnal algorithm is that we can make full use of second-order information
when using a semismooth Newton (Ssn) algorithm for its inner subproblem, which improves
efficiency of this algorithm. Inspired by success of the Ssnal algorithm, we intend to propose
it for solving the Weber problem (1.1).

The main contributions of this paper are summarized as follows. Firstly, we reformulate
the Weber problem as an equivalent convex optimization problem (P) and then apply the
Ssnal algorithm to solve the problem (P), in which a semismooth Newton algorithm (Ssn)
is applied to solve the subproblems. Secondly, the theoretical results on global and local con-
vergence of the Ssnal algorithm are established under mild conditions. Specifically, global
convergence of the Ssnal algorithm is guaranteed under the standard stopping criterion for
the subproblem, and locally asymptotically superlinear convergence of the Ssnal algorithm
is characterized under the quadratic growth condition and the standard stopping criteria
for the subproblem. Moreover, the Ssn algorithm is globally convergent and admits fast
superlinear or even quadratic convergence rate without any assumption. Finally, we design
efficient implementations of the Ssnal algorithm by utilizing special structure of Clarke
generalized Jacobian of the relevant proximal mapping. Furthermore, in order to verify
robustness and efficiency of the Ssnal algorithm, we report the results of numerical exper-
iments on synthetic data sets by comparing the Ssnal algorithm against state-of-the-art
algorithms, including MW, NW, and ADMM.

The rest of this paper is organized as follows. Section 2 presents some preliminaries
on the Moreau-Yosida regularization and the subdifferential of ℓ2 norm. In Section 3, we
develop the Ssnal algorithm to solve the reformulation of the Weber problem (1.1) where
the Ssn algorithm is employed to solve its subproblem. Moreover, the theoretical results
on the convergence of the Ssnal algorithm are characterized under mild conditions and the
theoretical results on the convergence of Ssn algorithm are also given without any assump-
tions. In Section 4, numerical experiments conducted on synthetic data sets evaluate the
performance of our proposed algorithm in comparison with other state-of-the-art algorithms.
We make some conclusions in Section 5.

2 Preliminaries

In this section, we summarize some notations and present some preliminaries which will be
used in the subsequent analysis. Throughout this paper, for given positive integer n, we
denote In as the identity matrix of n×n, where n is often omitted. We define the ℓ2 norm unit
ball by B2 := {x ∈ Rn | ∥x∥ ≤ 1}. For any (x̄, s̄[1], . . . , s̄[m]) ∈ Rn×Rn× · · · ×Rn and ε > 0,
denote Bε((x̄, s̄[1], . . . , s̄[m])) := {(x, s[1], . . . , s[m]) ∈ Rn×Rn×· · ·×Rn | ∥(x, s[1], . . . , s[m])−
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(x̄, s̄[1], . . . , s̄[m])∥ ≤ ε}. Moreover, h∗ is the Fenchel conjugate of a proper convex function
h.

Let h : Rn → (−∞,+∞] be a proper closed convex function. Then, the definitions of
proximal mapping and Moreau envelope of h (cf. [30]) are given by respectively

Proxh(x) := argmin
y∈Rn

{h(y) + 1

2
∥y − x∥2}, ∀x ∈ Rn,

Eh(x) := min
y∈Rn
{h(y) + 1

2
∥y − x∥2}, ∀x ∈ Rn.

For given t > 0, it follows from [34] that the following Moreau’s identity holds:

Proxth(x) + tProxh∗/t(x/t) = x, ∀x ∈ Rn.

It follows from [18] that Eh(·) is convex and continuously differentiable with its gradient

∇Eh(x) = x− Proxh(x), ∀x ∈ Rn.

Furthermore, Proxh(·) and ∇Eh(·) are globally Lipschitz continuous with modulus 1.
For a given closed convex set Q ⊆ Rn, we denote χQ as the indicator function of Q. If

h = χQ, the proximal mapping of h at x reduces to the projection of x onto Q, i.e.,

Proxh(x) = ΠQ(x) = argmin
y∈Q

{∥y − x∥2}, ∀x ∈ Rn.

In particular, when h = χtB2
is the indicator function of tB2 = {y ∈ Rn | ∥y∥ ≤ t}, we have

Proxh(x) = ΠtB2(x) =

 t
x

∥x∥
, if ∥x∥ > t,

x, otherwise.
(2.1)

The proximal mapping of ℓ2 norm is

Proxt∥·∥(x) =


x

∥x∥
max{∥x∥ − t, 0}, if x ̸= 0,

0, otherwise.

Example 2.1 ([1, Example 3.34]). Let h : Rn → R be defined by h(x) := ∥x∥. Then, the
subdifferential set of h at x ∈ Rn is given by

∂h(x) =

{{
x

∥x∥
}
, x ̸= 0,

B2, x = 0.

Next, we present some definitions on locally Lipschitz function, which will be useful for
the rest of our discussions. Let O ⊆ Rn1 be an open set and Ψ : O → Rn2 be a locally
Lipschitz function. It can be seen from [37] that Ψ is differentiable almost everywhere.
Denote DΨ as the set of all points where Ψ is differentiable and JΨ(x) as the Jacobian of Ψ
at x ∈ DΨ . Then, the B(Bouligand)-subdifferential of Ψ at x ∈ Rn1 is defined by

∂BΨ(x) := {K ∈ Rn2×n1 | ∃ {xk} ⊆ DΨ such that xk → x and JΨ(xk)→ K}.

Due to [3, Definition 2.6.1], the Clarke generalized Jacobian of Ψ at x ∈ Rn1 is the convex
hull of B-subdifferential of Ψ at x, i.e., ∂Ψ(x) := co (∂BΨ(x)).



302 Y.J. LIU AND Q. ZHU

3 A Semismooth Newton Based Augmented Lagrangian Algorithm

In this section, we propose a semismooth Newton based augmented Lagrangian (Ssnal)
algorithm to solve an equivalent form of the Weber problem (1.1).

We first rewrite Weber problem (1.1) as

min
x,s[1],...,s[m]

P (x, s[1], . . . , s[m]) :=

m∑
i=1

wi∥s[i]∥

s.t. x− a[i] − s[i] = 0, i = 1, . . . ,m.

(P)

The dual of problem (P) admits the following form:

max
λ[1],...,λ[m]

G(λ[1], . . . , λ[m]) :=

m∑
i=1

⟨a[i], λ[i]⟩

s.t.

m∑
i=1

λ[i] = 0,

∥λ[i]∥ ≤ wi, i = 1, . . . ,m.

(D)

The Karush-Kuhn-Tucker (KKT) optimality condition of problem (P) is given by

m∑
i=1

λ[i] = 0, x− s[i] − a[i] = 0, 0 ∈ ∂(wi∥s[i]∥)− λ[i], i = 1, 2, . . . ,m.

The Lagrangian function of (P) is given by

l(x, s[1], . . . , s[m];λ[1], . . . , λ[m]) :=

m∑
i=1

wi∥s[i]∥+
m∑
i=1

⟨λ[i], x− s[i] − a[i]⟩.

Furthermore, for given σ > 0, the augmented Lagrangian function of (P) is

Lσ(x, s[1], . . . , s[m], λ[1], . . . , λ[m]) := l(x, s[1], . . . , s[m], λ[1], . . . , λ[m])+
σ

2

m∑
i=1

||x−s[i]−a[i]||2.

3.1 A semismooth Newton based augmented Lagrangian algorithm for prob-
lem (P)

In this subsection, we present the framework of a Ssnal algorithm for solving problem (P)
and its convergence.

The framework of a Ssnal algorithm for solving problem (P) is outlined below.
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Algorithm 1 (Ssnal) A semismooth Newton augmented Lagrangian algorithm
for (P)

Input: σ0 > 0, (x0, s0[1], . . . , s
0
[m];λ

0
[1], . . . , λ

0
[m]) ∈ Rn×Rn×· · ·× Rn×Rn × · · · × Rn. Set

k = 0.

1: Solve approximately

xk+1 ≈ argmin
x∈Rn

{φk(x) := inf
s[1],...,s[m]

Lσk
(x, s[1], . . . , s[m];λ

k
[1], . . . , λ

k
[m])} (3.1)

to satisfy the conditions (A) and (B) below.
2: Compute sk+1

[i] = Proxσ−1
k wi∥·∥(x

k+1 − a[i] + σ−1
k λk

[i]), i = 1, . . . ,m.

3: Compute λk+1
[i] = λk

[i] + σk(x
k+1 − sk+1

[i] − a[i]), i = 1, . . . ,m.

4: Update σk+1 ↑ σ∞ ≤ +∞, k ← k + 1, and go to Step 1.

Due to [35], we solve approximately (3.1) under the following stopping criteria:

φk(x
k+1)− inf φk ≤

ε2k
2σk

,

∞∑
k=0

εk <∞, (A)

φk(x
k+1)− inf φk ≤

δ2k
2σk
∥(λk+1

[1] , . . . , λk+1
[m] )− (λk

[1], . . . , λ
k
[m])∥

2,

∞∑
k=0

δk <∞, (B)

∥∇φk(x
k+1)∥ ≤ δ′k

σk
∥(λk+1

[1] , . . . , λk+1
[m] )− (λk

[1], . . . , λ
k
[m])∥, 0 ≤ δ′k → 0, (B’)

where {εk}, {δk} and {δ′k} are given nonnegative error tolerance sequences.

Next, we wish to give the results on global and local convergence of the Ssnal algo-
rithm. Since the optimal solution set of problem (P) is nonempty, the global convergence of
Algorithm 1 can be obtained directly from [35, 36].

Theorem 3.1 (Global convergence). Let {(xk, sk[1], . . . , s
k
[m], λ

k
[1], . . . , λ

k
[m])} be the infinite

sequence generated by Algorithm 1 with stopping criterion (A). Then, the sequence
{(xk, sk[1], . . . , sk[m])} converges to an optimal solution of (P) and the sequence

{(λk
[1], . . . , λ

k
[m])} converges to an optimal solution of (D).

Here, we present the results related to local convergence of the Ssnal algorithm. For
this purpose, we give some notions and definitions. The essential objective functions of (P)
and (D) are given by

p(x, s[1], . . . , s[m]) := sup
λ[1],··· ,λ[m]∈Rn

l(x, s[1], . . . , s[m];λ[1], . . . , λ[m])

=

{
P (x, s[1], . . . , s[m]), x− s[i] − a[i] = 0, i = 1, . . . ,m,

+∞, otherwise,

g(λ[1], . . . , λ[m]) := inf
x,s[1],··· ,s[m]∈Rn

l(x, s[1], . . . , s[m];λ[1], . . . , λ[m])

=

{
G(λ[1], . . . , λ[m]),

∑m
i=1 λ[i] = 0, ∥λ[i]∥ ≤ wi, i = 1, . . . ,m,

−∞, otherwise.
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Define the following maximal monotone operators [34, 35]:

Tp(x, s[1], . . . , s[m]) := ∂p(x, s[1], . . . , s[m]), Tg(λ[1], . . . , λ[m]) := ∂g(λ[1], . . . , λ[m]),

Tl(x, s[1], . . . , s[m];λ[1], . . . , λ[m]) := {(x′, s′[1], . . . , s
′
[m];λ

′
[1], . . . , λ

′
[m]) |

(x′, s′[1], . . . , s
′
[m];−λ

′
[1], . . . ,−λ

′
[m]) ∈ ∂l(x, s[1], . . . , s[m];λ[1], . . . , λ[m])}.

Denote T −1
p , T −1

g , T −1
l as the inverse of Tp, Tg, Tl respectively, i.e.,

T −1
p (x, s[1], . . . , s[m]) := ∂p∗(x, s[1], . . . , s[m]), T −1

g (λ[1], . . . , λ[m]) := ∂g∗(λ[1], . . . , λ[m]),

T −1
l (x′, s′[1], . . . , s

′
[m];λ

′
[1], . . . , λ

′
[m]) := {(x, s[1], . . . , s[m];−λ[1], . . . ,−λ[m]) |

(x′, s′[1], . . . , s
′
[m];λ

′
[1], . . . , λ

′
[m]) ∈ ∂l(x, s[1], . . . , s[m];λ[1], . . . , λ[m])}.

Denote ΩP and ΩD as the set of optimal solutions for (P) and (D), respectively. Let FP and
FD be the set of feasible points for (P) and (D), respectively, i.e.,

FP := {(x, s[1], . . . , s[m]) ∈ Rn × Rn × · · · × Rn |x− s[i] − a[i] = 0, i = 1, . . . ,m},

FD := {(λ[1], . . . , λ[m]) ∈ Rn × · · · × Rn |
m∑
i=1

λ[i] = 0; ∥λ[i]∥ ≤ wi, i = 1, . . . ,m}.

It is said that the quadratic growth condition [4, 5] of (P) holds at (x̄,s̄[1], . . . ,s̄[m]) ∈ ΩP ,
if there exist constants κp and εp > 0 such that

P (x, s[1], . . . , s[m]) ≥ P (x̄, s̄[1], . . . , s̄[m]) + κpdist
2((x, s[1], . . . , s[m]),ΩP ),

∀(x, s[1], . . . , s[m]) ∈ FP ∩ Bεp((x̄, s̄[1], . . . , s̄[m])).

The quadratic growth condition for (D) at (λ̄[1], . . . , λ̄[m]) ∈ ΩD is said to hold if there exist
positive constants κd and εd such that

−G(λ[1], . . . , λ[m]) ≥ −G(λ̄[1], . . . , λ̄[m]) + κddist
2((λ[1], . . . , λ[m]),ΩD),

∀(λ[1], . . . , λ[m]) ∈ FD ∩ Bεd((λ̄[1], . . . , λ̄[m])). (3.2)

The constants κp and κd are called the quadratic growth modulus for (P) at (x̄, s̄[1], . . . , s̄[m])
and for (D) at (λ̄[1], . . . , λ̄[m]), respectively.

A mapping Γ : Rn1 ⇒ Rn2 is said to be calm [5, 6] with modulus κ at ū ∈ Rn1 for
v̄ ∈ Rn2 if (ū,v̄) ∈ gph Γ and there exist positive constants ε and δ such that

Γ (u) ∩ Bδ(v̄) ⊆ Γ (ū) + κ∥u− ū∥B2, ∀u ∈ Bε(ū),

where gphΓ denotes the graph of Γ .
By virtue of [4, 5, 6], we obtain the following results.

Proposition 3.2. T−1
g is calm at the origin for (λ̄[1], . . . , λ̄[m]) if and only if the quadratic

growth condition (3.2) for (D) holds at (λ̄[1], . . . , λ̄[m]). Specifically, if (3.2) holds with
quadratic growth modulus κ, then T−1

g is calm at the origin for (λ̄[1], . . . , λ̄[m]) with modulus

1/κ. Conversely, if T−1
g is calm at the origin for (λ̄[1], . . . , λ̄[m]) with modulus κ′, then (3.2)

holds for any κ ∈ (0, 1/(4κ′)).

Combining Proposition 3.2 with [5], we are able to state local convergence of the Ssnal
algorithm.
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Theorem 3.3 (Local convergence). Let {(xk, sk[1], . . . , s
k
[m], λ

k
[1], . . . , λ

k
[m])} be an infinite

sequence generated by the Ssnal algorithm for (P) under criterion (A) and {(λk
[1], . . . , λ

k
[m])}

converge to {(λ∞
[1], . . . , λ

∞
[m])}. If criterion (B) is also executed in the Ssnal algorithm and

the quadratic growth condition (3.2) holds at {(λ∞
[1], . . . , λ

∞
[m])} with modulus κ. Then, for

sufficiently large k,

dist((λk+1
[1] , . . . , λk+1

[m] ), T
−1
g (0)) ≤ µkdist((λ

k
[1], . . . , λ

k
[m]), T

−1
g (0)),

where µk = [δk + (δk + 1)κ/
√
κ2 + σ2

k]/(1− δk) → µ∞ := κ/
√

κ2 + σ2
∞.

If in addition to (A), (B), and (3.2) holds at {(λ∞
[1], . . . , λ

∞
[m])}, one has criterion (B’)

and T −1
l is upper Lipschitz continuous at the origin with modulus κl. Then, for sufficiently

large k,

dist((xk+1, sk+1
[1] , . . . , sk+1

[m] ), T
−1
p (0)) ≤ µ′

k∥(λk+1
[1] , . . . , λk+1

[m] )− (λk
[1], . . . , λ

k
[m])∥,

where µ′
k = (κl/σk)(1 + δ′

2

k )→ µ′
∞ := κl/σ∞.

Proof. From Proposition 3.2, we know that T−1
g is calm at the origin for {(λ∞

[1], . . . , λ
∞
[m])}

with modulus 1/κ, if the quadratic growth condition (3.2) holds at {(λ∞
[1], . . . , λ

∞
[m])} with

modulus κ. Therefore, the first part follows from [5, Proposition 3(a)] and the other part of
the proof comes from [5, Proposition 3(b)].

3.2 A semismooth Newton algorithm for the subproblem

In this subsection, we apply an efficient semismooth Newton algorithm [15, 16, 33] to solve
the subproblem (3.1).

For given σ > 0 and (λ̃[1], . . . , λ̃[m]) ∈ Rn×· · ·×Rn, we consider the following minimiza-
tion problem

min
x∈Rn
{φ(x) := inf

s[1],...,s[m]

Lσ(x, s[1], . . . , s[m]; λ̃[1], . . . , λ̃[m])},

where φ(·) has the following expression:

φ(x) = inf
s[1],...,s[m]

Lσ(x, s[1], . . . , s[m], λ̃[1], . . . , λ̃[m])

= inf
s[1],...,s[m]

{
m∑
i=1

[
wi∥s[i]∥+

σ

2
||s[i] − (x− a[i] + σ−1λ̃[i])||2

]}
− 1

2σ

m∑
i=1

||λ̃[i]||2

=

m∑
i=1

σEσ−1wi∥·∥(x− a[i] + σ−1λ̃[i])−
1

2σ

m∑
i=1

||σ−1λ̃[i]||2.

One obtains that φ(·) is convex and continuously differentiable due to the fact that Moreau
envelope Eσ−1wi∥·∥(·) is convex and continuously differentiable. Thus, the solution of sub-
problem (3.1) can be obtained by solving the following nonsmooth equations:

0 = ∇φ(x) =
m∑
i=1

σ(x− a[i] + σ−1λ̃[i] − Proxσ−1wi||·||(x− a[i] + σ−1λ̃[i]))

=

m∑
i=1

Proxσ(wi||·||)∗(σx− σa[i] + λ̃[i])

=

m∑
i=1

ΠwiB2
(σx− σa[i] + λ̃[i]).
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Since Πwi∥·∥(·) is Lipschitz continuous, we have

∂̂2φ(x) := σ∂

[
m∑
i=1

ΠwiB2(σx− σa[i] + λ̃[i])

]
.

Denote z[i] = σx− σa[i] + λ̃[i], i = 1, . . . ,m. Then, from (2.1), the projection onto ℓ2 norm
ball and its Clarke generalized Jacobian are given by

ΠwiB2(z[i]) =

wi

z[i]

∥z[i]∥
, ∥z[i]∥ > wi,

z[i], otherwise,

∂ΠwiB2(z[i]) =



{
wi

∥z[i]∥

(
I −

(z[i])(z[i])
T

∥z[i]∥2

)}
, ∥z[i]∥ > wi,{

I − t
(z[i])(z[i])

T

(wi)2
| 0 ≤ t ≤ 1

}
, ∥z[i]∥ = wi,

{I} , ∥z[i]∥ < wi.

Let W ∈ ∂
(∑m

i=1 ΠwiB2(z[i])
)
, one easily obtains that

W =
∑
i∈I1

[
wi

∥z[i]∥

(
I −

(z[i])(z[i])
T

∥z[i]∥2

)]
+
∑
i∈I2

[
I − ti

(z[i])(z[i])
T

(wi)2

]
+
∑
i∈I3

I, (3.3)

where I1, I2 and I3 are the index sets defined by

I1 := {i | ∥z[i]∥ > wi}, I2 := {i | ∥z[i]∥ = wi}, I3 := {i | ∥z[i]∥ < wi}

and ti ∈ [0, 1], i ∈ I2. It is obvious that

V := σW ∈ ∂̂2φ(x).

From [3, Proposition 2.3.3 and Theorem 2.6.6], we know that ∂2φ(x) ⊆ ∂̂2φ(x), where
∂2φ(x) is the generalized Hessian of φ at x.

Since ΠB2
is strongly semismooth, we know that ∇φ(·) is strongly semismooth. There-

fore, we apply a semismooth Newton algorithm to solve the nonsmooth equations ∇φ(x) = 0,
which is expected to attain a fast superlinear or even quadratic rate of convergence.
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Algorithm 2 (Ssn) A semismooth Newton algorithm for problem (3.1)

Input: µ ∈ (0, 1/2), η ∈ (0, 1], γ1, γ2 ∈ (0, 1), τ ∈ (0, 1], ρ ∈ (0, 1), x0 ∈ Rn. Set j = 0.

1: Choose Vj ∈ ∂̂2φ(xj). Apply the conjugate gradient (CG) algorithm to solve the linear
system

(Vj + ϵjI)d = −∇φ(xj),

to find dj such that

∥(Vj + ϵjI)d
j +∇φ(xj)∥ ≤ min{η, ∥∇φ(xj)∥1+τ},

where ϵj := min{γ1, γ2∥∇φ(xj)∥}.
2: Set αj = ρmj , where mj is the smallest nonnegative integer m satisfying

φ(xj + ρmdj) ≤ φ(xj) + µρm⟨∇φ(xj), dj⟩.

3: Set xj+1 = xj + αjd
j , j = j + 1, and go to Step 1.

Next, according to [42, Theorem 3.4 and 3.5], we present the results on global convergence
and superlinear convergence of Algorithm 2.

Theorem 3.4. Let {xj} be the infinite sequence generated by Algorithm 2. Then, {xj}
converges to an optimal solution x̂ of problem (3.1). Furthermore, the rate of convergence
is at least superlinear with

∥xj+1 − xj∥ = O(∥xj − x̂∥1+τ ),

where τ is the parameter used in Algorithm 2.

4 Numerical Experiments

In this section, we carry out numerical experiments in order to evaluate the performance
of the Ssnal algorithm for solving the Weber problem (1.1) on synthetic data sets. We
compare the Ssnal algorithm with several state-of-the-art algorithms, including the modi-
fied Weiszfeld (MW) algorithm [38], Newton (NW) algorithm [10] and alternating direction
method of multipliers (ADMM) [40]. All our experiments are executed in MATLAB R2019a
on a Windows workstation with Intel Xeon Gold 6144 CPU at 3.50 GHz and 256 GB memory.

4.1 Some existing algorithms for solving Weber problem

In this subsection, we briefly present some algorithmic frameworks including MW, NW, and
ADMM.

4.1.1 Weiszfeld algorithm and modified Weiszfeld algorithm

According to [2, 39], the Weiszfeld algorithm is iterated as follows:

xk+1 =

∑m
i=1 wi∥xk − a[i]∥−1a[i]∑m
i=1 wi∥xk − a[i]∥−1

. (4.1)

From (4.1), one obtains that when the iteration point xk coincides with a[i], the algorithm
would be forced to terminate and hence its convergence cannot be guaranteed. To overcome
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the drawback, a modified Weiszfeld (MW) algorithm is proposed in [38] and its framework
is given below.

Algorithm 3 (MW) A modified Weiszfeld algorithm for problem (1.1)

Input: x0 ∈ Rn. Set k=0.

1: Compute

xk+1 =

(
1− η(xk)

r(xk)

)+

T̃ (xk) + min

{
1,

η(xk)

r(xk)

}
xk.

2: Set k = k + 1, and go to Step 1.

In Algorithm 3, T̃ (x), η(x) and r(x) are defined by

T̃ (x) =

∑
i:a[i] ̸=x

wi∥xk − a[i]∥−1a[i]∑
i:a[i] ̸=x

wi∥xk − a[i]∥−1
, η(x) =

{
wi if x = a[i], i = 1, 2, . . . ,m,

0 otherwise,

R(x) =
∑

i:a[i] ̸=x

wi

x− a[i]

∥x− a[i]∥
, r(x) = ∥R(x)∥.

From Algorithm 3, we know that the modified Weiszfeld algorithm produces the same iter-
ation point as the Weiszfeld algorithm when xk /∈ {a[1], a[2], . . . , a[m]}.

4.1.2 Newton algorithm

The algorithmic framework of Newton (NW) algorithm for solving Weber problem (1.1) is
outlined in Algorithm 4.

Algorithm 4 (NW) Newton algorithm for problem (1.1)

Initialize: Input ρ ∈ (0, 1), σ ∈ (0, 1/2). Set k = 0. Determine p ∈ {1, 2, . . . ,m} such that
f(ap) = min{f(a1), . . . , f(am)}. If ap satisfies∥∥∥∥ m∑

i=1;i ̸=p

wi

a[p] − a[i]

∥a[p] − a[i]∥

∥∥∥∥ ≤ wp,

the algorithm terminates. Otherwise, set x0 = ap + tpd
p, and go to Step 1.

1: Compute dk by solving
∇2f(xk)dk = −∇f(xk).

2: Compute tk as the largest number in {1, ρ, ρ2, . . . } such that

f(xk + tkd
k) ≤ f(xk) + σtk∇f(xk)T dk.

3: Set xk+1 = xk + tkd
k, k ← k + 1, and go to Step 1.
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In Algorithm 4, dp and tp are defined by

dp := −
R[p]

∥R[p]∥
with R[p] =

m∑
i=1;i ̸=p

wi

a[p] − a[i]

∥a[p] − a[i]∥
,

tp :=
(∥R[p]∥ − wp)

L(a[p])
with L(a[p]) =

m∑
i=1;i ̸=p

wi

∥a[p] − a[i]∥
.

4.1.3 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) is applied to solve problem (P),
which is stated in Algorithm 5.

Algorithm 5 (ADMM) Alternating direction method of multipliers for problem
(P)

Input: σ0 > 0, (x0, s0[1], . . . , s
0
[m];λ

0
[1], . . . , λ

0
[m]) ∈ Rn×Rn×· · ·× Rn×Rn × · · · × Rn. Set

k = 0.

1: Compute xk+1 = 1
m

∑m
i=1(a[i] + sk[i] −

1
σλ

k
[i]).

2: Compute sk+1
[i] = Proxσ−1wi∥·∥(x

k+1 − a[i] +
1
σλ

k
[i]), i = 1, 2, . . . ,m.

3: Compute λk+1
[i] = λk

[i] + σ(xk+1 − a[i] − sk+1
[i] ), i = 1, 2, . . . ,m.

4: Set k ← k + 1, and go to Step 1.

4.2 Stopping criteria

In our numerical experiments, based on the KKT conditions of problem (P), we measure
accuracy of the approximate solution obtained by the Ssnal algorithm using the following
relative residuals:

Res1 :=

∥∥∑m
i=1 λ[i]

∥∥
1 + ∥λ[1]∥+ · · ·+ ∥λ[m]∥

,

Res2 := max
{
∥λ[1]∥ − w1, . . . , ∥λ[m]∥ − wm, 0

}
,

Res3 := max

{ ∥∥x− a[1] − s[1]
∥∥

1 +
∥∥a[1]∥∥+ ∥∥s[1]∥∥ , . . . ,

∥∥x− a[m] − s[m]

∥∥
1 +

∥∥a[m]

∥∥+ ∥∥s[m]

∥∥
}
.

We choose (x, s[1], . . . , s[m]; λ[1], . . . , λ[m]) = (0, 0, . . . , 0; 0, . . . , 0) as the initial point of
the Ssnal algorithm and terminate the algorithm when

Res := max{Res1,Res2,Res3} ≤ tol, (4.2)

where “tol” is a given tolerance.
Similarly, we initialize the ADMM algorithm with (x, s[1], . . . , s[m]; λ[1], . . . , λ[m]) =

(0, 0, . . . , 0; 0, . . . , 0) and terminate the algorithm when

Res := max{Res1,Res2,Res3} ≤ tol.

By contrast, since the MW algorithm do not produce the dual sequence {(λk
[1], . . . , λ

k
[m])},

the above stopping criterion is not suitable. Because the MW algorithm may generate singu-
lar points during the computation, we terminate the MW algorithm with the subdifferential
of the objective function of the Weber problem (1.1). The subdifferential of (1.1) is



310 Y.J. LIU AND Q. ZHU

∂f(x) =

{∑
j∈J1

wj

x− a[j]

∥x− a[j]∥
+
∑
j∈J2

wjξj | ξj ∈ B2

}
,

where J1 and J2 are defined by

J1 = {j |x ̸= a[j]}, J2 = {j |x = a[j]}, j = 1, . . . ,m.

If J2 is empty, ∂f(x) = ∇f(x). Otherwise, there exists a unique element in J2. Without
loss of generality, let J2 = {q}. By the optimality condition, we have

x− Proxwq∥·∥

(
x−

∑
j∈J1

wj

x− a[j]

∥x− a[j]∥

)
= 0.

Then, one obtains that

res =


∑m

j=1 wj

x− a[j]

∥x− a[j]∥
, J2 = ∅,

x− Proxwq∥·∥

(
x−

∑
j∈J1

wj

x− a[j]

∥x− a[j]∥

)
, otherwise.

Therefore, we initialize the MW algorithm with x = 0 and terminate it when

Res := ∥res∥ ≤ tol.

Likewise, the stopping criterion (4.2) can not be applied to the NW algorithm since it is
also unable to produce the dual sequence {(λk

[1], . . . , λ
k
[m])}. Since the NW algorithm does

not generate singular points during the computation, we terminate the NW algorithm using
the following stopping criterion

Res := ∥∇f(x)∥ ≤ tol,

where ∇f(x) is given by

∇f(x) =
m∑
j=1

wj

x− a[j]

∥x− a[j]∥
.

In addition, all tested algorithms terminate when they reach the preset maximum number
of iterations (100 for Ssnal and 20000 for MW, NW and ADMM) or the maximum running
time of 3 hours.

4.3 Numerical results

In this section, we compare the Ssnal algorithm with the MW, NW, and ADMM algorithms
for solving Weber problem.

For Ssnal in Algorithm 1, we set the penalty parameter σ0 = min{m/
√
n, 800}. For

Ssn in Algorithm 2, we choose ti = 0 in (3.3) when ∥z[i]∥ = wi (i = 1, . . . ,m). Then,

W =
∑
i∈C1

[
wi

∥z[i]∥

(
I −

(z[i])(z[i])
T

∥z[i]∥2

)]
+
∑
i∈C2

I,

where C1 and C2 are the index sets defined by

C1 = {i | ∥z[i]∥ > wi}, C2 = {i | ∥z[i]∥ ≤ wi}.
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Meanwhile, we set µ = 10−12 and ρ = 0.5. The stopping criterion of CG algorithm at the
j-th iteration of Ssn algorithm is chosen as ∥(Vj + ϵjI)d

j +∇φ(xj)∥ ≤ tolcg
j with

tolcg
j =


0.01 ∗min{1, 0.1 ∗ ∥φ(xj)∥}, k < 2 and j = 1,

0.008 ∗min{1, 0.1 ∗ ∥φ(xj)∥}, k < 2 and j > 1,

0.0005 ∗min{1, ∥φ(xj)∥}, otherwise.

The parameters involved in the NW method are the same as parameters in [10]. For ADMM
in Algorithm 5, if n = 2, we set the penalty parameter σ = 4 +

√
m/90. Otherwise, we set

σ = 6/n+
√
m/(810

√
n).

In our experiments, the numbers of points m are set to 1000, 2000, 5000, 10000, 20000,
50000, 100000, 200000, 500000 and the points a[i] (i = 1, 2, . . . ,m) are generated randomly
in (−100, 100). The weights wi (i = 1, 2, . . . ,m) are randomly generated in (0, 100).

The following three tables report the comparison results on the average of 5 instances
when tol = 10−8 in iterations (iter), running time (time) and relative residuals (Res) for all
the tested algorithms when n = 2, 5 and 10 respectively.

Table 1: The performance of Ssnal, MW, ADMM, NW when n = 2. In the
table, “a” = Ssnal, “b” = MW, “c” = ADMM, “d” = NW. Time is shown in
seconds.

m
iter time Res

a| b| c| d a| b| c| d a| b| c| d

1e+3 2.0 | 40.4 | 183.2 | 4.0 0.002 | 0.021 |0.027 | 0.030 3.8e-10 | 7.8e-9 | 9.5e-9 | 3.7e-10

2e+3 2.0 | 39.0 | 174.4 | 4.0 0.003 | 0.039 |0.050 | 0.105 2.8e-11 | 6.7e-9 | 9.2e-9 | 6.2e-12

5e+3 2.0 | 39.8 | 192.8 | 4.0 0.004 | 0.092 |0.078 | 0.375 5.4e-10 | 6.2e-9 | 9.6e-9 | 6.5e-12

1e+4 2.0 | 38.4 | 312.4 | 4.0 0.006 | 0.172 |0.206 | 1.175 2.7e-10 | 6.7e-9 | 9.8e-9 | 1.1e-11

2e+4 2.0 | 40.0 | 861.2 | 4.0 0.023 | 0.353 |0.906 | 3.683 4.1e-11 | 8.2e-9 | 9.8e-9 | 2.3e-11

5e+4 2.0 | 40.0 | 355.6 | 4.0 0.041 | 0.853 |0.813 | 18.523 7.1e-11 | 7.4e-9 | 9.8e-9 | 6.9e-11

1e+5 2.0 | 41.4 | 706.4 | 4.0 0.082 | 1.763 |4.879 | 99.547 2.7e-10 | 6.9e-9 | 9.9e-9 | 1.2e-10

2e+5 2.0 | 41.4 | 388.8 | 4.0 0.181 | 3.644 |7.560 | 594.491 3.4e-11 | 7.3e-9 | 9.7e-9 | 2.7e-10

5e+5 2.0 | 42.4 | 655.6 | 4.0 0.402 | 9.109 |27.773 | 3196.520 3.0e-11 | 6.7e-9 | 9.9e-9 | 6.4e-10

The numerical results of MW, NW, ADMM and Ssnal algorithms when n = 2 are
presented in Table 1. In terms of iterations, it is observed that the Ssnal algorithm is
significantly less than other algorithms. Similarly, in terms of time, the Ssnal algorithm is
at least 10, 13 and 15 times faster than MW, ADMM and NW respectively. In particular,
Ssnal takes 0.4 seconds to reach the required accuracy for m = 5e+5, while other algorithms
take about 9 to 3196 seconds. Thus, one obtains that the efficiency and stability of the Ssnal
algorithm is superior to others when n = 2.
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Table 2: The performance of Ssnal, MW, ADMM, NW when n = 5. In the
table, “a” = Ssnal, “b” = MW, “c” = ADMM, “d” = NW. Time is shown in
seconds.

m
iter time Res

a| b| c| d a| b| c| d a| b| c| d

1e+3 2.0 | 16.8 | 58.4 | 4.0 0.002 | 0.012 |0.012 | 0.034 2.4e-11 | 5.3e-9 | 8.3e-9 | 1.8e-12

2e+3 2.0 | 17.0 | 60.2 | 4.0 0.003 | 0.018 |0.019 | 0.109 2.6e-11 | 5.8e-9 | 8.6e-9 | 3.2e-12

5e+3 2.0 | 17.2 | 56.6 | 4.0 0.004 | 0.041 |0.030 | 0.453 2.6-11 | 5.0e-9 | 9.0e-9 | 9.3e-12

1e+4 2.0 | 17.2 | 59.4 | 4.0 0.011 | 0.079 |0.055 | 1.442 2.6e-11 | 6.2e-9 | 9.2e-9 | 1.6e-11

2e+4 2.0 | 17.2 | 62.6 | 4.0 0.024 | 0.156 |0.104 | 5.069 2.7e-11 | 5.8e-9 | 9.0e-9 | 3.8e-11

5e+4 2.0 | 18.0 | 76.2 | 3.8 0.082 | 0.432 |0.574 | 55.948 3.0e-11 | 3.5e-9 | 9.1e-9 | 2.9e-10

1e+5 2.0 | 18.0 | 77.6 | 3.8 0.122 | 0.827 |1.007 | 186.529 2.9e-11 | 4.4e-9 | 8.9e-9 | 1.4e-9

2e+5 2.0 | 18.0 | 78.2 | 4.0 0.265 | 1.702 |2.555 | 954.524 3.1e-11 | 7.2e-9 | 9.1e-9 | 2.5e-10

5e+5 2.0 | 18.4 | 85.2 | 3.6 0.554 | 4.228 |6.493 | 5422.649 3.0e-11 | 6.3e-9 | 9.3e-9 | 2.2e-9

Table 2 reports the results of all tested algorithms when n = 5. One can see that all tested
algorithms successfully solve all instances but the running time of the Ssnal algorithm is
less than others algorithms. Furthermore, the Ssnal algorithm is 6 to 10 times faster than
MW, 6 to 12 times faster than ADMM and at least 17 times faster than NW. In Table 2,
for the instance m = 2e + 5, the Ssnal algorithm only takes 0.27 seconds to produce the
required accuracy solution, while the other algorithms take about 2 to 950 seconds. Finally,
one can observe from the table that the larger m is, the more obvious the advantage of the
Ssnal algorithm in comparison with other algorithms is.

Table 3: The performance of Ssnal, MW, ADMM, NW when n = 10. In the
table, “a” = Ssnal, “b” = MW, “c” = ADMM, “d” = NW. Time is shown in
seconds.

m
iter time Res

a| b| c| d a| b| c| d a| b| c| d

1e+3 2.0 | 12.2 | 38.6 | 4.0 0.002 | 0.008 |0.010 | 0.046 1.9e-11 | 5.6e-9 | 7.9e-9 | 1.9e-12

2e+3 2.0 | 12.0 | 38.4 | 4.0 0.004 | 0.014 |0.016 | 0.150 2.1e-11 | 4.9e-9 | 7.6e-9 | 3.7e-12

5e+3 2.0 | 12.0 | 37.8 | 4.0 0.008 | 0.031 |0.028 | 0.622 2.8e-11 | 4.9e-9 | 9.4e-9 | 1.2e-11

1e+4 2.0 | 12.0 | 40.4 | 4.0 0.017 | 0.059 |0.055 | 2.145 3.1e-11 | 6.6e-9 | 8.4e-9 | 1.9e-11

2e+4 2.0 | 12.0 | 40.0 | 4.0 0.078 | 0.137 |0.288 | 22.994 3.1e-11 | 8.7e-9 | 7.8e-9 | 4.6e-11

5e+4 2.0 | 13.0 | 42.0 | 4.0 0.135 | 0.345 |0.590 | 99.394 3.2e-11 | 1.5e-9 | 8.6e-9 | 8.9e-11

1e+5 2.0 | 13.0 | 40.6 | 4.0 0.220 | 0.668 |1.088 | 356.409 3.2e-11 | 1.7e-9 | 8.9e-9 | 2.7e-10

2e+5 2.0 | 13.0 | 42.4 | 4.0 0.425 | 1.366 |2.422 | 1600.390 3.4e-11 | 2.5e-9 | 8.5e-9 | 3.4e-10

5e+5 2.0 | 13.0 | 45.2 | 4.0 0.924 | 3.378 |6.069 | 9936.131 3.7e-11 | 3.7e-9 | 9.1e-9 | 9.0e-10

Table 3 presents the performance of all tested algorithms when n = 10. We observe that
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all tested algorithms still succeed in solving all instances to the desired accuracy. Careful
comparison shows that the Ssnal algorithm is about 4 times faster than MW, about 5 times
faster than ADMM and at least 23 times faster than NW. For the instance m = 5e + 5, the
Ssnal algorithm solves it within 1 second, while MW and ADMM take 3.38 and 6.07 seconds
to solve this instance, and the NW algorithm even takes 9936.13 seconds which is close to
the maximum running time we set. Therefore, the Ssnal algorithm also outperforms other
algorithms when n = 10.

Consequently, we can safely claim that the Ssnal algorithm substantially outperforms
MW, NW and ADMM in terms of efficiency and robustness.

5 Conclusion

In this paper, we have developed a highly efficient semismooth Newton based augmented
Lagrangian algorithm for the Weber problem (1.1). The theoretical results showed that the
Ssnal algorithm admits global convergence and locally asymptotically superlinear conver-
gence. Moreover, numerical experiments demonstrated that the Ssnal algorithm is superior
to MW, ADMM and NW algorithms in terms of running time and robustness.
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