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Abstract: This paper is concerned with the stability for a generalized Ky Fan inequality when it is perturbed
by vector-valued bifunction sequence and constrain set sequence. By removing the assumptions of the
strictly proper quasi C-convexity and the continuous convergence, we establish the Painlevé-Kuratowski
convergence of the approximate solution mapping of a family for perturbed problems to the corresponding
solution mapping of the original problem. The obtained results are new and improve the corresponding ones
in the literatures ([21, 23]). Some examples are also given to illustrate the results.
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Introduction

It is well known that the Ky Fan Inequality (briefly, KFT) is a very general mathematical
format, which embraces the formats of several disciplines, as those for equilibrium problems
of Mathematical Physics, those from Game Theory, those from Optimization and Variational
Inequalities, and so on (see [6, 10, 11]). Since Ky Fan Inequality was introduced in [10, 11],
it has been extended and generalized to vector-valued mappings. The Ky Fan Inequality for
a vector-valued mapping is known as the generalized Ky Fan Inequality (briefly, GKFI). In
the literature, existence results for various types of (generalized) Ky Fan Inequalities have
been investigated intensively, see [13, 14, 20] and the references therein.

The stability analysis of solution mappings for the KFI is one of the most interesting
topics in optimization theory and applications. In general, it is concerned with the study
of the behavior of the solution of problems when their data are subject to change. The
main goal of this kind is to provide qualitative and quantitative information on the problem
itself. In last years, many authors have intensively studied the stability of the solution
(mapping) for variational inequalities or Ky Fan inequalities when the objective function
are perturbed by parameters; see [1-5, 13-17, 27-31, 34-35]. Anh and Khanh [2] studied the
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stability of solution mappings for two class of parametric quasi-KFIs. Huang et al. [17]
discussed the upper semicontinuity and lower semicontinuity of the solution mapping for
a parametric implicit KFI. By virtue of a density result and scalarization technique, Gong
and Yao [15] first discussed the lower semicontinuity of the set of efficient solutions for a
GKFI. Li et al. [22] obtained the sufficient conditions for the lower semicontinuity of the
solution mapping to a generalized PKFI with set-valued mappings. Chen and Huang [7]
studied the continuity of solution mappings for parametric weak KFIs. Recently, Anh et al.
[3] discuss Holder continuity of approximate solution mappings to parametric KFIs under
the concavity and convexity of bifunctions. Peng et al. [31] obtained the connectedness of
solution sets for weak generalized symmetric KFIs via addition-invariant set. Some results
also can see [27, 30, 34] and the references therein.

On the other hand, on the stability of the solution set under perturbations, either of the
feasible set or the objective function, has also been of great interest in this field. Attouch and
Riahi [1] studied stability of a vector optimization problem based on the notion of conver-
gence of epigraphs. Huang [19] discussed the stability of the set of efficient points of vector-
valued and set-valued optimization problems. Lucchetti and Miglierina [25] investigated
the Painlevé-Kuratowski set convergence of the solution set for a convex vector optimiza-
tion problem. Using continuous convergence, Lalitha and Chatterjee [21] established the
stability of (weak) efficient sets of proper quasiconvex vector optimization problems, which
improved the results of [25]. However, to the best of our knowledge, there are few papers
concerning with the stability of the solution mapping to (G)KFI when it is perturbed by
bifunction sequence and set sequence. Durea [9] considered the GKFI with perturbations of
the multifunction and obtained the Painlevé-Kuratowski upper convergence of the solution
set. Under the C-strict monotonicity, Fang and Li [12] obtained the Painlevé-Kuratowski
convergence of efficient solution sets and proper efficient solution sets for a GKFI. Zhao [36]
et al. obtained the convergence of the weak and global efficient solution sets for the GKFI.
Recently, Li et al. [23] establish the Painlevé-Kuratowski convergence of the approximate
solution mapping of a family of perturbed problems to the corresponding solution mapping
of the original problem under the conditions of the strictly proper quasi C-convexity and the
continuous convergence of objective functions. Very Recently, Peng et al. [28] obtained the
Painlevé-Kuratowski stability of approximate efficient solutions for perturbed semi-infinite
vector optimization problems. Han [18] discussed the Painlevé-Kuratowski convergence of
the solution sets for set optimization problems with cone-quasiconnectedness.

Motivated by the work reported above ([18, 21, 23, 28, 33, 36] and the references therein),
this paper aims at further concerning with the stability analysis of approximate solution
mappings for GKFI. Without using the strictly proper quasi C-convexity and the continuous
convergence, we aim to establish the stability results of the approximate solution mapping
for a class of generalized Ky Fan inequality, when it is perturbed by vector-valued bifunction
sequences and set sequences. Our consequences are new and different from the corresponding
ones in the literature ([21, 23, 32, 36]).

Preliminaries

Throughout this paper, unless otherwise specified, let A C R™ be a nonempty closed set
and C be a pointed closed convex cone in R! with nonempty topological interior intC. Let
F :R™ xR™ — R! be a vector-valued bifunction. We consider the following generalized Ky
Fan inequalities:

GKFI(A, F); Find x € A such that F(z,y) € —C\{0}, Vye A
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and
GKFI(A, F)y Find x € A such that F(z,y) € —intC, Vy € A.

A solution = € A of the problem GKF(A, F'); (resp. GKF(A, F')2) is said to be a generalized
Ky Fan’s efficient (resp. weak efficient) point of F in A. We denote by Sol(A, F) and
WSol(A, F) the set of generalized Ky Fan’s efficient and weak efficient points of F in A,
respectively.

For a sequence of bifunctions F, : A, x A, — Rl,n = 1,2,---, we now, respectively,
approximate the above problems by the sequence of problems:

GKFI(A,, F,); Find z € A, such that F,(z,y) +e,e € —C\{0}, Vyec A,
and
GKFI(A,, F,)> Find z € A, such that F,,(z,y) + ep,e € —intC, Vy € A,.

where {A,,} is a nonempty set sequence of R™, {F,,} is a vector-valued bifunction sequence
from R™ x R™ to R!, e € intC is a given point and {e,} is a nonnegative sequence. Sim-
ilarly, we denote by Sol(A,,, F,,&,) and WSol(A,,, F,,,&,) the set of approximate solutions
of problems GKFI(A,,, F,,); and GKFI(A,, F,)2, respectively. In this paper, using some
weaker assumptions, we mainly analyze the behavior of Sol(-,-,-) and WSol(, -, -) when the
data vary around a given point. Thus, we always assume Sol(-,-,-) and WSol(-,-,-) are
nonempty around the considered point.

Special cases: When A4, = A and F,, = F for any n, then we get Sol(4,, F},,0) =
Sol(A, F') and WSol(A4,, F,,,0) = WSol(A, F).

We shall use the following notations. Let {e,} be a scalar-valued sequence, we denote

R
by €, \ € (resp. &, - ¢) when €, > ¢ (resp. ¢, € R;) for all n and ¢,, — €.
Now, we recall some notions and results which will be used in the sequel.

Definition 2.1. Let A be a nonempty convex subset of R™. Let f be a mapping from R™
to R, We say that
(i) f is C-convex on A, if Va1,29 € A, X € [0,1],

Sz + (1= MNaz) € Af (1) + (1 = A) fa2) — C;
(ii) f is properly quasi C-convex on A, if V1,29 € A, VA € [0, 1], either
FOz1 4+ (1 =XNa2) € f(z1) — Cor f(Az1 + (1 — N)x2) € f(ze2) — C;
(iii) f is strictly properly quasi C-convex on A, if Va1,25 € A, x # y, VA € (0,1), either
fQx1 + (1= Nz2) € f(21) — intC

or

FOz1+ (1= N)axa) € f(z2) — intC.

Definition 2.2. [34] Let F be a nonempty convex subset of R™. Let f be a mapping from
R™ to R!. We say f is

(i) naturally quasi C-convex on FE, if for every z1,29 € E and A € [0, 1], there exists
w € [0, 1], such that

fQOzy + (1= Nx2) € pf(2r) + (1= p)f(x2) - C;
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(ii) strictly (resp. semistrictly) natural quasi C-convex on E, if for every zi,zo €
E with x1 # x2 (vesp.f(z1) # f(z2)) and A € (0,1), there exists u € (0,1), such that
PO+ (1= N)aa) € pf () + (1 — ) (3) — intC.

Definition 2.3. Let E be a nonempty convex subset of R™. Let f be a mapping from R™
to R!. We say f is
(i) C-quasiconvex on E, if for each z € R, 21,20 € E and X € [0, 1],

f(x1), f(z2) € z— C implies f(Az1 + (1 —N)xa) € 2 — C;

(ii) strictly (resp. semistrictly) C-quasiconvex on E, if for each z € R, 2,75 € E with
x1 # x2 (vesp. f(z1) # f(x2)), and for each A € (0,1),

f(z1), f(ze) € z— C implies f(Az1+ (1 — N)zg) € z — intC.
Obviously, the strict C-quasiconvexity implies the semistrict C-quasiconvexity.
Remark 2.4. From the definitions, we can obtain immediately the following implications
for the mapping f:

proper quasi C-convexity = natural quasi C-convexity = (C-quasiconvexity

U
st.proper quasi C-convexity = st.natural quasi C-convexity = st.C-quasiconvexity
N N N

sst.proper quasi C-convexity = sst.natural quasi C-convexity = sst.C'-quasiconvexity

(for simplicity, st./sst. stands for strict(ly)/semistrict(ly), respevtively)

However, the converse implications are generally not valid.

Remark 2.5. From Remark 2.4, the class of C-quasiconvexity is strictly larger than the
naturally quasi C-convexity, meanwhile, the naturally quasi C-quasiconvexity is strictly
larger than the properly quasi C-convexity.

The following examples show that there exists C-quasiconvex functions are not necessary
naturally quasi C-convex functions, and naturally quasi C-convex functions are not necessary
properly quasi C-convex functions.

Example 2.6. (i) Let X =R, A=[0,v2] C X,Y =R2?,C = R? = {(z,y) € R*[z > 0,y >
0}. Define f: A=Y by

x? x?

f(x):(ga —7+1)~

(ii) Let X =R, E =1[0,2] C X,Y =R?,C = R34 = {(z,y) € R*|z > 0,y > 0}. Define
f:E—=Y by
3 T, 3 T
h(x) = (= —), =sin(—)).
() = (5eos(0), Ssin("))

By virtue of Remark 2.1 of [34] and Definitions 2.1-2.3 above, we can verity f is naturally
quasi C-convex on A, but it is not properly quasi C-convex on A, simultaneously, h is C-
quasiconvex on F, but it is not naturally quasi C-convex on F.

Now, we recall some notions of convergence.
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Definition 2.7. [29] Let {A,}(n € N) be a sequence of sets R™ and A be a subset of R™.

() liminf,, 00 4y = {z € R™|3(zy), zp, € Ay, ¥Yn € Nz, — x} is its inner limit;

(ii) limsup,,_ oo An = {z € R™|3(ng), @0, ), Tn, € An,,Yk € N,x,, — x} is its outer
limit;

(iii) limsup,” A, := {0} U {z € R™|3z,, € Apn,,tin, 0, tin, Tpn, — x} is its horizon
outer limit;

(iv) {A, : n € N} is said to converges in the sense of Painlevé-Kuratowski (P.K.) to A

(denoted as A, LK, A) if and only if limsup,,_,., 4, C A C liminf,, o A,.
The relations limsup,, ,., A, C A and A C liminf,_, A, are, respectively, referred

as the upper part and the lower part of the (Painlevé-Kuratowski) convergence. Clearly,
liminf,, . A, C limsup,,_, ., An.

Definition 2.8. [24] Let F), : 4, — Rl and F : A — R!(n € N) be vector-valued mappings.
We say that F),| 4, continuous converges to F|4 (denoted as Fy,|4, — F|a), iff the following
conditions are satisfied:

(a) An =5 4

(b) for every z € A and for every sequence {z,} in 4,, F,(x,) = F(z) for all z,, — x.

Definition 2.9. [26] Let F}, : 4, x 4, - Rl and F : A x A — Rl(n € N) be vector-
valued mappings and let U(z) x U(y) be the family of neighborhoods of (x,y). We say that
(Fla, )nen gamma converges to F| 4 (denoted as F, | 4, AN F|a), iffor every (z,y) € AXA:
(a) An P.K.> 4;
(b) VU € U(z) xU(y),V¢ € intC, In¢,y € N such that Vn > ney, Hzn, yn) € U (A, X
Ay) such that

(c) V¢ € intC, 30U € U(z) x U(y), k¢ € N such that V(2',y") € Us (A, x Ay),Vn > ke,
Fn(x/ay,) € F(xay) - C +C.

Remark 2.10. Clearly, continuous convergence implies gamma convergence, but the con-
verse is generally not true. We can give an example to illustrate the case.

Example 2.11. Let n € M. Defined F,, : R — R by

n?z? — 2nx, —§§x<0;
nx + 1, —z<z< -4
Fo(z) = n?z? — 2nz, 0<$§%§;
" nr — 2, L<r<
0, m<—%orm>%;
-1 x=0.

)

It is easy to verify that F, I, F, where
[0, x #£0;
F(x)_{L z=0.

However, the sequence {F),},cn is not continuous converges to F. In fact, take two
sequences {z, : &, = 3-} and {}, : #}, = —2}, it is obvious that both of them converge to

zero, but F, (z,,) converges to —5 and F,(z],) converges to —1.
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Main Results

In this section, we attempt to establish the upper and lower Painlevé-Kuratowski conver-
gence behavior of Sol(+, -, -) and WSol(-, -, -) without the continuous convergence and strictly
proper quasi C-convexity, when the data vary around a given point.

Firstly, only using gamma convergence, we establish the upper Painlevé-Kuratowski
convergence of Sol(-, -, ).

Theorem 3.1. Assume that —F,(-,-) |A"L> —F(-,-) |a and e, \( 0. Then

lim sup WSol(A,, Fy,en) C WSol(A, F).

n—oo

Proof. Take any x € limsup,, WSol(A,,, F,,,e,). Then, there exists a subsequence {x,, } in
WSol(A,, , Fn,,€n,) such that z,, — z. As A, LK, A, we have z,, — x € A. For

any y € A, there exists y,, € A, such that y,, — y since 4, LK AL Tt follows from
{Zn, } T WSol(An,, Fn,,en,) and y,, € A,, that

F,, (n,, Yn,,) + En,e & —intC. (3.1)

Because —F, (-, -) |Ani> —F(-,-) |4, from Definition 2.9, for any ¢ € intC,3U, € U(x) X
U(y), ke € N such that V(a',y') € Us (An x Ayp),Vn > ke,

_Fn(x/7y/) € —F(J,'7y) - g +C.

Without loss of generality, let ¢ = e,, e, there exists k¢ < N € N such that (zp,,yn,) € Ue
and
_Fnk(xnmyk) € —F(x,y) — Ene+C, Vnp>Ng,

that is,
F(z,y) € Fo,(zn,,yx) —€ne+C, Vi > N (3.2)

Together with (3.1)-(3.2) and the closedness of Y\ —intC yields that
F(z,y) € Fn, (Tny, s Yn,,) F enpe +C —2ey,e CY \ —intC — 2¢,, e.
Then, from €, N\, 0 and the closedness of Y\ —intC, we can get
F(z,y) ¢ —intC.
As y € A is arbitrary, we conclude that x € WSol(A, F'). Thus, the proof is complete. O

Remark 3.2. By using gamma convergence, which is weaker than continuous converge
(from Remark 2.10), we establish the upper Painlevé-Kuratowski convergence of WSol(, -, -).
Thus, Theorem 3.1 extends and improves Theorem 3.1 of [23].

The following example is given to illustrate the case.
Example 3.3. Let A, ;== A=Rand C := Ri ={z = (z1,22) : 1 > 0,29 > 0}. Defined
F,,F:Ax A — R?such that for any z,y € A4,

—2n?g? )
)

Fo(z,y) = (— x, —nze
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and

L (—LE, O)a T 7& 0;
Fz,y) = { (O,%e‘é), z =0.

It follows from direct computations that
WSol(4, F) = (—o0, +00),

and for any &, \,0,
WSol(A,,, Fy,e,) = (—00, +&4].

By virtue of [26], we can easily verify that —F, |4, L _F |4 when n — oo. From Theorem
3.1, one has
lim sup WSol(A4,,, F,,e,) C WSol(A, F),

n—0o0

for any €, \( 0. Obviously, Theorem 3.1 is applicable.
However, the sequence {F}, }|,enr is not continuous converges to F'. In fact, we consider

the sequence: z], = (3-), 7, = (—3), both converging to zero, but

rYn

1 1
Eu(a,y) = (0, e 8) # (0, ge™8) ¢ Fu(ay. ).

Therefore, Theorem 3.1 in [23] is not applicable here.

Under certain assumptions, we discuss the relationships between Sol(-, ) and WSol(-, -).

Theorem 3.4. Assume that

(i) A is a nonempty convex subset of R™;
(ii) Ve € A, F(x,z) = 0;

(iii) Vo € A,y — F(x,y) is semistrictly C-quasiconver on A.

Then,
Sol(A, F) = WSol(A, F).

Proof. By the definition, Sol(A4, F) C WSol(A4, F). We need only to prove WSol(A, F) C
Sol(A, F). Suppose to the contrary, there exists g € WSol(A, F') such that z¢ ¢ Sol(A, F).
Hence, there exists yo € A such that

F(zo,y0) € —=C'\ {0}. (3.3)
Together with (ii), one has
F(Jio,yo) S F(ﬂl‘o,ﬂ?o) - C \ {0} (34)

Since F'(xo, -) is semistrictly C-quasiconvex, combing (3.3) and (3.4), for every A € (0, 1) we
have
F(xzo, A\xo + (1 — Nyo) € F(xg,z9) — intC.

Using the assumptions (i)-(ii), for Azg + (1 — N)yg € A, one has
F(zo, \xo+ (1 — Nyo) € —intC,
which contradicts zo € WSol(A, F'). Thus, the proof is complete. O
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From Theorem 3.4 and Remark 2.4, we can get Corollary 3.5.

Corollary 3.5. Assume that

(i) A is a nonempty convex subset of R™;
(ii) Vo € A, F(z,z) = 0;

(iii) Vo € A,y — F(x,y) is semistrictly natural quasi C-convex on A.

Then, we have
Sol(A, F) = WSol(A, F).

Combing Theorems 3.1 and 3.4 (resp. Corollary 3.5), we obtain the following results
easily.

Theorem 3.6. Suppose that —F,(-,") |Ani> —F(-,-) |a and e, \( 0. Assume that

(i) A is a nonempty convex subset of R™;
(ii) Va € A, F(x,z) = 0;

(ili) Vo € A,y — F(x,y) is semistrictly C-quasiconver on A.

Then
lim sup Sol( Ay, Fpn,en) C Sol(A, F).

n—oo

Corollary 3.7. Suppose that —F,(-,") \AnL —F(-,-) |a and g, (0. Assume that

(i) A is a nonempty convex subset of R™;
(ii) Vo € A, F(x,z) = 0;

(ili) Vo € A,y — F(x,y) is semistrictly natural quasi C-convex on A.

Then
lim sup Sol( Ay, Fpn,en) C Sol(A, F).

n—oo

Remark 3.8. In [23], by virtue of continuous convergence and strictly proper quasi C-
convexity, Li et. al obtain the upper Painlevé-Kuratowski convergence of Sol(-, -, -) (see [23,
Theorem 3.2]). In Theorem 3.6, by using more weaker conditions (gamma convergence and
semistrictly C-quasiconvexity), we obtain the same result. Therefore, Theorem 3.6 extends
and improves Theorem 3.2 of [23].

Now, we give an example to illustrate that our results (Theorem 3.6 and Corollary 3.7)
are applicable, while the corresponding results in [21] and [23] (i.e., Theorem 3.2) may be
not.
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Example 3.9. Let C := RY = {z = (z1,22) : ©1 > 0,29 > 0} and A = [0,1], 4, =
[L,1— 1] (n > 3). Define the mapping F : A x A — R? by

F(z,y) = (y — 2,2 —y),
and define F), : A, x A,, — R? by

1 1
Faley)=(y—z— 5, z—y+ ).
It follows from direct computations that for any €, N\, 0,
1 1
Sol(Ay,, Fr,en) = (E —&p, 1 — ﬁ] NA, and Sol(4,F)=]10,1].

We can verify that all assumptions of Theorem 3.6 and Corollary 3.7 are satisfied, and we

also observe that
lim sup Sol(A,,, Fy,, €,,) C Sol(A, F) = [0,1],
n—oo
for any €, \( 0. Surely, Theorem 3.6 and Corollary 3.7 are applicable.
However, from Definition 2.1, we can easily find that F'(z,-) is not strictly properly quasi
C-convex on A. Indeed, take y; = %, yo = 1(x #y) and A = % , then it follows that

F(xz, Ay1 + (1 = N)y2) ¢ F(x,y1) — intC,

and
F(z,  yy + (1 = N)yz) ¢ F(x,y2) — intC.

This means that F' is not strictly properly quasi C-convex on A, therefore, Theorem 3.2 of
[23] (and also Theorem 5.1 of [21]) are not applicable.

Next, we establish sufficient conditions for the lower Painlevé-Kuratowski convergence
of Sol(, -, -) and WSol(-, -, -).

4, F(-,-) |a and limsup; A, = {0}. Then, there

n

Theorem 3.10. Assume that F,(-,-)
exist €, \( 0 such that

(a) Sol(A,F) C liminf, o Sol(An, Fp,en),
(b) WSol(A, F) C liminf, oo WSol(Ay, Fy,en).

Proof. (a) Take any xg € Sol(A4, F'). From A, LE A, it follows that there exists @, € A,
such that x,, — x¢. First, we shall prove the following property for sequence {z,} :

Ve > 0,3ne,Vn > ne, x, € Sol(A,, Fi,e). (3.5)

Indeed, suppose to the contrary that there exists €° > 0, for all k, there exists nj > k such
that
Ty, & Sol(Apy, Fryy€°).

Then, there exists y,, € Ay, such that

Fry (Tog, yn,) + €% € —C\ {0}. (3.6)
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Since limsup, A, = {0}, by [29, Chapter 4, pl123], then we conclude A, is eventually
bounded. Therefore, the sequence {y,, } is eventually bounded. Without loss of generality,

we assume that y,, — yo, then yp € A as A4, PE. 4
Since xg € Sol(A, F') and yo € A, one has

F(zo,y0) € Y\ (=C\ {0}). (3.7

Because F,(-,-) |4, — F(-,-) |a, for any ¢ € intC,3U; € U(xo) x U(yo), e € N such that
V(z',y') € U N(An X Ay),¥n > ¢, one has

Fo(2',y") € F(xo,y0) — ¢+ C. (3.8)
Without loss of generality in (3.8), let ¢ = &%, (2/,9') = (Tn,, Yn, ), We get
Foy (Tny, Yny,) € Flxo,50) — e’ + C. (3.9)
Combing (3.7) and (3.9), when ny > max{k, uc} we have

Fon (oo ) € Fla, o) — Ve +C
CY\(=C\{0}) =’ +C
CY\(=C\{0}) — €%,

that is
Fnk (Inkvynk) + 606 ¢ 70\ {0}7

which contradicts (3.6). So, we conclude that the assertion (3.5) is correct. By the definition
of liminf, _, . Sol(A,, F,,, e,) and using the similar proof method of Theorem 3.3(a) in [23],
with appropriate modifications, we can easily obtain that there exist €, \, 0 such that
xo € liminf,,_ o, Sol(A,, F,,e,). The proof is complete.

(b) The proof follows on similar technique as for (a). So, we omit it. O

Remark 3.11. Since the gamma convergence is weaker than continuous convergence, The-
orem 3.10 extends and improves the corresponding ones in [23] ([23, Theorems 3.3-3.5]) and
[21] ([21, Theorem 5.1]). We give Example 3.12 to illustrate the case.

Example 3.12. Let A :=[-1,1],4, :== [-1 - L 1] c R and C := R = {& = (21,22) :
x1 > 0,29 > 0}. Defined F), : A, x A, — R? such that for any z,y € A,
(l‘,O), _1_%SxS07
F,(z,y) =< (z,nx), 0<z< %;
(z,1), L<z<l.
and defined F : A x A — R? as
[ (1‘,0), _1§1‘S07
F(z,y) '_{ (z,1), 0<z<l.

It is easy to verify that all assumptions of Theorem 3.10 are satisfied, and there exist &, \ 0
such that

Sol(A, F') C liminf Sol(A,, F,,€x),and WSol(A, F') C lim inf WSol(A4,,, F,,,&x).

n—oo n—roo
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Indeed, take e/, = % N 0. Then, we have

1 1
Sol(Ay,, Fp,el) = [~ ?)—n,l]7 WSol(Ay,, Fp,el) = [-1— —,1];

ny<n
n

and
Sol(A, F) =1[0,1], WSol(A, F) =[-1,1].

Thus, Theorem 3.10 is true and applicable.
However, the sequence {F, }|necnr is not continuous converges to F. In fact, we consider

two sequences: x, = (&), 2], = (5), it is obvious that both of them converge to zero, but

1

Then, the main results of [23] (e.g. [23, Theorems 3.3-3.5]) and Theorem 5.1 of [21] are not
applicable here.

As a consequence of Theorems 3.1 and 3.10(b), we obtain the following result.

Theorem 3.13. Assume that Fy,(-,-) |a.— F(,-) |4, —=Fu(,") |4, — —F(-,-) |4 and

limsup;” A, = {0}. Then, there exist e, (0 such that

WSol(Ap, Fp,n) =25 WSol(A, F).
Similarly, by virtue of Theorem 3.4, Theorems 3.6 and 3.10(a), we obtain Theorem 3.14.

Theorem 3.14. Assume that:

i) A is a nonempty convex subset of R™ and limsup,. A, = {0};

(
(i) Ful) lan = FC) las =Fal) Lo, = =F () |a;
(i) Vo € A, F(x,x) = 0;

(iv) Vo € A,y — F(x,y) is semistrictly C-quasiconvex on A.

Then, there exists €, \( 0 such that

lim sup Sol(A,,, Fy,en) C Sol(A, F) C hm 1nf Sol(Ap, Fy,en).

n—oo

Also, by Corollary 3.5, Corollary 3.7 and Theorem 3.10(a) (or from Theorem 3.14 and
Remark 2.4), we can get the following Corollary.

Corollary 3.15. Assume that:

i) A is a nonempty convez subset of R™ and limsup;,° A,, = {0};

11) ( v') |A —> F(?) ‘A7 _Fn('v') |An—> _F('7') |A;

(
(
(iii) Va € A, F(z,x) = 0;
(

iv) Vo € A,y — F(z,y) is semistrictly natural quasi C-convex on A.
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Then, there exists €, \( 0 such that
Sol(Ap, Foye) 255 Sol(A, F).

Remark 3.16. If A, = A, F,(z,y) = g(z,y,n) and &, = ¢, GKFI(A,, F,,e,)2 was in-
vestigated by Peng et al. [32]. They discussed the semicontinuity of approximate solution
mappings for GKFI(A,, F,,,e,)2. Moreover, if ¢, = ¢ is fixed, problem GKF(A,, F,,,en)2
was also investigated by Anh and Khanh [2]. They also established the semicontinuity of
solution mappings for GKFI(A4,,, F},,£,)2. Comparing our results with the corresponding
ones of Peng et al.[32], Anh and Khanh [2], one can find that the assumptions, the proof
method (and the goal) of the paper are quite different from the references [32] and [2].

Remark 3.17. If ¢, = ¢ = 0, the problem GKFI(A4,,, F,,£,)1 was investigated by Fang and
Li [12] and Zhao et al.[36]. Under certain assumptions, they study the Painlevé-Kuratowski
convergence of solution mappings for generalized Ky Fan inequality, respectively. By com-
parison, the assumptions and the proof method are different from the corresponding ones in
Fang and Li [12], Zhao et al. [36].

Remark 3.18. In [23], GKFI(A,, F,,,&,)1 and GKFI(A,,, F,,e,)2 were investigated by Li
etal. If A, = A, F,(z,y) = f(z) and ¢,, = ¢ = 0, GKFI(A,, F,,,e,)1 and GKFI(A,,, F,,,ep)2
were also discussed by Lalitha et al. [21]. Since the assumptions in the paper are weaker than
the strictly proper quasi C-convexity and the continuous convergence, our results improve
and extend the corresponding ones in Lalitha et al. [21] and Li et al.[23].

Now, we give example 3.19 to illustrate the obtained results of Theorem 3.14 and Corol-
lary 3.15.

Example 3.19. Let C = R% = {z = (z1,22) : 1 > 0,22 > 0}. Let A = [0,1],4,, =
[%, 1+ %] and define the mappings F}, : A, x A, — R? by

F(z,y) = (=(1+€")(2® = y?), =2(a® = y*));

2 2 2

Falog) = (1 + )@= o = (1= 22,2 = 2= = (5= o))

It follows from direct computations that
2
WSol(A,,, F,,) = Sol(A,, F,,) = {%}

and
WSol(A4, F) = Sol(A4, F) = {0}.

We can verify that conditions (i)(iii)-(iv) of Theorem 3.14 (Corollary 3.15) and lim sup,’” 4,, =

{0} are satisfied. The condition (ii) of Theorem 3.14 (Corollary 3.15) can be checked as fol-

AHL —F(-,-) |a). In fact, we

lows. (without loss of generality, now we verify —F,(-,-)
have
(a) A, =55 A
(b)VU € U(x) xU(y), Ve € intC, In. y € N such that Yn > ne v, I(zn, yn) == (z,y) €U
such that
49y 4dx, 8y 8z

~Fu(n,yn) + F(a,y) = (L+€) (50 = o-). 5= = o),
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which implies
*Fn(mnayn) € *F(l’,y) +e—C.

(c) Ve € intC, 3V, = (x — &, 2+ =) X (y — =,y + =) € U(z) x U(y),IN, such that
(«',y") € U.N(An x Ap),¥ n > N, we have

Fa(e ) = (L+ )@ -y 4 2 = o) 20—y L2,

F(z,y) = (-1 +e")(@? = y*), —2(z® - ¢%)).

One can easily obtain that
—F,(2",y) € =F(z,y) — e+ C.

Thus, all assumptions of Theorem 3.14 (or Corollary 3.15) are satisfied. From Theorem 3.14
(or Corollary 3.15), one can easily find there exists &, \, 0 such that

Sol(An, Fuyen) =25 Sol(A, F) ( WSol(Ayn, Fy,en) —25% WSol(A, F)).

Thus, Theorem 3.14 and Corollary 3.15 are true and applicable.

Finally, Example 3.20 is given to illustrate that our main results extend and improve the
corresponding ones in the literatures (i.e.,[21], [23]).

Example 3.20. Let C := R} = {z = (z1,22) : 21 > 0,22 > 0} and A = [0,1],4,, =
[%,1 — %] (n > 2). Define the mappings F,,, F' as the same as in Example 3.9. One can
compute that for any €, \, 0,

1
WSol(A,,, Fy,en) = Sol(A,, Fr,en) = (E —én, 1——]NA,

and
WSol(A, F) = Sol(A, F) = [0,1].

We can also verify that all assumptions of Theorem 3.14 (or Corollary 3.15) are satisfied,
by virtue of Theorem 3.14 (or Corollary 3.15), taking €/, = =2 we obtain

~ 3n,
Sol(An, Fuen) =25 Sol(A, F).

However, the assumption of strictly proper quasi C-convexity of F'(z,:) on A is not
satisfied. Indeed, take y' = 1,y = 3(z # y) and A = § , then it follows that

Fla g +(1— Vo) = (2

1
5 —x,x—i) ¢ F(x,y1) — intC,

and

3 3 .
F(‘rv)‘yl =+ (1 - )‘)yQ) = (Z —Z,T — Z) ¢ F(‘rva) - lntC,

which illustrate that F is not strictly properly quasi C-convex on A. Thus, the main results
in [21] (see, [21, Theorems 4.5 and 5.1]) and [23] (see, [23, Lemma 3.2, Theorems 3.2 and
3.5]) are all not applicable in this case.
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Conclusion

This paper aims at concerning with the stability analysis of approximate solution mappings
for GKFI. Without using the strictly proper quasi C-convexity and the continuous con-
vergence, the Painlevé-Kuratowski convergence of the approximate solution mapping of a
family for perturbed problems to the corresponding solution mapping of the original problem
is explored, where it is perturbed by vector-valued bifunction sequences and set sequences.
The relation between the convergence in the sense of Painlevé-Kuratowski and the conver-
gence in the sense of Hausdorff is also very interesting and important, and we will study it
later.
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